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Time-series data with regular and/or seasonal long-memory are often aggregated before analysis. Often, the
aggregation scale is large enough to remove any short-memory components of the underlying process but
too short to eliminate seasonal patterns of much longer periods. In this paper, we investigate the limiting
correlation structure of aggregate time series within an intermediate asymptotic framework that attempts to
capture the aforementioned sampling scheme. In particular, we study the autocorrelation structure and the
spectral density function of aggregates from a discrete-time process. The underlying discrete-time process is
assumed to be a stationary Seasonal AutoRegressive Fractionally Integrated Moving-Average (SARFIMA)
process, after suitable number of differencing if necessary, and the seasonal periods of the underlying pro-
cess are multiples of the aggregation size. We derive the limit of the normalized spectral density function
of the aggregates, with increasing aggregation. The limiting aggregate (seasonal) long-memory model may
then be useful for analyzing aggregate time-series data, which can be estimated by maximizing the Whittle
likelihood. We prove that the maximum Whittle likelihood estimator (spectral maximum likelihood estima-
tor) is consistent and asymptotically normal, and study its finite-sample properties through simulation. The
efficacy of the proposed approach is illustrated by a real-life internet traffic example.

Keywords: asymptotic normality; consistency; seasonal auto-regressive fractionally integrated
moving-average models; spectral density; spectral maximum likelihood estimator; Whittle likelihood

1. Introduction

Data are often aggregated before analysis, for example, 1-minute data aggregated into half-hourly
data or daily data aggregated into monthly data. Aggregation of data may be carried out for ease
of interpretation on a scale that is of interest, for example, policy makers and/or the public are
more interested in monthly unemployment rate than daily unemployment rate. On the other hand,
data may be naturally aggregated, for example, tree-ring data, which are often hard to disaggre-
gate. On a fine sampling scale, many time series are of long memory in the sense that their spec-
tral density functions admit a pole at the zero frequency. A popular class of discrete time long
memory processes are autoregressive fractionally integrated moving average (ARFIMA) models
(see Granger and Joyeux [6], Hosking [7]). Man and Tiao [11] and Tsai and Chan [18] showed
that temporal aggregation preserves the long-memory parameter of the underlying ARFIMA
process. Ohanissian, Russell and Tsay [13] made use of this property in developing a test for
long-memory. Furthermore, as the extent of aggregation increases to infinity, the limiting model
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retains the long-memory parameter of the original process, whereas the short-memory compo-
nents vanish.

In practice, the underlying process may admit seasonal long memory in that its spectral den-
sity function may have poles at certain non-zero frequencies. Such data may be modeled as
some Seasonal Auto-Regressive Fractionally Integrated Moving-Average (SARFIMA) process,
see Section 2. If the aggregation interval is much larger than the largest seasonal period, aggrega-
tion will intuitively merge the seasonal long-memory components with the regular long-memory
component and eliminate the regular or seasonal short-memory components of the raw data. For
example, within the framework of ARIMA models, Wei [19] showed that aggregation removes
seasonality if the frequency of aggregation is larger than or the same as the seasonal frequency.

On the other hand, if the aggregation interval is large but is just some fraction of the seasonal
periods of the original data, the aggregates may be expected to keep the seasonal short- and long-
memory pattern, albeit with different periods. For many data, the latter scenario may be more
relevant for analysis. For example, aggregating 1-minute data into half-hourly data may remove
the short memory component on the minute scale but the daily or monthly correlation pattern of
the raw data may persist in the aggregates.

Here, our purposes are twofold. First, we study the intermediate asymptotics of aggregating a
SARFIMA process. In particular, we derive the limiting (normalized) spectral density function
of an aggregated SARFIMA process via the asymptotic framework where the seasonal periods
of the SARFIMA model are multiples of the aggregation interval and the aggregation interval is
large. While the original time series is assumed to be a SARFIMA process, the limiting result
is robust to the exact form of the short-memory and the regular long-memory components. The
limiting spectral density functions then define a class of models suitable for analyzing aggregate
time series that may have regular or seasonal long-memory and short-memory components. Sec-
ond, we derive the large-sample properties of the spectral maximum likelihood estimator of the
limiting aggregate SARFIMA model, obtained by maximizing the Whittle likelihood.

The rest of the paper is organized as follows. The SARFIMA model is reviewed in Section 2.
In Section 3, we derive the limiting spectral density function of an aggregate SARFIMA process,
under the intermediate asymptotic framework. Spectral maximum likelihood estimation of the
limiting aggregate SARFIMA model and its large-sample properties are discussed in Section 4.
We compare the empirical performance of the spectral maximum likelihood estimator of the
limiting model with that of the SARFIMA model by Monte Carlo studies in Section 5. The
simulation results suggest that fitting the limiting model to the aggregate data generally reduces
the bias in some long-memory parameters than simply fitting a SARFIMA model. We illustrate
the use of the limiting aggregate SARFIMA model and its possible gains in long-term forecasts
with a real application in Section 6. We conclude in Section 7. All proofs are collected in the
appendix of Chan and Tsai [5].

