
Bernoulli 18(2), 2012, 606–634
DOI: 10.3150/11-BEJ351

Similarity of samples and trimming
PEDRO C. ÁLVAREZ-ESTEBAN1,*, EUSTASIO DEL BARRIO1,** ,
JUAN A. CUESTA-ALBERTOS2 and CARLOS MATRÁN1,†

1Dept. de Estadística e Investigación Operativa, Universidad de Valladolid, Prado de la Magdalena s.n.,
47005 VALLADOLID, Spain. E-mail: *pedroc@eio.uva.es; **tasio@eio.uva.es; †matran@eio.uva.es
2Dept. Matemáticas, Estadística y Computación, Universidad de Cantabria, Avda. los Castros s.n., 39005
SANTANDER, Spain. E-mail: juan.cuesta@unican.es

We say that two probabilities are similar at level α if they are contaminated versions (up to an α fraction)
of the same common probability. We show how this model is related to minimal distances between sets of
trimmed probabilities. Empirical versions turn out to present an overfitting effect in the sense that trimming
beyond the similarity level results in trimmed samples that are closer than expected to each other. We show
how this can be combined with a bootstrap approach to assess similarity from two data samples.
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1. Similarity vs. homogeneity

Classical goodness of fit deals with the problem of assessing whether the unknown random gen-
erator, P , of a data object, X, belongs to a given class, F . This includes two-sample problems
in which two different random objects are observed. We focus on checking whether a certain
feature of the corresponding random generators coincides. The case in which X1 is a collection
of i.i.d. random variables X1

1, . . . ,X
1
n with common distribution P1, X2 is another sequence of

i.i.d. random variables X2
1, . . . ,X

2
m with law P2 and the goal is to assess whether θ(P1) = θ(P2)

for some function θ(·) (including, for instance, θ(P ) = P ) is a homogeneity problem, to which
a large amount of literature has been devoted. Our starting point is that it is often the case that
the researcher is not really interested in checking whether P ∈ F or whether P1 = P2. Imag-
ine the case of a pharmaceutical company trying to introduce a new (and cheaper) alternative
to some reference drug. The regulatory authorities will approve the new drug if its performance
with respect to a certain biological magnitude does not differ from that of the standard drug. Both
drugs could produce a similar outcome on most patients. However, if there is a fraction of them
for whom the results are clearly different, then the new drug is very likely to be rejected by a
homogeneity test, while, in fact, it has a similar performance for most individuals. As another
example, consider the comparison of two human populations that were initially equal but have
received immigration with different patterns. In these situations the relevant assumption to check
is not homogeneity, but rather similarity in the following sense.
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Definition 1. Two probability measures P1 and P2 on the same sample space are α-similar if
there exist probability measures P0, P ′

1, P ′
2 such that{

P1 = (1 − ε1)P0 + ε1P
′
1,

P2 = (1 − ε2)P0 + ε2P
′
2

(1)

with 0 ≤ εi ≤ α, i = 1,2.

Definition 1 measures the overlap between P1 and P2, in agreement with other possible mea-
sures of similarity (see the section “Similarity between Populations” in [14]). Beware that smaller
values of α in Definition 1 correspond to more similar distributions (the case α = 0 being equiv-
alent to P1 = P2).

A related situation, for one-sample problems, would be the case when we observe some ran-
dom object X with law P1. Ideally, P1 should equal P0 (some gold standard), but the presence
of noise means that, in fact,

P1 = (1 − ε)P0 + εN, ε ≤ α (2)

for some unspecified N if we assume that the noise level does not exceed α. We would say that P1
is similar to P0 at level α if (2) holds (observe that P1 and P0 do not play a symmetric role in this
definition). In two-sample problems, we want to assess whether the two samples can be assumed
to be noisy realizations of some unkown gold standard, as in Definition 1. Model (2) corresponds
to the ‘contamination neighborhoods’ introduced in Huber [15,16] in a robust testing setup. We
discuss further connections to these and other related references in Section 2.2 below. Our goal
in this work is to present a method for assessing similarity of the unknown random generators
P1,P2 of two independent i.i.d. samples. Our procedure also yields an estimate of the common
core of the two distributions.

Our approach is based on trimming. Trimming procedures are of frequent use in robust statis-
tics as a way of downplaying the influence of contaminating data in our inferences. The in-
troduction of data-dependent versions of trimming, often called impartial trimming, allows us to
overcome some limitations of earlier versions of trimming that simply removed extreme observa-
tions at tails. Generally, impartial trimming is based on some optimization criterion, keeping the
fraction of the sample (of a prescribed size) that yields the least possible deviation with respect
to a theoretical model. Today, impartial trimming constitutes one of the main tools in the robust
approach to a variety of statistical settings (see [9,12,18,23]). The first approach to model valida-
tion based on impartial trimming is (to the best of our knowledge) the one in Álvarez-Esteban et
al. [1,3]. The problem considered there can be rephrased as follows. Given two independent i.i.d.
samples of univariate data with unknown random generators P1,P2, we want to assess whether
Pi = L(ϕi(Z)), i = 1,2, for some random variable Z defined on a probability space (�, F ,P)

and non-decreasing functions, ϕ1, ϕ2, such that

P
(
ϕ1(Z) �= ϕ2(Z)

) ≤ α

(see Section 2.2 for further discussion). Despite the interest of this approach, we believe that the
similarity model given by Definition 1 is often more natural and useful in applications. Some
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technically related results and the connection with the optimal transportation problem have been
reported in Álvarez-Esteban et al. [2]. A related approach based on density estimation can be
found in Martínez-Camblor et al. [19].

