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Cognitive assessment is a growing area in psychological and educational measurement, where tests are
given to assess mastery/deficiency of attributes or skills. A key issue is the correct identification of attributes
associated with items in a test. In this paper, we set up a mathematical framework under which theoretical
properties may be discussed. We establish sufficient conditions to ensure that the attributes required by each
item are learnable from the data.
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1. Introduction

Cognitive diagnosis has recently gained prominence in educational assessment, psychiatric eval-
uation, and many other disciplines. A key task is the correct specification of item-attribute rela-
tionships. A widely used mathematical formulation is the well known Q-matrix [27]. Under the
setting of the Q-matrix, a typical modeling approach assumes a latent variable structure in which
each subject possesses a vector of k attributes and responds to m items. The so-called Q-matrix
is an m × k binary matrix establishing the relationship between responses and attributes by indi-
cating the required attributes for each item. The entry in the ith row and j th column indicates if
item i requires attribute j (see Example 2.3 for a demonstration of a Q-matrix). A short list of
further developments of cognitive diagnosis models (CDMs) based on the Q-matrix includes the
rule space method [28,29], the reparameterized unified/fusion model (RUM) [5,7,30], the con-
junctive (noncompensatory) DINA and NIDA models [3,4,12,26,31], the compensatory DINO
and NIDO models [31,32], the attribute hierarchy method [13], and clustering methods [1]; see
also [11,23,33] for more approaches to cognitive diagnosis.

Statistical analysis with CDMs typically assumes a known Q-matrix provided by experts such
as those who developed the questions [10,19,20,25]. Such a priori knowledge when correct is
certainly very helpful for both model estimation and eventually identification of subjects’ latent
attributes. On the other hand, model fitting is usually sensitive to the choice of Q-matrix and its
misspecification could seriously affect the goodness of fit. This is one of the main sources for
lack of fit. Various diagnostic tools and testing procedures have been developed [2,8,9,14,21].
A comprehensive review of diagnostic classification models can be found in [22].

Despite the importance of the Q-matrix in cognitive diagnosis, its estimation problem is
largely an unexplored area. Unlike typical inference problems, the inference for the Q-matrix
is particularly challenging for the following reasons. First, in many cases, the Q-matrix is simply
nonidentifiable. One typical situation is that multiple Q-matrices lead to an identical response
distribution. Therefore, we only expect to identify the Q-matrix up to some equivalence relation
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(Definition 2.2). In other words, two Q-matrices in the same equivalence class are not distin-
guishable based on data. Our first task is to define a meaningful and identifiable equivalence
class. Second, the Q-matrix lives on a discrete space – the set of m × k matrices with binary
entries. This discrete nature makes analysis particularly difficult because calculus tools are not
applicable. In fact, most analyses are combinatorics based. Third, the model makes explicit dis-
tributional assumptions on the (unobserved) attributes, dictating the law of observed responses.
The dependence of responses on attributes via Q-matrix is a highly nonlinear discrete function.
The nonlinearity also adds to the difficulty of the analysis.

The primary purpose of this paper is to provide theoretical analyses on the learnability of the
underlying Q-matrix. In particular, we obtain definitive answers to the identifiability of Q-matrix
for one of the most commonly used models – the DINA model – by specifying a set of sufficient
conditions under which the Q-matrix is identifiable up to an explicitly defined equivalence class.
We also present the corresponding consistent estimators. We believe that the results (especially
the intermediate results) and analysis strategies can be extended to other conjunctive models [12,
15,18,31,32].

The rest of this paper is organized as follows. In Section 2, we present the basic inference result
for Q-matrices in a conjunctive model with no slipping or guessing. In addition, we introduce
all the necessary terminologies and technical conditions. In Section 3, we extend the results in
Section 2 to the DINA model with known slipping and guessing parameters. In Section 4, we
further generalize the results to the DINA model with unknown slipping parameters. Further
discussion is provided in Section 5. Proofs are given in Section 6. Lastly, the proofs of two key
propositions are given in the Appendix.

2. Model specifications and basic results

We start the discussion with a simplified situation, under which the responses depend on the
attribute profile deterministically (with no uncertainty). We describe our estimation procedure
under this simple scenario. The results for the general cases are given in Sections 3 and 4.

2.1. Basic model specifications

The model specifications consist of the following concepts.
Attributes: subject’s (unobserved) mastery of certain skills. Consider that there are k attributes.

Let A = (A1, . . . ,Ak)� be the vector of attributes and Aj ∈ {0,1} be the indicator of the presence
or absence of the j th attribute.

Responses: subject’s binary responses to items. Consider that there are m items. Let R =
(R1, . . . ,Rm)� be the vector of responses and Ri ∈ {0,1} be the response to the ith item.

Both A and R are subject specific. We assume that the integers m and k are known.
Q-matrix: the link between item responses and attributes. We define an m × k matrix Q =

(Qij )m×k . For each i and j , Qij = 1 when item i requires attribute j and 0 otherwise.
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Furthermore, we define

ξ i =
k∏

j=1

(Aj )Qij = 1(Aj ≥ Qij : j = 1, . . . , k), (2.1)

which indicates whether a subject with attribute A is capable of providing a positive response
to item i. This model is conjunctive, meaning that it is necessary and sufficient to master all
the necessary skills to be capable of solving one problem. Possessing additional attributes does
not compensate for the absence of necessary attributes. In this section, we consider the simplest
situation that there is no uncertainty in the response, that is,

Ri = ξ i (2.2)

for i = 1, . . . ,m. Therefore, the responses are completely determined by the attributes. We as-
sume that all items require at least one attribute. Equivalently, the Q-matrix does not have zero
row vectors. Subjects who do not possess any attribute are not capable of responding positively
to any item.

We use subscripts to indicate different subjects. For instance, Rr = (R1
r , . . . ,R

m
r )� is the

response vector of subject r . Similarly, Ar is the attribute vector of subject r . We observe
R1, . . . ,RN , where we use N to denote sample size. The attributes Ar are not observed. Our
objective is to make inference on the Q-matrix based on the observed responses.

2.2. Estimation of Q-matrix

We first introduce a few quantities for the presentation of an estimator.

T -matrix

In order to provide an estimator of Q, we first introduce one central quantity, the T -matrix, which
connects the Q-matrix with the response and attribute distributions. Matrix T (Q) has 2k − 1
columns each of which corresponds to one nonzero attribute vector, A ∈ {0,1}k \ {(0, . . . ,0)}.
Instead of labeling the columns of T (Q) by ordinal numbers, we label them by binary vectors
of length k. For instance, the Ath column of T (Q) is the column that corresponds to attribute A,
for all A �= (0, . . . ,0).

Let Ii be a generic notation for positive responses to item i. Let “∧” stand for “and” com-
bination. For instance, Ii1 ∧ Ii2 denotes positive responses to both items i1 and i2. Each row of
T (Q) corresponds to one item or one “and” combination of items, for instance, Ii1 , Ii1 ∧ Ii2 or
Ii1 ∧ Ii2 ∧ Ii3 , . . . . If T (Q) contains all the single items and all “and” combinations, T (Q) con-
tains 2m − 1 rows. We will later say that such a T (Q) is saturated (Definition 2.1 in Section 2.4).