2. Seasonal autoregressive fractionally integrated moving
average models

We now briefly review the SARFIMA model which is widely useful in scientific analysis; see
Porter-Hudak [16], Ray [17], Montanari, Rosso and Taqqu [12], Palma and Chan [15], Bisognin
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and Lopes [2] and Lopes [10]. Let {Yt , t = 0,±1,±2, . . .} be a seasonal autoregressive fraction-
ally integrated moving average (SARFIMA) model with multiple periods s1, . . . , sc

φ(B)(1 − B)d
c∏

i=1

�i(B
si )(1 − Bsi )Di Yt = θ(B)

c∏
i=1

�i(B
si )εt , (1)

where d and Di, i = 1, . . . , c, are real numbers, sc > sc−1 > · · · > s1 > 1 are integers, {εt } is an
uncorrelated sequence of random variables with zero mean and common, finite variance σ 2

ε > 0,
φ(z) = 1 − φ1z − · · · − φpzp , θ(z) = 1 + θ1z + · · · + θqzq , and for i = 1, . . . , c, �i(z) = 1 −
�i,1z − · · · − �i,Pi

zPi , �i(z) = 1 + �i,1z + · · · + �i,Qi
zQi , B is the backward shift operator,

and (1 − B)d is defined by the binomial series expansion

(1 − B)d =
∞∑

k=0

�(k − d)

�(k + 1)�(−d)
Bk,

where �(·) is the gamma function. Stationarity of {Yt } requires Di < 1/2 for all i and d +∑c
i=1 Di < 1/2, see Palma and Bondon [14]. We assume that none of the roots of φ(·) and

�i(·), i = 1, . . . , c, match any roots of θ(·) and �i(·), i = 1, . . . , c. Moreover, all roots of of
the above polynomials are assumed to lie outside the unit circle. The conditions on the roots, the
fractional orders d and D’s ensure that {Yt } is stationary and the model is identifiable. It can be
readily checked that the spectral density of {Yt } equals, for −π < ω ≤ π,

h(ω) = σ 2

2π

∣∣∣∣ θ(exp(iω))

φ(exp(iω))

∣∣∣∣
2∣∣∣∣2 sin

(
ω

2

)∣∣∣∣
−2δ0 c∏

j=1

∣∣∣∣�j(exp(isjω))

�j (exp(isjω))

∣∣∣∣
2

(2)

×
c∏

j=1

τj∏
k=1

∣∣(exp(iνjk) − exp(iω)
)(

exp(−iνjk) − exp(iω)
)∣∣−2δjk ,

where δ0 = d + D1 + · · · + Dc; τj = [sj /2], the greatest integer ≤ sj /2; νjk = 2πk/sj , for
j = 1, . . . , c, and k = 1, . . . , τj ; δjk = Dj , for k = 1, . . . , τj − 1, δjτj

= Dj if sj = 2τj + 1,
and δjτj

= Dj/2 if sj = 2τj . From (2), we see that, as ω → 0, the spectral density f (ω) =
O(|ω|−2d−2D1−···−2Dc), whereas for j = 1, . . . , c, k = 1, . . . , τj , as ω → νjk , f (ω) = O(|ω −
νjk|−2Dj ). Given our interest in long-memory processes, throughout this paper, the parameters
d and the Dj ’s are restricted by the inequality constraints: 0 ≤ d + D1 + · · · + Dc < 1/2, and
0 ≤ Dj < 1/2, for j = 1, . . . , c.

3. Aggregates of SARFIMA models

For non-stationary data, we assume that, after suitable regular and/or seasonal differencing, the
data become stationary and follow some stationary SARFIMA model. Specifically, let r and
Rj , j = 1, . . . , c, be non-negative integers and {Yt , t = 0,±1,±2, . . .} a time series such that
(1 − B)r(1 − Bs1)R1 · · · (1 − Bsc )RcYt is a stationary SARFIMA model defined by equation (1).
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Therefore, {Yt } satisfies the difference equation

φ(B)(1 − B)r+d
c∏

j=1

�j(B
sj )(1 − Bsj )Rj +Dj Yt = θ(B)

c∏
j=1

�j(B
sj )εt , (3)

which is referred to as the SARFIMA(p, r + d, q) × (P1,R1 + D1,Q1)s1 × · · · × (Pc,Rc +
Dc,Qc)sc model.

Let m ≥ 2 be an integer and Xm
T = ∑mT

k=m(T −1)+1 Yk be the nonoverlapping m-temporal ag-
gregates of {Yt }. Let ∇ = 1 − B be the first difference operator, and ∇s = 1 − Bs the lag-s
difference operator. Let R = (r,R1, . . . ,Rc), ξ = (d;Dj, j = 1, . . . , c;�i,j , i = 1, . . . , c, j =
1, . . . ,Pi;�i,j , i = 1, . . . , c, j = 1, . . . ,Qi), and assume si = mzi , i = 1, . . . , c, where the zi ’s
are positive integers. Below we derive the spectral density of the aggregates, and the limit of
the normalized spectral densities with increasing aggregation. The normalization that makes the
spectral densities integrate to 1 is necessary because, without normalization, the variance of the
aggregates generally increases to infinity with increasing aggregation.

Theorem 1. Assume that {Yt } satisfies the difference equation defined by (3).

(a) For r ≥ 0, Ri ≥ 0, i = 1, . . . , c, and m = 2h + 1, the spectral density function of
{∇r∇R1

z1 · · ·∇Rc
zc

Xm
T } is given by

fξ,R,m(ω) = 1

m

∣∣∣∣2 sin

(
ω

2

)∣∣∣∣
2r+2 c∏

j=1

∣∣∣∣2 sin

(
zjω

2

)∣∣∣∣
−2Dj c∏

j=1

∣∣∣∣�j(exp(izjω))

�j (exp(izjω))

∣∣∣∣
2

(4)

×
h∑

k=−h

∣∣∣∣2 sin

(
ω + 2kπ

2m

)∣∣∣∣
−2r−2d−2

g

(
ω + 2kπ

m

)
,

where g(ω) = σ 2(2π)−1|θ(exp(iω))|2|φ(exp(iω))|−2 and −π < ω ≤ π.
If m = 2h, the spectral density is given by equation (4) with the summation ranging from

−h + 1 to h for −π < ω ≤ 0 and from −h to h − 1 for 0 < ω ≤ π.
(b) As m → ∞, the normalized spectral density function of {∇r∇R1

z1 · · ·∇Rc
zc

Xm
T } converges

to fξ,R(ω) = Kξ,Rf ∗
ξ,R(ω), where

f ∗
ξ,R(ω) =

∣∣∣∣sin

(
ω

2

)∣∣∣∣
2r+2 c∏

j=1

∣∣∣∣sin

(
zjω

2

)∣∣∣∣
−2Dj

(5)

×
c∏

j=1

∣∣∣∣�j(exp(izjω))

�j (exp(izjω))

∣∣∣∣
2 ∞∑

k=−∞
|ω + 2kπ|−2r−2d−2,

where Kξ,R is the normalization constant ensuring that
∫ π
−π fξ,R(ω)dω = 1.

Remark 1. The assumption that si = mzi , for i = 1, . . . , c, and m → ∞ in Theorem 1(b) should
be interpreted as follows: the periodicities si ’s are multiples of the aggregation size m, and the
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aggregation size is large. Consider two examples. Example (1): hourly data (that have a quar-
terly seasonality) are aggregated into monthly data, so s = 2160, m = 720, and z = 3, and Ex-
ample (2): half-hourly data (that have a weekly seasonality) are aggregated into daily data, so
s = 336, m = 48, z = 7.

Remark 2. Note that zc > zc−1 > · · · > z1 ≥ 1. For j = 1, . . . , c, k = 0,1, . . . , [zj /2], let ωjk =
νj (mk) = 2πk/zj , then both m−2r−2d−1fξ,R,m and fξ,R are of order O(|ω|−2d−2D1−···−2Dc), for
ω → 0, and of order O(|ω−ωjk|−2Dj ), for ω → ωjk , j = 1, . . . , c, k = 1, . . . , [zj /2]. The above
observations indicate that, if the periodicities si ’s are multiples of the aggregation size m, then
the aggregates and their limits preserve the long-memory and seasonal long-memory parameters
of the underlying SARFIMA process, whereas the zi ’s become the periodicities of the aggregated
series.

Remark 3. If z1 = 1, the corresponding seasonal long-memory component is confounded with
the regular long-memory component for the limiting aggregate process. Hence, without loss of
generality, we shall set D1 = 0 if z1 = 1 in applications.

Remark 4. If r = 0, then the limiting model of the aggregates of {Yt } is simply a SARFIMA(P1,

R1 +D1,Q1)z1 ×· · ·× (Pc,Rc +Dc,Qc)zc process with fractional Gaussian noise as the driving
noise process, where the self-similarity parameter (Hurst parameter) of the underlying fractional
Gaussian process equals H = d + 1/2. See Beran [1] for definition of the fractional Gaussian
noise.

4. Spectral maximum likelihood estimator and its large sample
properties

We are interested in applying the long-memory limiting aggregate process derived in Section 3 to
data analysis. For this purpose, we assume (i) 0 ≤ d +D1 +· · ·+Dc < 1/2 and (ii) 0 ≤ Dj < 1/2
for j = 1, . . . , c. The limiting aggregate process is of long memory regularly or seasonally if
either 0 < d +D1 + · · ·+Dc < 1/2 or 0 < Dj < 1/2 for some j ∈ {1, . . . , c}. We also introduce
the parameter σ to account for the variance of the data. Furthermore, we assume zj , j = 1, . . . , c,

are known. Consider a time series {Yi}Ni=1−δ , where δ is a positive integer to be defined below,

such that, conditional on {Yi}0
i=1−δ , {∇r∇R1

z1 · · ·∇Rc
zc

Yi}Ni=1 is a stationary process with its spectral
density defined by

f (ω; ξ,R,σ 2) = σ 2f ∗(ω; ξ,R), (6)

where f ∗(ω; ξ,R) is define in (5), δ = maxr +∑c
i=1 zi · maxRi

; maxr and maxRi
, i = 1, . . . , c,

are the largest possible values of r and Ri , i = 1, . . . , c, respectively, which we will consider
in simulation studies and real data analysis in Sections 5 and 6. That is, the spectral maximum
likelihood estimators r̂ and R̂i , i = 1, . . . , c, satisfy the conditions that r̂ ∈ {0, . . . ,maxr} and
R̂i ∈ {0, . . . ,maxRi

}, for i = 1, . . . , c.
It can be easily checked that, conditional on {Yi}0

i=1−δ , the joint distributions of {∇r∇R1
z1 · · ·

∇Rc
zc

Yi}Ni=1 and {Yi}Ni=1 are the same. Therefore, conditional on {Yi}0
i=1−δ , the (negative) log-
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likelihood function of {Yi} can be approximated by the (negative) Whittle log-likelihood function
(see Hosoya [8])