We now describe each row vector of T (Q). We define that BQ(Ii) is a 2k − 1 dimensional
row vector. Using the same labeling system as that of the columns of T (Q), the Ath element of
BQ(Ii) is defined as

∏k
j=1(A

j )Qij , which indicates if a subject with attribute A is able to solve
item i.
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Using a similar notation, we define that

BQ(Ii1 ∧ · · · ∧ Iil ) = ϒl
h=1BQ(Iih), (2.3)

where the operator “ϒl
h=1” is element-by-element multiplication from BQ(Ii1) to BQ(Iil ). For

instance,

W = ϒl
h=1Vh

means that Wj = ∏l
h=1 V

j
h , where W = (W 1, . . . ,W 2k−1) and Vh = (V 1

h , . . . , V 2k−1
h ). There-

fore, BQ(Ii1 ∧ · · · ∧ Iil ) is the vector indicating the attributes that are capable of responding pos-
itively to items i1, . . . , il . The row in T (Q) corresponding to Ii1 ∧ · · · ∧ Iil is BQ(Ii1 ∧ · · · ∧ Iil ).

α-vector

We let α be a column vector the length of which equals to the number of rows of T (Q). Each
element of α corresponds to one row vector of T (Q). The element in α corresponding to Ii1 ∧
· · · ∧ Iil is defined as NIi1∧···∧Iil

/N , where NIi1∧···∧Iil
denotes the number of people who have

positive responses to items i1, . . . , il , that is

NIi1∧···∧Iil
=

N∑
r=1

I (R
ij
r = 1 : j = 1, . . . , l).

For each A ∈ {0,1}k , we let

p̂A = 1

N

N∑
r=1

I (Ar = A). (2.4)

If (2.2) is strictly respected, then

T (Q)p̂ = α, (2.5)

where p̂ = (p̂A : A ∈ {0,1}k \ {(0, . . . ,0)}) is arranged in the same order as the columns of T (Q).
This is because each row of T (Q) indicates the attribute profiles corresponding to subjects capa-
ble of responding positively to that set of item(s). Vector p̂ contains the proportions of subjects
with each attribute profile. For each set of items, matrix multiplication sums up the proportions
corresponding to each attribute profile capable of responding positively to that set of items, giving
us the total proportion of subjects who respond positively to the corresponding items.

The estimator of the Q-matrix

For each m × k binary matrix Q′, we define

S(Q′) = inf
p∈[0,1]2k−1

|T (Q′)p − α|, (2.6)

where p = (pA : A �= (0, . . . ,0)). The above minimization is subject to the constraint that∑
A �=(0,...,0) pA ∈ [0,1]. | · | is the Euclidean distance. An estimator of Q can be obtained by
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minimizing S(Q′),

Q̂ = arg inf
Q′ S(Q′), (2.7)

where “arg inf” is the minimizer of the minimization problem over all m × k binary matrices.
Note that the minimizers are not unique. We will later prove that the minimizers are in the same
meaningful equivalence class. Because of (2.5), the true Q-matrix is always among the minimiz-
ers because S(Q) = 0.

2.3. Example

We illustrate the above construction by one simple example. We emphasize that this example is
discussed to explain the estimation procedure for a concrete and simple example. The proposed
estimator is certainly able to handle much larger Q-matrices. We consider the following 3 × 2
Q-matrix,

Q =
Addition Multiplication

2 + 3 1 0
5 × 2 0 1
(2 + 3) × 2 1 1

(2.8)

There are two attributes and three items. We consider the contingency table of attributes,

Multiplication

Addition
p̂00 p̂01
p̂10 p̂11

In the above table, p̂00 is the proportional of people who do not master either addition or multi-
plication. Similarly, we define p̂01, p̂10 and p̂11. {p̂ij ; j = 0,1} is not observed.

Just for illustration, we construct a simple nonsaturated T -matrix. Suppose the relationship in
(2.2) is strictly respected. Then, we should be able to establish the following identities:

N(p̂10 + p̂11) = NI1, N(p̂01 + p̂11) = NI2, Np̂11 = NI3 . (2.9)

Therefore, if we let p̂ = (p̂10, p̂01, p̂11), the above display imposes three linear constraints on the
vector p̂. Together with the natural constraint that

∑
ij p̂ij = 1, p̂ solves linear equation,

T (Q)p̂ = α, (2.10)

subject to the constraints that p̂ ∈ [0,1]3 and p̂10 + p̂01 + p̂11 ∈ [0,1], where

T (Q) =
(1 0 1

0 1 1
0 0 1

)
, α =

(
NI1/N

NI2/N

NI3/N

)
. (2.11)
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Each column of T (Q) corresponds to one attribute profile. The first column corresponds to
A = (1,0), the second column to A = (0,1), and the third column to A = (1,1). The first row
corresponds to item 2 + 3, the second row to 5 × 2 and the last row to (2 + 3) × 2. For this
particular situation, T (Q) has full rank and there exists one unique solution to (2.10). In fact, we
would not expect the constrained solution to the linear equation in (2.10) to always exist unless
(2.2) is strictly followed. This is the topic of the next section.

The identities in (2.9) only consider the marginal rate of each question. There are additional
constraints if one considers “combinations” among items. For instance,

Np̂11 = NI1∧I2 .

People who are able to solve problem 3 must have both attributes and therefore are able to solve
both problems 1 and 2. Again, if (2.2) is not strictly followed, this is not necessarily respected in
the real data, though it is a logical conclusion. The DINA in the next section handles such a case.
Upon considering I1, I2, I3 and I1 ∧ I2, the new T -matrix is

T (Q) =
⎛
⎜⎝

1 0 1
0 1 1
0 0 1
0 0 1

⎞
⎟⎠ , α =

⎛
⎜⎝

NI1/N

NI2/N

NI3/N

NI1∧I2/N

⎞
⎟⎠ . (2.12)

The last row is added corresponding to I1 ∧ I2. With (2.2) in force, we have

S(Q) = inf
p∈[0,1]3

|T (Q)p − α| = |T (Q)p̂ − α| = 0, (2.13)

if Q is the true matrix.

2.4. Basic results

Before stating the main result, we provide a list of notations, which will be used in the discus-
sions.

• Linear space spanned by vectors V1, . . . , Vl :

L(V1, . . . , Vl) =
{

l∑
j=1

ajVj :aj ∈ R

}
.

• For a matrix M , M1:l denotes the submatrix containing the first l rows and all columns
of M .

• Vector ei denotes a column vector such that the ith element is one and the rest are zero.
When there is no ambiguity, we omit the length index of ei .

• Matrix Il denotes the l × l identity matrix.
• For a matrix M , C(M) is the linear space generated by the column vectors of M . It is usually

called the column space of M .
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• CM denotes the set of column vectors of M .
• RM denotes the set of row vectors of M .
• Vector 0 denotes the zero vector, (0, . . . ,0). When there is no ambiguity, we omit the index

of length.
• Scalar pA denotes the probability that a subject has attribute profile A. For instance, p10 is

the probability that a subject has attribute one but not attribute two.
• Define a 2k − 1 dimensional vector

p = (pA : A ∈ {0,1}k \ {0}).

• Let c and g be two m dimensional vectors. We write c � g if ci > gi for all 1 ≤ i ≤ m.
• We write c � g if ci �= gi for all i = 1, . . . ,m.
• Matrix Q denotes the true matrix and Q′ denotes a generic m × k binary matrix.

The following definitions will be used in subsequent discussions.

Definition 2.1. We say that T (Q) is saturated if all combinations of form Ii1 ∧ · · · ∧ Iil , for
l = 1, . . . ,m, are included in T (Q).

Definition 2.2. We write Q ∼ Q′ if and only if Q and Q′ have identical column vectors, which
could be arranged in different orders; otherwise, we write Q � Q′.