−l̃(ξ,R,σ 2) =
T∑

j=1

{
logf (ωj ; ξ,R,σ 2) + IN(ωj ;R)

f (ωj ; ξ,R,σ 2)

}
, (7)

where ωj := 2πj/N ∈ (0,π) are the Fourier frequencies, T is the largest integer ≤ (N − 1)/2,

IN(ω;R) = |∑N
j=1 Uj (R) exp(ijω)|2/(2πN), and Ui(R) = ∇r∇R1

z1 · · ·∇Rc
zc

Yi , i = 1, . . . ,N . In

(7), the computation of f (ωj ; ξ,R,σ 2) requires evaluation of an infinite sum. Here, we adopt
the method of Chambers [4] to approximate f (ω; ξ,R,σ 2) by

f̃ (ω; ξ,R,σ 2)

= σ 2
∣∣∣∣sin

(
ω

2

)∣∣∣∣
2r+2 c∏

j=1

∣∣∣∣sin

(
zjω

2

)∣∣∣∣
−2Dj c∏

j=1

∣∣∣∣�j(exp(izjω))

�j (exp(izjω))

∣∣∣∣
2

h(ω; ξ,R),

where h(ω; ξ,R) = {2π(2r + 2d + 1)}−1{(2πM − ω)−2r−2d−1 + (2πM + ω)−2r−2d−1} +∑M
k=−M |ω + 2kπ|−2r−2d−2 for some large integer M . By routine analysis, it can be shown

that, under the conditions stated in Theorem 2, the approximation error of h(ω;R,ξ) to the
infinite sum is of order O(M−2r−2d−2). Also, the approximation error of the first partial deriva-
tive with respect to d is of order O(M−2r−2d−1−ε), for any positive ε less than 1. These er-
ror rates guarantee that if the truncation parameter M increases with the sample size at a
suitable rate, then the truncation has negligible effects on the asymptotic distribution of the
estimator, see Theorem 2 below. Replacing f (ωj ; ξ,R,σ 2) by f̃ (ωj ; ξ,R,σ 2) and letting
g̃(ωj ; ξ,R) = f̃ (ωj ; ξ,R,σ 2)/σ 2, the (negative) Whittle log-likelihood function (7) now be-
comes

−l̃(ξ,R,σ 2) =
T∑

j=1

{
logσ 2 + log g̃(ωj ; ξ,R) + IN(ωj ;R)

σ 2g̃(ωj ; ξ,R)

}
. (8)

Differentiating (8) with respect to σ 2 and equating to zero gives

σ̂ 2 = 1

T

T∑
j=1

IN(ωj ;R)

g̃(ωj ; ξ,R)
. (9)

Substituting (9) into (8) yields the objective function

−l̃(ξ,R) =
T∑

j=1

log g̃(ωj ; ξ,R) + T log

(
T∑

j=1

IN(ωj ;R)

g̃(ωj ; ξ,R)

)
+ C, (10)

where C = T − T logT . The objective function is minimized with respect to ξ and R to get
the spectral maximum likelihood estimators ξ̂ and R̂; the estimator σ̂ 2 is then calculated by
(9). Specifically, the spectral maximum likelihood estimators ξ̂ and R̂ are computed based on
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equation (10) using the following procedure (Recall that 0 ≤ Dj < 1/2, for j = 1, . . . , c, and
0 ≤ d + D1 + · · · + Dc < 1/2). For each r̃ ∈ {0, . . . ,maxr} and Ri ∈ {0, . . . ,maxRi

}, for i =
1, . . . , c, we first find the local maximum likelihood estimator of ξ in the range that 0 ≤ Dj <

1/2, j = 1, . . . , c, and r̃ ≤ r + d + D1 + · · · + Dc < r̃ + 1/2. In our experiments, we let maxr =
maxR1 = · · · = maxRc = 2. These local maximum likelihood estimators are then used to find the
global maximum likelihood estimator of ξ and R = (r,R1, . . . ,Rc).

For simplicity, let θ = (ξ, σ 2), θ̂ = (ξ̂ , σ̂ 2) and R̂ be the spectral maximum likelihood esti-
mator that minimizes the (negative) Whittle log-likelihood function (8). Below, we derive the
large-sample distribution of the spectral maximum likelihood estimator.

Theorem 2. Let the data Y = {Yi}Ni=1 be such that {∇r∇R1
z1 · · ·∇Rc

zc
Yi}Ni=1 is sampled from a

stationary Gaussian seasonal long-memory process with the spectral density given by (6). Let
the spectral maximum likelihood estimator θ̂ ∈ �, a compact parameter space, and the true
parameter θ0 be in the interior of the parameter space. Assume that each component of R =
(r,R1, . . . ,Rc) is known to be between 0 and some integer K . Let r0 and d0 be the true values of
r and d , and the truncation parameter M increase with the sample size so that M → ∞. Then the
spectral maximum likelihood estimator R̂ and θ̂ are consistent. Moreover, if

√
NM−2r0−2d0−1 →

0 as N → ∞, then
√

N(θ̂ − θ0) converges in distribution to a normal random vector with mean
0 and covariance matrix �(θ0)

−1 with

�(θ) = 1

4π

∫ π

−π

(
 logf (ω;R,θ))(
 logf (ω;R,θ))′ dω, (11)

where 
 denotes the derivative operator with respect to θ , and superscript ′ denotes transpose.