Remark 2.1. It is not hard to show that “∼” is an equivalence relation. Q ∼ Q′ if and only if they
are identical after an appropriate permutation of the columns. Each column of Q is interpreted as
an attribute. Permuting the columns of Q is equivalent to relabeling the attributes. For Q ∼ Q′,
we are not able to distinguish Q from Q′ based on data.

Definition 2.3. A Q-matrix is said to be complete if {ei : i = 1, . . . , k} ⊂ RQ (RQ is the set of
row vectors of Q); otherwise, we say that Q is incomplete.

A Q-matrix is complete if and only if for each attribute there exists an item only requiring
that attribute. Completeness implies that m ≥ k. We will show that completeness is among the
sufficient conditions to identify Q.

Remark 2.2. One of the main objectives of cognitive assessment is to identify the subjects’
attributes; see [22] for other applications. It has been established in [1] that the completeness of
the Q-matrix is a sufficient and necessary condition for a set of items to consistently identify
attributes if (2.2) is strictly followed. Thus, it is usually recommended to use a complete Q-
matrix. For a precise formulation, see [1].

Listed below are assumptions which will be used in subsequent development.

C1 Q is complete.
C2 T (Q) is saturated.
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C3 A1, . . . ,AN are i.i.d. random vectors following distribution

P(Ar = A) = p∗
A.

We further let p∗ = (p∗
A : A ∈ {0,1} \ {0}).

C4 (p∗
0,p∗) � 0.

C5 Each attribute has been required by at least two items.

With these preparations, we are ready to introduce the first theorem, the proof of which is
given in Section 6.

Theorem 2.4. Assume that conditions C1–C5 are in force. Suppose that for subject r the re-
sponse corresponding to item i follows

Ri
r = ξ i

r =
k∏

j=1

(A
j
r )

Qij .

Let Q̂, defined in (2.7), be a minimizer of S(Q′) among all m × k binary matrices, where S(Q′)
is defined in (2.6). Then,

lim
N→∞P(Q̂ ∼ Q) = 1. (2.14)

Further, let

p̃ = arg inf
p

|T (Q̂)p − α|2. (2.15)

With an appropriate rearrangement of the columns of Q̂, for any ε > 0

lim
N→∞P(|p̃ − p∗| ≤ ε) = 1.

Remark 2.3. If Q1 ∼ Q2, the two matrices only differ by a column permutation and will be con-
sidered to be the “same”. Therefore, we expect to identify the equivalence class that Q belongs
to. Also, note that S(Q1) = S(Q2) if Q1 ∼ Q2.

Remark 2.4. In order to obtain the consistency of Q̂ (subject to a column permutation), it is
necessary to have p∗ not living on some sub-manifold. To see a counter example, suppose that
P(Ar = (1, . . . ,1)�) = p∗

1...1 = 1. Then, for all Q, P(Rr = (1, . . . ,1)�) = 1, that is, all subjects
are able to solve all problems. Therefore, the distribution of R is independent of Q. In other
words, the Q-matrix is not identifiable. More generally, if there exit Ai

r and A
j
r such that P(Ai

r =
A

j
r ) = 1, then the Q-matrix is not identifiable based on the data. This is because one cannot tell

if an item requires attribute i alone, attribute j alone, or both; see [16,17] for similar cases for
the multidimensional IRT models.
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Remark 2.5. Note that the estimator of the attribute distribution, p̃, in (2.15) depends on the
order of columns of Q̂. In order to achieve consistency, we will need to arrange the columns of
Q̂ such that Q̂ = Q whenever Q̂ ∼ Q.

Remark 2.6. One practical issue associated with the proposed procedure is the computation. For
a specific Q, the computation of S(Q) only involves a constraint minimization of a quadratic
function. However, if m or k is large, the computation overhead of searching the minimizer of
S(Q) over the space of m × k matrices could be substantial. One practical solution is to break
the Q-matrix into smaller sub-matrices. For instance, one may divide the m items in to l groups
(possibly with nonempty overlap across different groups). Then apply the proposed estimator to
each of the l group of items. This is equivalent to breaking a big m by k Q-matrix into several
smaller matrices and estimating each of them separately. Lastly, combine the l estimated sub-
matrices together to form a single estimate. The consistency results can be applied to each of
the l sub-matrices and therefore the combined matrix is also a consistent estimator. A similar
technique has been discussed in Chapter 8.6 of [29].

Remark 2.7. Conditions C1 and C2 are imposed to guarantee consistency. They may not be
always necessary. Furthermore, constructing a saturated T -matrix is sometimes computationally
not feasible, especially when the number of items is large. In practice, one may include the
combinations of one item, two items, . . . , j items. The choice of j depends on the sample size
and the computation resources. The condition C5 is required for technical purposes. Nonetheless,
one can in fact construct counterexamples, that is, the Q-matrix is not identifiable up to the
relationship “∼”, if C5 is violated.

3. DINA model with known slipping and guessing parameters

3.1. Model specification

In this section, we extend the inference results in the previous section to the situation under which
the responses do not deterministically depend on the attributes. In particular, we consider the
DINA (Deterministic Input, Noisy Output “AND” gate) model [12]. We would like to introduce
two parameters: the slipping parameter (si ) and the guessing parameter (gi). Here 1 − si (gi ) is
the probability of a subject’s responding positively to item i given that s/he is capable of solving
that problem. To simplify the notations, we denote 1 − si by ci . An extension of (2.2) to include
slipping and guessing specifies the response probabilities as

P(Ri = 1|ξ i) = c
ξi

i g
1−ξ i

i , (3.1)

where ξ i is the capability indicator defined in (2.1). In addition, conditional on {ξ1, . . . , ξm},
{R1, . . . ,Rm} are jointly independent.

In this context, the T -matrix needs to be modified accordingly. Throughout this section, we
assume that both ci ’s and gi ’s are known. We discuss the case that ci ’s are unknown in the next
section.
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We first consider the case that gi = 0 for all i = 1, . . . ,m. We introduce a diagonal matrix Dc.
If the hth row of matrix Tc(Q) corresponds to Ii1 ∧ · · · ∧ Iil , then the hth diagonal element of Dc

is ci1 × · · · × cil . Then, we let

Tc(Q) = DcT (Q), (3.2)

where T (Q) is the binary matrix defined previously. In other words, we multiply each row of
T (Q) by a common factor and obtain Tc(Q). Note that in absence of slipping (ci = 1 for each i)
we have that Tc(Q) = T (Q).

There is another equivalent way of constructing Tc(Q). We define

Bc,Q(Ij ) = cjBQ(Ij )

and

Bc,Q(Ii1 ∧ · · · ∧ Iil ) = ϒl
h=1Bc,Q(Iih), (3.3)

where “ϒ” refers to element by element multiplication. Let the row vector in Tc(Q) correspond-
ing to Ii1 ∧ · · · ∧ Iil be Bc,Q(Ii1 ∧ · · · ∧ Iil ).

For instance, with c = (c1, c2, c3), the Tc(Q) corresponding to the T -matrix in (2.12) would
be

Tc(Q) =
⎛
⎜⎝

c1 0 c1
0 c2 c2
0 0 c3
0 0 c1c2

⎞
⎟⎠ . (3.4)

Lastly, we consider the situation that both the probability of making a mistake and the proba-
bility of guessing correctly could be strictly positive. By this, we mean that the probability that a
subject responds positively to item i is ci if s/he is capable of doing so; otherwise the probability
is gi . We create a corresponding Tc,g(Q) by slightly modifying Tc(Q). We define row vector

E = (1, . . . ,1).