5. Empirical comparison between the limiting model and the
SARFIMA model

Given aggregation is finite in practice, fitting the limiting model (6) to aggregate data may result
in bias, even though the bias vanishes with increasing aggregation. On the other hand, “to some
extent, a discrete time series model is conditional on the time scale,” as remarked by a referee. So,
it is pertinent to compare the empirical performance of the long-memory parameter estimators
based on the proposed limiting model with those based on the SARFIMA model fitted to the
aggregate data. As aggregation carries a signature in the long-memory data structure as spelt out
in Theorem 1, fitting a SARFIMA model to aggregate data may result in even larger bias on
the long-memory parameters than the limiting model. Here, we report some simulation results
for clarifying the aforementioned issue. Consider the aggregated time series {Yi}Ni=1−δ such that
{∇r∇R

z Yi}Ni=1 is a stationary process with its spectral density defined by

f (ω; r, d,D,σ 2) = σ 2
∣∣∣∣sin

(
ω

2

)∣∣∣∣
2r+2∣∣∣∣sin

(
zω

2

)∣∣∣∣
−2D

(12)

×
h−1∑

k=−h

∣∣∣∣(2m) sin

(
ω + 2kπ

2m

)∣∣∣∣
−2r−2d−2

g

(
ω + 2kπ

m

)
,
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where g(ω) = |φ(exp(iω))|−2, φ(x) = 1 − φ1x, δ = maxr +maxR z, and 0 < ω < π. For −π <

ω ≤ 0, f (ω; r, d,D,σ 2) = f (−ω; r, d,D,σ 2). We consider σ = 2, z = 10, and r = R = 0. The
true values of (d,D) are (i) (−0.1,0.3) and (ii) (0.2,0.25), whereas those of the other parameters
are given in Table 1. The sample sizes considered are N = 512 and N = 1024. We tried a range
of AR(1) coefficient φ1: −0.9,−0.5,0.0,0.5, and 0.9. The aggregation size m are set to be 60,
240, and 720, corresponding to the cases that minutely data are aggregated over one hour, four
hours, and half a day, respectively. To each aggregated time series simulated from model (12),
we fitted (i) the limiting aggregate model, and (ii) the SARFIMA model. The averages and the
standard deviations, as well as the asymptotic standard errors, of 1000 replicates of the estimators
for (i) (d,D) = (−0.1,0.3) and (ii) (d,D) = (0.2,0.25) are summarized in Tables 1 and 2,
respectively. Note that the estimates of r and R equal zero for all simulations.

From Tables 1 and 2, it can be seen that the bias of the estimator of d for the limit-
ing aggregate model is generally smaller in magnitude than that of the SARFIMA model,
except for (d,D,φ1,m) = (−0.1,0.3,0.9,60), and (d,D,φ1,m) = (−0.1,0.3,0.9,240). For
(d,D) = (0.2,0.25), the bias of the estimator of d + D for the limiting aggregate model is al-
ways smaller in magnitude than that for the SARFIMA model. For (d,D) = (−0.1,0.3), the bias
of d + D for the limiting aggregate model is smaller in magnitude than that for the SARFIMA
model if φ1 = −0.9 or {(N,m,φ1)|N = 1024,m = 720, φ1 �= 0.9}. For (d,D) = (−0.1,0.3),
the bias of the estimator of D for the limiting aggregate model is always smaller than or equal to
that for the SARFIMA model, in magnitude. For (d,D) = (0.2,0.25), the bias of the estimator
of D for the limiting aggregate model is always larger than that for the SARFIMA model except
for (φ1,m) = (0.9,60) and (φ1,m) = (0.9,240). Overall, these limited simulation results sug-
gest that the limiting model leads to generally less biased estimates of d , and with comparable
estimates of D, than the SARFIMA model. Possible gains of long-term forecast accuracy due to
lesser bias in the estimator of d based on the limiting model will be further explored in the real
application below.

6. Application

In this section, we report some analysis of a time series of counts of http requests to a World Wide
Web server at the University of Saskatchewan, Canada, between 1 June and 31 December in year
1995, within the framework of the limiting aggregate seasonal long-memory model and spectral
maximum likelihood estimation. The original data set consists of time stamps of 1-second reso-
lution, which can be downloaded from http://ita.ee.lbl.gov/html/contrib/Sask-HTTP.html. Palma
and Chan [15] analyzed the 30-minute (non-overlapping) aggregates, that is, each data point
represents the total number of requests sent to the Sakastchewan’s server within a 30-minute in-
terval. There are 9074 observations in total. To make the data more Gaussian and to stabilize their
variances, Palma and Chan [15] applied a logarithmic transformation to the aggregate data. See
Figure 1 for the time series plot, the sample autocorrelation function, and the periodogram of the
transformed aggregate data. Their fitted model is a SARFIMA(1, d,1) × (0,D,0)s model with
(d̂, D̂, φ̂, θ̂ ) = (0.076,0.148,0.917,0.583). Although this model explains roughly two thirds of

http://ita.ee.lbl.gov/html/contrib/Sask-HTTP.html
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Table 1. Averages (standard deviations) of 1000 simulations of the spectral maximum likelihood estimators of the parameters d , and D by
fitting the limiting aggregate model (6) and the SARFIMA model (2), respectively, to aggregate data generated according to (12), with (d,D) =
(−0.1,0.3). The asymptotic standard errors for the estimators of (d,D,d + D) are (0.03,0.03,0.04) and (0.02,0.02,0.03) for N = 512 and
N = 1024, respectively. Results under column heading “A” denote those from the limiting aggregate model (6), whereas those under “S” are the
counterparts from the SARFIMA model (2)