When there is no ambiguity, we omit the length index of E. Now, let

Bc,g,Q(Ii) = giE + (ci − gi)BQ(Ii)

and

Bc,g,Q(Ii1 ∧ · · · ∧ Iil ) = ϒl
h=1Bc,g,Q(Iih). (3.5)

Let the row vector in Tc,g(Q) corresponding to Ii1 ∧ · · · ∧ Iil be Bc,g,Q(Ii1 ∧ · · · ∧ Iil ). For
instance, the matrix Tc,g corresponding to the Tc(Q) in (3.4) is

Tc,g(Q) =
⎛
⎜⎝

c1 g1 c1
g2 c2 c2
g3 g3 c3

c1g2 g1c2 c1c2

⎞
⎟⎠ . (3.6)
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3.2. Estimation of the Q-matrix and consistency results

Having concluded our preparations, we are now ready to introduce our estimators for Q. Given
c and g, we define

Sc,g(Q) = inf
p′∈[0,1]2k−1

|Tc,g(Q)p′ + p′
0g − α|, (3.7)

where p′ = (p′
A : A ∈ {0,1}k \ {0}), p′

0 = p′
0...0 and

g =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1
...

gk

g1g2
...

gk−1gk

g1g2g3
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

I1
...

Ik

I1 ∧ I2
...

Ik−1 ∧ Ik

I1 ∧ I2 ∧ I3
...

(3.8)

The labels to the right of the vector indicate the corresponding row vectors in Tc,g(Q). The
minimization in (3.7) is subject to constraints that

p′
A ∈ [0,1] and

∑
A

p′
A = 1.

The vector g contains the probabilities of providing positive responses to items simply by guess-
ing. We propose an estimator of the Q-matrix through a minimization problem, that is,

Q̂(c, g) = arg inf
Q′ Sc,g(Q

′). (3.9)

We write c and g in the argument to emphasize that the estimator depends on c and g. The
computation of the minimization in (3.7) consists of minimizing a quadratic function subject to
finitely many linear constraints. Therefore, it can be done efficiently.

Theorem 3.1. Suppose that c and g are known and that conditions C1–C5 are in force. For
subject r , the responses are generated independently such that

P(Ri
r = 1|ξ i

r ) = c
ξi
r

i g
1−ξ i

r

i , (3.10)

where ξ i
r is defined as in Theorem 2.4. Let Q̂(c, g) be defined as in (3.9). If ci �= gi for all i and

Tc−g(Q)p∗ does not have zero elements, then

lim
N→∞P

(
Q̂(c, g) ∼ Q

) = 1.
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Furthermore, let

p̃(c, g) = arg inf
p

|Tc,g(Q̂(c, g))p + p0g − α|2,

subject to constraint that
∑

A pA = 1. Then, with an appropriate rearrangement of the columns
of Q̂, for any ε > 0,

lim
N→∞P

(|p̃(c, g) − p∗| ≤ ε
) = 1.

Remark 3.1. There are various metrics one can employ to measure the distance between the
vectors Tc,g(Q̂(c, g))p + p0g and α. In fact, any metric that generates the same topology as the
Euclidian metric is sufficient to obtain the consistency results in the theorem. For instance, a
principled choice of objective function would be the likelihood with p profiled out. The reason
we prefer the Euclidian metric (versus, for instance, the full likelihood) is that the evaluation of
S(Q) is easier than the evaluation based on other metrics. More specifically, the computation of
current S(Q) consists of quadratic programming types of well oiled optimization techniques.

4. Extension to the situation with unknown slipping
probabilities

In this section, we further extend our results to the situation where the slipping probabilities
are unknown and the guessing probabilities are known. In the context of standard exams, the
guessing probabilities can typically be set to zero for open problems. For instance, the chance of
guessing the correct answer to “(3 + 2) × 2 = ?” is very small. On the other hand, for multiple
choice problems, the guessing probabilities cannot be ignored. In that case, gi can be considered
as 1/n when there are n choices; see Remark 4.2 for more description.

4.1. Estimator of c

We provide two estimators of c given Q and g. One is applicable to all Q-matrices, but computa-
tionally intensive. The other is computationally easy, but requires certain structures of Q. Then,
we combine them into a single estimator.

A general estimator

We first provide an estimator of c that is applicable to all Q-matrices. Considering that the esti-
mator of Q minimizes the objective function Sc,g(Q), we propose the following estimator of c:

c̃(Q,g) = arg inf
c∈[0,1]m Sc,g(Q). (4.1)



1802 J. Liu, G. Xu and Z. Ying

A moment estimator

The computation of c̃(Q,g) is typically intensive. When the Q-matrix has a certain structure, we
are able to estimate c consistently based on estimating equations.

For a particular item i, suppose that there exist items i1, . . . , il (different from i) such that

BQ(Ii ∧ Ii1 ∧ · · · ∧ Iil ) = BQ(Ii1 ∧ · · · ∧ Iil ), (4.2)

that is, the attributes required by item i are a subset of the attributes required by i1, . . . , il .
Let c − g = (c1 − g1, . . . , cm − gm) and

T̃c,g(Q) =
(

g Tc,g(Q)

1 E

)
.

We borrow a result which will be given in the proof of Proposition 6.6 (Section 6.1) to say that
there exists a matrix D (only depending on g) such that

DT̃c,g(Q) = (0, Tc−g(Q)).

Let ag and a∗g be the row vectors in D corresponding to Ii1 ∧ · · · ∧ Iii and Ii ∧ Ii1 ∧ · · · ∧ Iii (in
Tc−g(Q)).

Then,

a�∗g

(
α
1

)
a�
g

(
α
1

) =
a�∗gT̃c,g(Q)

(p∗
0

p∗
)

a�
g T̃c,g(Q)

(p∗
0

p∗
) + op(1)

(4.3)

= Bc−g,Q(Ii ∧ Ii1 ∧ · · · ∧ Iil )p
∗

Bc−g,Q(Ii1 ∧ · · · ∧ Iil )p∗ + op(1)
p→(ci − gi),

where the vectors ag and a∗g only depend on g.
Therefore, the corresponding estimator of ci would be

c̄i (Q,g) = gi + a�∗g

(
α
1

)
a�
g

(
α
1

) . (4.4)

Note that the computation of c̄i (Q,g) only consists of affine transformations and therefore is
very fast.

Proposition 4.1. Suppose conditions C3, (3.10) and (4.2) are true. Then c̄i → ci in probability
as N → ∞.

Proof. By the law of large numbers,

a�∗g

(
α

1

)
− a�∗gT̃c,g(Q)

(
p∗

0
p∗

)
→ 0, a�

g

(
α

1

)
− a�

g T̃c,g(Q)

(
p∗

0
p∗

)
→ 0,
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in probability as N → ∞. By the construction of a∗g and ag , we have

a�∗gT̃c,g(Q)

(
p∗

0
p∗

)
= Bc−g,Q(Ii ∧ Ii1 ∧ · · · ∧ Iil )p

∗,

a�
g T̃c,g(Q)

(
p∗

0
p∗

)
= Bc−g,Q(Ii1 ∧ · · · ∧ Iil )p

∗.

Thanks to (4.2), we have

a�∗g

(
α
1

)
a�
g

(
α
1

) → ci − gi. �

Combined estimator

Lastly, we combine c̄i and c̃i . For each Q, we write c = (c∗, c∗∗). For each ci in the sub-
vector c∗, (4.2) holds. Let c̄∗(Q,g) be defined in (4.4) (element by element). For c∗∗, we let
c̃∗∗(Q,g) = arg infc∗∗ S(c̄∗(Q,g),c∗∗),g(Q). Finally, let ĉ(Q,g) = (c̄∗(Q,g), c̃∗∗(Q,g)). Further-
more, each element of ĉ(Q,g) greater than one is set to be one and each element less than zero
is set to be zero. Equivalently, we impose the constraint that ĉ(Q,g) ∈ [0,1]m.

4.2. Consistency result

Theorem 4.2. Suppose that g is known and the conditions in Theorem 3.1 hold. Let

Q̂ĉ(g) = arg inf
Q′ Sĉ(Q′,g),g(Q

′), p̃ĉ(g) = arg inf
p

∣∣T
ĉ(Q̂,g),g

(Q̂ĉ(g))p + p0g − α
∣∣.

The second optimization is subject to constraint that
∑

A pA = 1. Then,

lim
N→∞P

(
Q̂ĉ(g) ∼ Q

) = 1.

Furthermore, if the estimator c̃(Q,g), defined in (4.1), is consistent, then by appropriately rear-
ranging the columns of Q̂ĉ(g), for any ε > 0,

lim
N→∞P

(|p̃ĉ(g) − p∗| ≤ ε
) = 1.

Remark 4.1. The consistency of Q̂ĉ(g) does not rely on the consistency of c̃(Q,g), which is
mainly because of the central intermediate result in Proposition 6.6. The consistency of c̃(Q,g)

is a necessary condition for the consistency of p̃ĉ(g).
For most usual situations, (p∗, c) is estimable based on the data given a correctly specified

Q-matrix. Nonetheless, there are some rare occasions in which nonidentifiability does exist. We
provide one example, explained at the intuitive level, to illustrate that it is not always possible to
consistently estimate c and p∗. This example is simply to justify that the existence of the con-
sistent estimator for c in the above theorem is not an empty assumption. Consider a complete



1804 J. Liu, G. Xu and Z. Ying

matrix Q = Ik . The degrees of freedom of a k-way binary table is 2k − 1. On the other hand,
the dimension of parameters (p∗, c) is 2k − 1 + k. Therefore, p∗ and c cannot be consistently
identified without additional information. This problem is typically tackled by introducing ad-
dition parametric assumptions such as p∗ satisfying certain functional form or in the Bayesian
setting (weakly) informative prior distributions [6]. Given that the emphasis of this paper is the
inference of Q-matrix, we do not further investigate the identifiability of (p∗, c). Nonetheless,
estimation for (p∗, c) is definitely an important issue.

Remark 4.2. Assuming that the guessing probability gi being known is somewhat strong. For
complicated situations, such as for multiple choice problems the incorrect choices do not look
“equally incorrect”, the guessing probability is typically not 1/n. In Theorem 4.2, we make this
assumption mostly for technical reasons.

One can certainly provide the same treatment to the unknown guessing probabilities just as to
the slipping probabilities by plugging in a consistent estimator of gi or profiling it out (like c̃).
However, the rigorous establishment of the consistency results is certainly much more difficult
and additional technical conditions may be needed. We leave the analysis of the problem with
unknown guessing probability to the future study.

5. Discussion

This paper provides basic theoretical results of the estimation of Q-matrix, a key element in
modern cognitive diagnosis. Under the conjunctive model assumption, sufficient conditions are
developed for the Q-matrix to be identifiable up to an equivalence relation and the corresponding
consistent estimators are constructed. The equivalence relation defines a natural partition of the
space of Q-matrices and may be viewed as the finest “resolution” that is possibly distinguishable
based on the data, unless there is additional information about the specific meaning of each
attribute. Our results provide the first steps for statistical inference about Q-matrices by explicitly
specifying the conditions under which two Q-matrices lead to different response distributions.
We believe that these results, especially the intermediate results in Section 6, can also be applied
to general conjunctive models.

There are several directions along which further exploration may be pursued. First, some con-
ditions may be modified to reflect practical circumstance. For instance, if the population is not
fully diversified, meaning that certain attribute profiles may never exist, then condition C4 cannot
be expected to hold. To ensure identifiability, we will need to impose certain structures on the
Q-matrix. In the addition-multiplication example of Section 2.3, if individuals capable of mul-
tiplication are also capable of addition, then we may need to impose the natural constraint that
every item that requires multiplication should also require addition, which also implies that the
Q-matrix is never complete.

Second, when an a priori “expert’s” knowledge of the Q-matrix is available, we may wish to
incorporate such information into the estimation. This could be in the form of an additive penalty
function attached to the objective function S. Such information, if correct, not only improves
estimation accuracy but also reduces the computational complexity – one can just perform a
minimization of S(Q) in a neighborhood around the expert’s Q-matrix.
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Third, throughout this paper we assume that the number of attributes (dimension) is known. In
practice, it would be desirable to develop a data driven way to estimate the dimension, not only
to deal with the situation of unknown dimension, but also to check if the assumed dimension is
correct. One possible way to tackle the problem is to introduce a penalty function similar to that
of BIC [24] which would give a consistent estimator of the Q-matrix even if the dimension is
unknown.

Fourth, one issue of both theoretical and practical importance is the inference of the parameters
additional to the Q-matrix, such as the slipping (s = 1 − c), guessing (g) parameters and the
attribute distribution p∗. In the current paper, given that the main interesting parameter is the
Q-matrix, the estimations of p∗ and c are treated as by-product of the main results. On the
other hand, given a known Q, the identifiability and estimation of these parameters are important
topics. In the previous discussion, we provided a few examples for potential identifiability issues.
Further careful investigation is definitely of great importance and challenges.

Fifth, the rate of convergence of the estimator Q̂ is not only of theoretical importance. From
a practical point of few, it is crucial to study the rate of convergence as the scale of the problem
becomes large in terms of the number of attributes and number of items.

Lastly, the optimization of S(Q) over the space of m × k binary matrices is a nontrivial prob-
lem. It consists of evaluating the function S 2m×k times. This is a substantial computational load
if m and k are reasonably large. As mentioned previously, this computation might be reduced
by additional information about the Q-matrix or splitting the Q-matrix into small sub-matrices.
Nevertheless, it would be highly desirable to explore the structures of the Q-matrix and the func-
tion S so as to compute Q̂ more efficiently.

6. Proofs of the theorems

6.1. Several propositions and lemmas

To make the discussion smooth, we postpone several long proofs to the Appendix.

Proposition 6.1. Suppose that Q is complete and matrix T (Q) is saturated. Then, we are able
to arrange the columns and rows of Q and T (Q) such that T (Q)1:(2k−1) has full rank and T (Q)

has full column rank.

Proof. Provided that Q is complete, without loss of generality we assume that the ith row vector
of Q is e�

i for i = 1, . . . , k, that is, item i only requires attribute i for each i = 1, . . . , k. Let
the first 2k − 1 rows of T (Q) be associated with {I1, . . . , Ik}. In particular, we let the first k

rows correspond to I1, . . . , Ik and the first k columns of T (Q) correspond to A’s that only have
one attribute. We further arrange the next Ck

2 rows of T (Q) to correspond to combinations of
two items, Ii ∧ Ij , i �= j . The next Ck

2 columns of T (Q) correspond to A’s that only have two
positive attributes. Similarly, we arrange T (Q) for combinations of three, four, and up to k items.
Therefore, the first 2k − 1 rows of T (Q) admit a block upper triangle form. In addition, we
are able to further arrange the columns within each block such that the diagonal matrices are
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identities, so that T (Q) has form

I1, I2, . . .