N = 512 N = 1024

Para- True
m = 60 m = 240 m = 720 m = 60 m = 240 m = 720

φ1 meter value A S A S A S A S A S A S

−0.9 d −0.1 −0.163 −0.210 −0.126 −0.163 −0.113 −0.147 −0.162 −0.206 −0.125 −0.160 −0.112 −0.144
(0.03) (0.04) (0.03) (0.04) (0.03) (0.04) (0.02) (0.03) (0.02) (0.03) (0.02) (0.03)

D 0.3 0.325 0.329 0.323 0.325 0.322 0.324 0.318 0.322 0.315 0.318 0.314 0.317
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

d + D 0.2 0.162 0.119 0.197 0.162 0.210 0.177 0.157 0.117 0.190 0.158 0.202 0.173
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.03) (0.04) (0.03) (0.04) (0.03) (0.04)

−0.5 d −0.1 −0.112 −0.146 −0.105 −0.138 −0.103 −0.135 −0.111 −0.143 −0.105 −0.135 −0.103 −0.133
(0.03) (0.04) (0.03) (0.04) (0.03) (0.04) (0.02) (0.03) (0.02) (0.03) (0.02) (0.03)

D 0.3 0.322 0.324 0.322 0.323 0.322 0.323 0.314 0.316 0.314 0.316 0.314 0.316
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

d + D 0.2 0.211 0.178 0.217 0.186 0.218 0.188 0.203 0.174 0.209 0.180 0.211 0.183
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.03) (0.04) (0.03) (0.04) (0.03) (0.04)

0 d −0.1 −0.101 −0.133 −0.102 −0.133 −0.102 −0.134 −0.100 −0.131 −0.101 −0.131 −0.101 −0.131
(0.03) (0.04) (0.03) (0.04) (0.03) (0.04) (0.02) (0.03) (0.02) (0.03) (0.02) (0.03)

D 0.3 0.322 0.323 0.322 0.323 0.322 0.323 0.314 0.316 0.314 0.316 0.314 0.316
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

d + D 0.2 0.221 0.191 0.220 0.190 0.220 0.190 0.213 0.185 0.212 0.184 0.212 0.184
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.03) (0.04) (0.03) (0.04) (0.03) (0.04)
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Table 1. (Continued)

N = 512 N = 1024

Para- True
m = 60 m = 240 m = 720 m = 60 m = 240 m = 720

φ1 meter value A S A S A S A S A S A S

0.5 d −0.1 −0.092 −0.121 −0.099 −0.130 −0.101 −0.132 −0.091 −0.119 −0.098 −0.128 −0.100 −0.130
(0.03) (0.04) (0.03) (0.04) (0.03) (0.04) (0.02) (0.03) (0.02) (0.03) (0.02) (0.03)

D 0.3 0.321 0.323 0.322 0.323 0.322 0.323 0.313 0.315 0.313 0.315 0.313 0.315
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

d + D 0.2 0.230 0.201 0.223 0.193 0.221 0.191 0.222 0.195 0.215 0.187 0.213 0.186
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.03) (0.04) (0.03) (0.04) (0.03) (0.04)

0.9 d −0.1 −0.040 −0.060 −0.085 −0.113 −0.095 −0.126 −0.041 −0.059 −0.085 −0.111 −0.095 −0.124
(0.03) (0.04) (0.03) (0.04) (0.03) (0.04) (0.02) (0.03) (0.02) (0.03) (0.02) (0.03)

D 0.3 0.320 0.320 0.321 0.322 0.321 0.323 0.311 0.311 0.313 0.314 0.313 0.315
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

d + D 0.2 0.279 0.260 0.236 0.209 0.226 0.197 0.270 0.252 0.228 0.203 0.218 0.191
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.03) (0.04) (0.03) (0.04) (0.03) (0.04)
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Table 2. Averages (standard deviations) of 1000 simulations of the spectral maximum likelihood estimators of the parameters d , and D by
fitting the limiting aggregate model (6) and the SARFIMA model (2), respectively, to aggregate data generated according to (12), with (d,D) =
(0.2,0.25). The asymptotic standard errors for the estimators of (d,D,d + D) are (0.03,0.03,0.04) and (0.02,0.02,0.03) for N = 512 and
N = 1024, respectively. Results under column heading “A” denote those from the limiting aggregate model (6), whereas those under “S” are the
counterparts from the SARFIMA model (2)

N = 512 N = 1024

Para- True
m = 60 m = 240 m = 720 m = 60 m = 240 m = 720

φ1 meter value A S A S A S A S A S A S

−0.9 d 0.2 0.186 0.223 0.197 0.231 0.198 0.232 0.189 0.225 0.198 0.234 0.200 0.235
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

D 0.25 0.260 0.250 0.258 0.247 0.258 0.247 0.258 0.250 0.256 0.248 0.257 0.246
(0.04) (0.03) (0.04) (0.03) (0.04) (0.03) (0.03) (0.02) (0.03) (0.02) (0.03) (0.02)

d + D 0.45 0.446 0.474 0.455 0.479 0.456 0.479 0.446 0.476 0.454 0.482 0.457 0.481
(0.04) (0.03) (0.04) (0.03) (0.04) (0.03) (0.03) (0.02) (0.03) (0.02) (0.03) (0.02)

−0.5 d 0.2 0.197 0.230 0.196 0.231 0.198 0.232 0.198 0.234 0.199 0.235 0.200 0.236
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

D 0.25 0.258 0.247 0.258 0.247 0.258 0.248 0.257 0.248 0.256 0.246 0.257 0.246
(0.04) (0.03) (0.04) (0.03) (0.04) (0.03) (0.03) (0.02) (0.03) (0.02) (0.03) (0.02)

d + D 0.45 0.455 0.478 0.454 0.479 0.456 0.480 0.454 0.481 0.455 0.482 0.457 0.483
(0.04) (0.03) (0.04) (0.03) (0.04) (0.03) (0.03) (0.02) (0.03) (0.02) (0.03) (0.02)

0 d 0.2 0.198 0.232 0.199 0.231 0.199 0.231 0.200 0.236 0.199 0.235 0.200 0.236
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

D 0.25 0.258 0.247 0.258 0.246 0.258 0.246 0.257 0.246 0.256 0.247 0.256 0.246
(0.04) (0.03) (0.04) (0.03) (0.04) (0.03) (0.03) (0.02) (0.03) (0.02) (0.03) (0.02)

d + D 0.45 0.456 0.479 0.457 0.477 0.456 0.478 0.457 0.483 0.456 0.482 0.456 0.482
(0.04) (0.03) (0.04) (0.03) (0.04) (0.03) (0.03) (0.02) (0.03) (0.02) (0.03) (0.02)
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Table 2. (Continued)

N = 512 N = 1024

Para- True
m = 60 m = 240 m = 720 m = 60 m = 240 m = 720

φ1 meter value A S A S A S A S A S A S

0.5 d 0.2 0.201 0.233 0.199 0.233 0.197 0.231 0.202 0.238 0.200 0.236 0.200 0.235
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

D 0.25 0.257 0.245 0.258 0.246 0.258 0.248 0.256 0.245 0.256 0.246 0.256 0.247
(0.04) (0.03) (0.04) (0.03) (0.04) (0.03) (0.03) (0.02) (0.03) (0.02) (0.03) (0.02)

d + D 0.45 0.459 0.478 0.457 0.479 0.455 0.479 0.458 0.483 0.456 0.482 0.456 0.483
(0.04) (0.03) (0.04) (0.03) (0.04) (0.03) (0.03) (0.02) (0.03) (0.02) (0.03) (0.02)

0.9 d 0.2 0.233 0.263 0.201 0.237 0.200 0.233 0.236 0.265 0.206 0.241 0.201 0.237
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

D 0.25 0.246 0.230 0.254 0.244 0.258 0.247 0.247 0.231 0.256 0.244 0.256 0.246
(0.03) (0.03) (0.03) (0.03) (0.04) (0.03) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02)

d + D 0.45 0.479 0.492 0.455 0.481 0.458 0.480 0.489 0.495 0.462 0.486 0.457 0.483
(0.03) (0.01) (0.04) (0.03) (0.04) (0.03) (0.02) (0.01) (0.03) (0.02) (0.03) (0.02)
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(a) (b)

(c)

Figure 1. Time series plot, sample ACF, and periodgram of the Log transformed 30-minute (non-overlap-
ping) aggregates. (a) Time series plot. (b) Sample ACF. (c) Periodogram.

the total variance of the data, the residuals display significant autocorrelations at several lags, in
particular, at lags from 40 to 50 (Figure 6(a) of Palma and Chan [15]), suggesting a lack of fit. Hsu
and Tsai [9] also analyzed the same data set, pointing out the presence of both daily and weekly
persistency in the data. Indeed, observe that there are two major peaks in the periodogram: one
at the origin and another at frequency ω = 2π × 189/9074 = 0.1309. These features indicate a
possible seasonal long-memory process with z = 48, that is, a daily pattern. The third peak is at
frequency ω = 2π × 27/9074 = 0.0187, indicating a possible weekly pattern.

Here, we reanalyze this dataset with the limiting aggregate seasonal long-memory model de-
fined by (6) with c = 3, r = R1 = R2 = R3 = 0, z1 = 1, z2 = 48 (corresponding to daily effects),
and z3 = 48 × 7 = 336 (corresponding to weekly effects). Note that m = 30 × 60 = 1800. Our
new approach may be justified as the 30-minute aggregation may well fall within the interme-
diate asymptotic framework studied in Section 3. As discussed in Remark 3 of Section 3, we
assume D1 = 0. Specifically, if {Yt } is the observed time series, the spectral density function of
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{Yt } can be written as

fξ,σ 2(ω) = σ 2
∣∣∣∣sin

(
z1ω

2

)∣∣∣∣
2∣∣∣∣sin

(
z2ω

2

)∣∣∣∣
−2D2

∣∣∣∣sin

(
z3ω

2

)∣∣∣∣
−2D3

∣∣∣∣�1(exp(iz1ω))

�1(exp(iz1ω))

∣∣∣∣
2

(13)

×
∣∣∣∣�2(exp(iz2ω))

�2(exp(iz2ω))

∣∣∣∣
2∣∣∣∣�3(exp(iz3ω))

�3(exp(iz3ω))

∣∣∣∣
2 ∞∑

k=−∞
|ω + 2kπ|−2d−2.