I1 ∧ I2, I1 ∧ I3, . . .

I1 ∧ I2 ∧ I3, . . .
...

⎛
⎜⎜⎜⎝

Ik ∗ ∗ ∗ · · ·
0 ICk

2
∗ ∗

0 0 ICk
3

∗
...

...
...

⎞
⎟⎟⎟⎠ . (6.1)

Note that T (Q) has 2k − 1 columns and T (Q)1:(2k−1) obviously has full rank, therefore T (Q)

has full column rank. �

From now on, we assume that Q1:k = Ik and the first 2k − 1 rows of T (Q) are arranged in the
order as in (6.1).

Proposition 6.2. Suppose that Q is complete, T (Q) is saturated, and c � 0. Then, Tc(Q) and
Tc(Q)1:(2k−1) have full column rank.

Proof. By Proposition 6.1, (3.2) and the fact that Dc is a diagonal matrix of full rank as long as
c � 0,

Tc(Q) = DcT (Q),

is of full column rank. �

The following two propositions, which compare the column spaces of Tc(Q) and Tc(Q
′), are

central to the proof of all the theorems. Their proofs are delayed to the Appendix.
The first proposition discusses the case where Q′

1:k is complete. We can always rearrange the
columns of Q′ so that Q1:k = Q′

1:k . In addition, according to the proof of Proposition 6.1, the last
column vector of Tc(Q) corresponds to attribute A = (1, . . . ,1)�. Therefore, this column vector
is all of nonzero entries.

Proposition 6.3. Assume that Q is a complete matrix and T (Q) is saturated. Without loss of
generality, let Q1:k = Ik . Assume that the first k rows of Q′ form a complete matrix. Further,
assume that Q1:k = Q′

1:k = Ik . If Q′ �= Q and c � 0, under the conditions in Theorem 4.2,
Tc(Q)p∗ is not in the column space C(Tc′(Q′)) for all c′ ∈ Rm.

The next proposition discusses the case where Q′
1:k is incomplete.

Proposition 6.4. Assume that Q is a complete matrix and T (Q) is saturated. Without loss of
generality, let Q1:k = Ik . If c � 0 and Q′

1:k is incomplete, under the conditions in Theorem 4.2,
Tc(Q)p∗ is not in the column space C(Tc′(Q′)) for all c′ ∈ Rm.

The next result is a direct corollary of these two propositions. It follows by setting ci = 1 and
gi = 0 for all i = 1, . . . ,m.
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Corollary 6.5. If Q � Q′, under the conditions of Theorem 4.2, Tc(Q)p∗ is not in the column
space C(Tc′(Q′)) for all c′ ∈ [0,1]m.

To obtain a similar proposition for the cases where the gi ’s are nonzero, we will need to expand
the Tc,g(Q) as follows. As previously defined, let

T̃c,g(Q) =
(

g Tc,g(Q)

1 E

)
. (6.2)

The last row of T̃c,g(Q) consists entirely of ones. Vector g is defined as in (3.8).

Proposition 6.6. Suppose that Q is a complete matrix, Q′ � Q, T is saturated and c � g. Let
p∗

0 = (p∗
0, (p∗)�)�. Under the conditions of Theorem 4.2, T̃c,g(Q)p∗

0 is not in the column space

C(T̃c′,g(Q′)) for all c′ ∈ [0,1]m. In addition, T̃c,g(Q) is of full column rank.

To prove Proposition 6.6, we will need the following lemma.

Lemma 6.7. Consider two matrices T1 and T2 of the same dimension. If T1p ∈ C(T2), then for
any matrix D of appropriate dimension for multiplication, we have

DT1p ∈ C(DT2).

Conversely, if for some D, DT1p does not belong to C(DT2), then T1p does not belong to
C(T2).

Proof. Note that DTi is just a linear row transform of Ti for i = 1,2. The conclusion is imme-
diate by basic linear algebra. �

Proof of Proposition 6.6. Thanks to Lemma 6.7, we only need to find a matrix D such that
DT̃c,g(Q)p∗

0 does not belong to the column space of DT̃c′,g(Q′) for all c′ ∈ [0,1]m.
We define

c − g = (c1 − g1, . . . , cm − gm),

c′ − g = (c′
1 − g1, . . . , c

′
m − gm).

We claim that there exists a matrix D such that

DT̃c,g(Q) = (0, Tc−g(Q))

and

DT̃c′,g(Q
′) = (0, Tc′−g(Q

′)),
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where the choice of D does not depends on c or c′. In the rest of the proof, we construct such
a D-matrix for T̃c,g(Q). The verification for T̃c′,g(Q′) is completely analogous. Note that each
row in DT̃c,g(Q) is just a linear combination of rows of T̃c,g(Q). Therefore, it suffices to show
that every row vector of the form

(
0,Bc−g,Q(Ii1 ∧ · · · ∧ Iil )

)
can be written as a linear combination of the row vectors of T̃c,g(Q). We prove this by induction.
First note that for each 1 ≤ i ≤ m,

(0,Bc−g,Q(Ii)) = (ci − gi)(0,BQ(Ii)) = (gi,Bc,g,Q(Ii)) − giE. (6.3)

Suppose that all rows of the form

(
0,Bc−g,Q(Ii1 ∧ · · · ∧ Iil )

)
for all 1 ≤ l ≤ j can be written as linear combinations of the row vectors of T̃c,g(Q) with co-
efficients only depending on g1, . . . , gm. Thanks to (6.3), the case of j = 1 holds. Suppose the
statement holds for some general j . We consider the case of j + 1. By definition,

(
gi1 . . . gij+1,Bc,g,Q(Ii1 ∧ · · · ∧ Iij+1)

) = ϒ
j+1
h=1 (gih,Bc,g,Q(Iih))

(6.4)
= ϒ

j+1
h=1

(
gihE + (0,Bc−g,Q(Iih))

)
.

Let “∗” denote element-by-element multiplication. For every generic vector V ′ of appropriate
length,

E ∗ V ′ = V ′.

We expand the right-hand side of (6.4). The last term would be

(
0,Bc−g,Q(Ii1 ∧ · · · ∧ Iij+1)

) = ϒ
j+1
h=1 (0,Bc−g,Q(Iih)).

From the induction assumption and definition (3.3), the other terms on both sides of (6.4) belong
to the row space of T̃c,g(Q). Therefore, (0,Bc−g,Q(Ii1 ∧ · · · ∧ Iij+1)) is also in the row space

of T̃c,g(Q). In addition, all the corresponding coefficients only consist of gi . Therefore, one can
construct a (2m − 1) × 2m matrix D such that

DT̃c,g(Q) = (0, Tc−g(Q)).

Because D is free of c and Q, we have

DT̃c′,g(Q
′) = (0, Tc′−g(Q

′)).
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In addition, thanks to Propositions 6.3 and 6.4, DT̃c,g(Q)p∗
0 = Tc−g(Q)p∗ is not in the column

space C(Tc′−g(Q
′)) = C(DT̃c′,g(Q′)) for all c′ ∈ [0,1]m. Therefore, by Lemma 6.7, T̃c,g(Q)p∗

0
is not in the column space C(T̃c′,g(Q′)) for all c′ ∈ [0,1]m.