We have considered models of orders (P1,Q1,P2,Q2,P3,Q3) = (P1,Q1,0,0,0,0) with 0 ≤
P1 ≤ 2, and 0 ≤ Q1 ≤ 2. The model with the smallest AIC (Akaike information criterion) is
(P1,Q1,P2,Q2,P3,Q3) = (2,2,0,0,0,0). Goodness of fit of this model was studied in Chan
and Tsai [5].

The spectral maximum likelihood estimates of the parameters and the 95% bootstrap confi-
dence intervals based on steps 1–4 of Section 6 of Chan and Tsai [5] are summarized in Table 3.
The asymptotic standard deviations and the asymptotic 95% confidence intervals are also in-
cluded in Table 3. It is clear that the bootstrap confidence intervals of the parameters are compa-
rable to their asymptotic counterparts. The confidence intervals of the parameters d + D2 + D3,
D2 and D3 indicate that the long-memory pattern, the daily seasonal long-memory pattern and
the weekly seasonal long-memory pattern are all significant.

To assess the advantage of using the proposed aggregation model in terms of forecasting,
as compared to a SARFIMA model, we divide the data roughly into two halves, with the first
5074 data for fitting the proposed model and the SARFIMA model. We use the second half
of data for comparing their forecasting performance by computing h-step ahead predictors, for
h = 1, . . . ,4000, and the corresponding mean squared errors, via equations (5.2.19) and (5.2.20)
of Brockwell and Davis [3], respectively. Specifically, the competing model we consider is
a SARFIMA(2, d,2) × (0,D1,0)s2 × (0,D2,0)s3 model, where s2 = 48, and s3 = 48 × 7 =
336. The estimates of the parameters are (d̂, D̂2, D̂3, d̂ + D̂2 + D̂3, φ̂1,1, φ̂1,2, θ̂1,1, θ̂1,2, σ̂ ) =

Table 3. Spectral maximum likelihood estimates of the parameters of the model defined by equation (13),
with (P1,Q1,P2,Q2,P3,Q3) = (2,2,0,0,0,0)

Bootstrap 95% Asymptotic Asymptotic 95%
Estimated confidence standard confidence

Parameter value interval error interval

d 0.2326 (0.1268, 0.2608) 0.0436 (0.1471, 0.3181)
D2 0.1274 (0.1085, 0.1429) 0.0083 (0.1111, 0.1437)
D3 0.1271 (0.1083, 0.1430) 0.0083 (0.1108, 0.1434)
d + D2 + D3 0.4871 (0.3821, 0.5000) 0.0441 (0.4007, 0.5735)
φ1,1 1.1277 (0.8916, 1.5089) 0.1256 (0.8815, 1.3739)
φ1,2 −0.2610 (−0.5773, −0.0508) 0.1009 (−0.4588, −0.0632)
θ1,1 −1.1788 (−1.4586, −0.9315) 0.0936 (−1.3623, −0.9953)
θ1,2 0.3593 (0.1237, 0.5755) 0.0831 (0.1964, 0.5222)
σ 0.3117 (0.3017, 0.3194) 0.0051 (0.3017, 0.3217)
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Figure 2. Long-term forecast efficiency of the proposed model relative to the SARFIMA model.

(0.1996,0.1328,0.1280,0.4604,−0.038, 0.8154,0.1099,−0.7342,0.1250). Note that the esti-
mators of d̂ and d̂+D̂2 +D̂3 from the SARFIMA model are smaller than those from the proposed
model, which is similar to some finding reported in Section 5. Figure 2 displays the ratios (in %)
of the cumulative first h steps ahead mean absolute forecast errors of the SARFIMA model to
their counterparts of the limiting aggregate model, for h = 1,2, . . . ,4000. These ratios measure
the long-term forecast efficiency of the proposed model relative to the SARFIMA model. As can
be seen from the figure, the proposed model produces more accurate long-term forecast than the
SARFIMA model once the forecast horizon is approximately longer than 1 day. We have also
examined the rates the h-step ahead prediction variances approach their asymptotic value for
the two models, and found that the fitted proposed model admits a slower convergence rate than
the fitted SARFIMA model, which is consistent with the longer memory (at the zero frequency)
estimated by the fitted proposed model than the SARFIMA model.

7. Concluding remarks

We have derived the limiting structure of the temporal aggregates of a (possibly non-stationary)
SARFIMA model, with increasing aggregation. We have also obtained some asymptotic proper-
ties of the spectral maximum likelihood estimator of the limiting model, including consistency
and asymptotic normality. Monte Carlo experiments show that the proposed method enjoys good
empirical properties. Moreover, estimator of d under the proposed model appears to generally
have smaller bias than that from fitting a SARFIMA model to aggregate data. The efficacy of
our proposed methodology is illustrated with an analysis of an internet traffic data. Model diag-
nostic using a bootstrap procedure in the frequency domain, as presented in Chan and Tsai [5],
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suggests a good fit. Future research problems include extending the model to include covariates
and developing other tools for model diagnostics.
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