In addition, (
D

e�
2m

)
T̃c,g(Q)

is of full column rank, where e�
2m is a 2m dimension row vector with last element being one and

rest being zero. Therefore, T̃c,g(Q) is also of full column rank. �

6.2. Proof of the theorems

Using the results of the previous propositions and lemmas, we now proceed to prove our theo-
rems.

Proof of Theorem 2.4. Consider Q′ � Q and T (·) saturated. Recall that p̂ is the vector contain-
ing p̂A’s with A � 0, where

p̂A = 1

N

N∑
r=1

1(Ar = A).

For any p∗ � 0, since p̂ → p∗ almost surely, according to Corollary 6.5, α = T (Q)p̂ by (2.5),
and T (Q)p∗ /∈ C(T (Q′)), there exists δ > 0 such that,

lim
N→∞P

(
inf

p∈[0,1]2k−1
|T (Q′)p − α| > δ

)
= 1

and

P
(

inf
p∈[0,1]2k−1

|T (Q)p − α| = 0
)

= 1.

Given that there are finitely many m × k binary matrices, P(Q̂ ∼ Q) → 1 as N → ∞. In fact,
we can arrange the columns of Q̂ such that P(Q̂ = Q) → 1 as N → ∞.

Note that p̂ satisfies the identity

T (Q)p̂ = α.

In addition, since T (Q) is of full rank (Proposition 6.1), the solution to the above linear equation
is unique. Therefore, the solution to the optimization problem infp |T (Q)p − α| is unique and
is p̂. Notice that when Q̂ = Q, p̃ = arg infp |T (Q̂)p − α| = p̂. Therefore,

lim
N→∞P(p̃ = p̂) = 1.

Together with the consistency of p̂, the conclusion of the theorem follows immediately. �
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Proof of Theorem 3.1. Note that for all Q′

Tc,g(Q
′)p + p0g − α = (g, Tc,g(Q

′))
(

p0
p

)
− α.

By the law of large numbers,

|Tc,g(Q)p∗ + p∗
0g − α| =

∣∣∣∣(g, Tc,g(Q))

(
p∗

0
p∗

)
− α

∣∣∣∣ → 0

almost surely as N → ∞. Therefore,

Sc,g(Q) → 0

almost surely as N → ∞.
For any Q′ � Q, note that (

α

1

)
→ T̃c,g(Q)

(
p∗

0
p∗

)
.

According to Proposition 6.6 and the fact that p∗ � 0, there exists δ(c′) > 0 such that δ(c′) is
continuous in c′ and

inf
p,p0

∣∣∣∣T̃c′,g(Q
′)

(
p0
p

)
− T̃c,g(Q)

(
p∗

0
p∗

)∣∣∣∣ > δ(c′).

By elementary calculus,

δ � inf
c′∈[0,1]m

δ(c′) > 0

and

inf
c′,p,p0

∣∣∣∣T̃c′,g(Q
′)

(
p0
p

)
− T̃c,g(Q)

(
p∗

0
p∗

)∣∣∣∣ > δ.

Therefore,

P

(
inf

c′,p,p0

∣∣∣∣T̃c′,g(Q
′)

(
p0
p

)
−

(
α

1

)∣∣∣∣ > δ/2

)
→ 1,

as N → ∞. For the same δ, we have

P

(
inf

c′,p,p0

∣∣∣∣(g, Tc′,g(Q
′))

(
p0
p

)
− α

∣∣∣∣ > δ/2

)
= P

(
inf
c′ Sc′,g(Q

′) > δ/2
)

→ 1.

The above minimization on the left of the equation is subject to the constraint that∑
A∈{0,1}k

pA = 1.



Theory of self-learning Q-matrix 1811

Together with the fact that there are only finitely many m × k binary matrices, we have

P
(
Q̂(c, g) ∼ Q

) = 1.

We arrange the columns of Q̂(c, g) so that P(Q̂(c, g) = Q) → 1 as N → ∞.
Now we proceed to the proof of consistency for p̃(c, g). Note that∣∣∣∣T̃c,g(Q̂(c, g))

(
p̃0(c, g)

p̃(c, g)

)
−

(
α

1

)∣∣∣∣ p→ 0,

∣∣∣∣T̃c,g(Q)

(
p∗

0
p∗

)
−

(
α

1

)∣∣∣∣ p→ 0.

Since T̃c,g(Q) is a full column rank matrix and P(Q̂(c, g) = Q) → 1, p̃(c, g) → p∗ in probabil-
ity. �

Proof of Theorem 4.2. Assuming g is known, note that

inf
p0,p

∣∣∣∣T̃c,g(Q)

(
p0
p

)
−

(
α

1

)∣∣∣∣
is a continuous function of c. According to the results of Proposition 4.1, the definition in (4.1),
and the definition of ĉ in Section 4.1, we obtain that

inf
p0,p

∣∣∣∣T̃ĉ(Q,g),g(Q)

(
p0
p

)
−

(
α

1

)∣∣∣∣ → 0,

in probability as N → ∞. In addition, thanks to Proposition 6.6 and with a similar argument as
in the proof of Theorem 3.1, Q̂ĉ(g) is a consistent estimator.

Furthermore, if c̃(Q,g) is a consistent estimator, then ĉ(Q,g) is also consistent. Then, the
consistency of p̃ĉ(g) follows from the facts that Q̂ĉ(g) is consistent and T̃ĉ,g(Q) is of full column
rank. �

Appendix: Technical proofs

Proof of Proposition 6.3. Note that Q1:k = Q′
1:k = Ik . Let T (·) be arranged as in (6.1).

Then, T (Q)1:(2k−1) = T (Q′)1:(2k−1). Given that Q �= Q′, we have T (Q) �= T (Q′). We as-
sume that T (Q)li �= T (Q′)li , where T (Q)li is the entry in the lth row and ith column. Since
T (Q)1:(2k−1) = T (Q′)1:(2k−1), it is necessary that l ≥ 2k .

Suppose that the lth row of the T (Q′) corresponds to an item that requires attributes i1, . . . , il′ .
Then, we consider 1 ≤ h ≤ 2k − 1, such that the hth row of T (Q′) is BQ′(Ii1 ∧ · · · ∧ Iil′ ). Then,
the hth row vector and the lth row vector of T (Q′) are identical.
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Since T (Q)1:(2k−1) = T (Q′)1:(2k−1), we have T (Q)hj = T (Q′)hj = T (Q′)lj for j = 1, . . . ,

2k − 1. If T (Q)li = 0 and T (Q′)li = 1, the matrices T (Q) and T (Q′) look like

column i

↓

T (Q′) = row h →

row l →

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I ∗ . . . ∗ . . .
...

... . . . . . .
...

... I . . . . . .
...

...
...

∗ 1 ∗
∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

column i

↓

T (Q) = row h →

row l →

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I ∗ . . . ∗ . . .
...

... . . . . . .
...

... I . . . . . .
...

...
...

∗ 0 ∗
∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Case 1. Either the hth or lth row vector of Tc′(Q′) is a zero vector. The conclusion is imme-
diate because all the entries of Tc(Q)p∗ are nonzero.

Case 2. The hth and lth row vectors of Tc′(Q′) are nonzero vectors. Suppose that the lth row
corresponds to an item. There are three different situations: according to the true Q-matrix (a) the
item in row l requires strictly more attributes than row h, (b) the item in row l requires strictly
fewer attributes than row h, (c) otherwise. We consider these three situations, respectively.

(a) Under the true Q-matrix, there are two types of sub-populations in consideration: people
who are able to answer item(s) in row h (p1) only and people who are able to answer items
in both row h and row l (p2). Then, the sub-matrix of Tc(Q) and Tc′(Q) are like

Tc(Q)

p1 p2
row h ch ch

row l 0 cl

Tc′(Q′)
p1 p2

row h c′
h c′

h

row l c′
l c′

l

We now claim that cl and c′
l must be equal (otherwise the conclusion hold) for the follow-

ing reason.
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Consider the following two rows of T (Q): row A corresponding to the combination that
contains all the items; row B corresponding to the row that contains all the items except
for the one in row l.

Rows A and B are in fact identical in T (Q). This is because all the attributes are used
at least twice (condition C5). Then, the attributes in row l are also required by some other
item(s) and rows A and B require the same combination of items. Thus, the corresponding
entries of all the column vectors of Tc(Q) are different by a factor of cl .

For T (Q′), rows A and B are also identical. This is because row h and row l have
identical attribute requirements. Then, thus, the corresponding entries of all the column
vectors of Tc′(Q) are different by a factor of c′

l . Thus, c′
l and cl must be identical otherwise

Tc(Q)p∗ is not in the column space of Tc′(Q).
Similarly, we obtain that ch = c′

h. Given that ch = c′
h and cl = c′

l , we now consider row
h and row l. Notice that all the column vectors in Tc′(Q′) have their entries in row h and
row l different by a factor of ch/cl . On the other hand, the h and lth entries of Tc(Q)p∗
are NOT different by a factor of ch/cl as long as the proportion of p1 is positive. Thereby,
we conclude this case.

(b) Consider the following two types of sub-populations: people who are able to answer
item(s) in row l (p1) only and people who are able to answer items in both row h and
row l (p2). Similar to the analysis of (a), the sub-matrices look like:

Tc(Q)

p1 p2
row h 0 ch

row l cl cl

Tc′(Q′)
p1 p2

row h 0 c′
h

row l 0 c′
l

With exactly the same argument as in (a), we conclude that cj = c′
j , ch = c′

h, and further
Tc(Q)p∗ is not in the column space of Tc′(Q′).

(c) Consider the following three types of sub-populations: people who are able to answer
item(s) in row l only (p1), people who are able to answer item(s) in row h only (p2), and
people who are able to answer items in both row h and row l (p3). The sub-matrices look
like:

Tc(Q)

p1 p2 p3
row h 0 ch ch

row l cl 0 cl

row l ∧ h 0 0 chcl

Tc′(Q′)
p1 p2 p3

row h 0 c′
h c′

h

row l 0 c′
l c′

l

row l ∧ h 0 c′
hc

′
l c′

hc
′
l

With the same argument, we have that cl = c′
l and ch = c′

h. On considering row h and row
l ∧ h, we conclude that Tc(Q)p∗ is not in the column space of Tc′(Q′). �

Proof of Proposition 6.4. T (·) is arranged as in (6.1). Consider Q′ such that Q′
1:k is incomplete.

We discuss the following situations.

1. There are two row vectors, say the hth and lth row vectors (1 ≤ i, j ≤ k), in Q′
1:k that

are identical. Equivalently, two items require exactly the same attributes according to Q′.
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With exactly the same argument as in the previous proof, under condition C5, we have that
ch = c′

h and cl = c′
l . We now consider the rows corresponding to l and l ∧ h. Note that the

elements corresponding to row l and row l ∧ h for all the vectors in the column space of
Tc′(Q′) are different by a factor of ch. However, the corresponding elements in the vector
Tc(Q)p∗ are NOT different by a factor of ch as long as the population is fully diversified.

2. No two row vectors in Q′
1:k are identical. Then, among the first k rows of Q′ there is at

least one row vector containing two or more nonzero entries. That is, there exists 1 ≤ i ≤ k

such that
k∑

j=1

Q′
ij > 1.

This is because if each of the first k items requires only one attribute and Q′
1:k is not

complete, there are at least two items that require the same attribute. Then, there are two
identical row vectors in Q′

1:k and it belongs to the first situation. We define

ai =
k∑

j=1

Q′
ij ,

the number of attributes required by item i according to Q′.
Without loss of generality, assume ai > 1 for i = 1, . . . , n and ai = 1 for i = n+1, . . . , k.

Equivalently, among the first k items, only the first n items require more than one attribute
while the (n + 1)th through the kth items require only one attribute each, all of which are
distinct. Without loss of generality, we assume Q′

ii = 1 for i = n + 1, . . . , k and Qij = 0
for i = n + 1, . . . , k and i �= j .
(a) n = 1. Since a1 > 1, there exists an l > 1 such that Q′

1l = 1. We now consider rows
1 and l. With the same argument as before (i.e., the attribute required by row l is also
required by item 1 in Q′), we have that cl = c′

l (be careful that we cannot claim that
c1 = c′

1). We now consider the rows 1 and 1 ∧ l. Note that in Tc′(Q′) these two rows
are different by a factor of cl ; while the corresponding entries in Tc(Q)p∗ are NOT
different by a factor of cl . Thereby, we conclude the result in this situation.

(b) n > 1 and there exists j > n and i ≤ n such that Q′
ij = 1. The argument is identical to

that in (2a).
(c) n > 1 and for each j > n and i ≤ n, Q′

ij = 0. Let the i∗th row in T (Q′) correspond to
I1 ∧ · · · ∧ In. Let the i∗h th row in T (Q′) correspond to I1 ∧ · · · ∧ Ih−1 ∧ Ih+1 ∧ · · · ∧ In

for h = 1, . . . , n.
We claim that there exists an h such that the i∗th row and the i∗h th row are identical

in T (Q′), that is

BQ′(I1 ∧ · · · ∧ Ih−1 ∧ Ih+1 ∧ · · · ∧ In) = BQ′(I1 ∧ · · · ∧ In). (A.1)

If the above claim is true, then the attributes required by item h have been required
by some other items. Then, we conclude that ch and c′

h must be identical. In addition,
rows in Tc′(Q′) corresponding to I1 ∧ · · · ∧ Ih−1 ∧ Ih+1 ∧ · · · ∧ In and I1 ∧ · · · ∧ In are
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different by a factor of ch. On the other hand, the corresponding entries in Tc(Q)p∗ are
NOT different by a factor of ch. Then, we are able to conclude the results for all the
cases.

In what follows, we prove the claim in (A.1) by contradiction. Suppose that there
does not exist such an h. This is equivalent to saying that for each j ≤ n there exists an
αj such that Q′

jαj
= 1 and Q′

iαj
= 0 for all 1 ≤ i ≤ n and i �= j . Equivalently, for each

j ≤ n, item j requires at least one attribute that is not required by other first n items.
Consider

Ci = {j : there exists i ≤ i′ ≤ n such that Q′
i′j = 1}.

Let #(·) denote the cardinality of a set. Since for each i ≤ n and j > n, Q′
ij = 0, we

have that #(C1) ≤ n. Note that Q′
1α1

= 1 and Q′
iα1

= 0 for all 2 ≤ i ≤ n. Therefore,
α1 ∈ C1 and α1 /∈ C2. Therefore, #(C2) ≤ n − 1. By a similar argument and induction,
we have that an = #(Cn) ≤ 1. This contradicts the fact that an > 1. Therefore, there
exists an h such that (A.1) is true. As for T (Q), we have that

BQ(I1 ∧ · · · ∧ Ih−1 ∧ Ih+1 ∧ · · · ∧ In) �= BQ(I1 ∧ · · · ∧ In).

Summarizing the cases in 1, (2a), (2b) and (2c), we conclude the proof. �
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