As we will show in Section 2, the similarity model of Definition 1 can be expressed in terms
of a minimal distance between the sets of trimmings of the probabilities Pi , i = 1,2. These are
the sets of probabilities that one obtains from a fixed one by removing or downplaying (to some
degree) the weight assigned by the original probability. When we look for the minimal distance
between trimmings of the empirical measures based on two samples, we are highlighting the part
of the data that, hopefully, comes from the common core P0. From a descriptive point of view,
this gives an interesting tool for the comparison of data samples.

A distinctive feature of our proposal concerns the rates of convergence. If Pn, Qn are the
empirical distributions based on two samples of univariate data (of equal size for simplicity),
we will trim up to an α-fraction of data from both samples in order to minimize some dis-
tance, d(·, ·); and if we write Pn,α , Qn,α for the optimally trimmed empirical distributions, we
will have d(Pn,α,Qn,α) ≤ d(Pn,Qn). Trimming procedures generally give a balanced compro-
mise between efficiency and robustness, and increasing the level of trimming has a moderate
effect on the efficiency. Thus, for univariate i.i.d. data coming from equal random generators, we
typically have d(Pn,Qn) = OP (n−1/2) and d(Pn,α,Qn,α) = OP (n−1/2), but it is not true that
d(Pn,α,Qn,α) = oP (n−1/2) (see, e.g., Theorem A.1 in [1]). However, for our procedure, over-
trimming (i.e., trimming beyond the similarity level) will produce an over-fitting effect, namely,
d(Pn,α,Qn,α) = oP (n−1/2). That will be the key for the statistical application of the procedure.
Roughly speaking, if two random samples are trimmed more than required to delete contamina-
tion, then two samples far more similar than expected are obtained and it is feasible to distinguish
this pair of trimmed samples from any other pair of non-trimmed, non-contaminated samples. We
formalize this idea in Section 2. As in Álvarez-Esteban et al. [1], our choice for the metric d is
the L2 Wasserstein distance.

This over-fitting effect can be combined with a bootstrap procedure to consistently decide
if the underlying distributions of two i.i.d. samples are similar in the sense of Definition 1 as
we show in Section 3. This statistical procedure should also be useful in other frameworks of
model validation. The consistency of our procedure is independent of the kind of contaminations.
However, as expected, inliers are harder to detect than outliers. In this proposal, we have to
consider small resampling sizes in the presence of inliers. This is discussed in Section 4, where
we present some simulations showing the performance of our bootstrap procedure over finite
samples. We also include the analysis of a real data set.

For the sake of readability we have moved most of the proofs to an Appendix, together with
some additional results on rates of convergence.

Throughout the paper P will be the set of Borel probability measures on the real line, R, while
Fp will denote the set of distributions in P with finite pth absolute moment. If F is a distribution
function, F−1 will denote its generalized inverse or quantile function. Given P,Q ∈ P , by P �
Q we will denote absolute continuity of P with respect to Q, and by dP

dQ
the corresponding

Radon–Nikodym derivative. Unless otherwise stated, the random variables will be assumed to
be defined on the same probability space (�,σ, ν). Weak convergence of probabilities will be
denoted by →w and L(X) (resp., EX) will denote the law (resp., the mean) of the variable X.
The indicator function of a set A will be IA and 	 will denote the Lebesgue measure.
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2. Trimming and over-fitting

2.1. Trimmings of a distribution

Trimming an α-fraction of data in a sample of size n can be understood as replacing the empirical
measure by a new one in which the data are reweighted so that the trimmed points now have zero
probability while the remaining points will have weight 1/n(1 − α). By analogy we can define
the trimming of a distribution as follows.

Definition 2. Given α ∈ (0,1), we define the set of α-trimmed versions of P by

Rα(P ) :=
{
Q ∈ P : Q � P,

dQ

dP
≤ 1

1 − α
,P -a.s.

}
. (3)

This definition has been considered by several authors (see [1,7,13]). It allows the consider-
ation of partial removal of the points in the support of the probability. This flexibility results in
nice properties of the sets of trimmings, making Rα(P ) a convex set, compact for the topology
of weak convergence (see Proposition 2.1 in [2]).

In this paper we use the quadratic Wasserstein distance, W2, namely, the minimal quadratic
transportation cost between probabilities with finite second moment. W2 metrizes weak con-
vergence plus convergence of second moments. We refer the reader to Section 8 of Bickel and
Freedman [4] for further details on W2. On the real line W2 is simply the L2 distance between
quantile functions, that is, W 2

2 (P1,P2) = ∫ 1
0 (F−1

1 (t) − F−1
2 (t))2 dt if F−1

i is the quantile func-
tion of Pi . Trimmings are also well behaved with respect to W2, as shown in Álvarez-Esteban et
al. [2]. For instance, for P ∈ F2, Rα(P ) is a compact subset of F2 for W2 (see Proposition 2.8
in [2]). A simple consequence is that in

W2(Rα(P1), Rα(P2)) := min
Ri∈Rα(Pi )

W2(R1,R2) (4)

the minimum is indeed attained. A remarkable result is that the minimizer is unique under mild
assumptions. This is Theorem 2.16 in Álvarez-Esteban et al. [2], which generalizes related results
in Caffarelli and McCann [6] and Figalli [11].

Proposition 1. If P1,P2 ∈ F2, 0 < α < 1 and P1 or P2 has a density, then there exists a unique
pair (P1,α,P2,α) ∈ Rα(P1) × Rα(P2) such that

W2(P1,α,P2,α) = W2(Rα(P1), Rα(P2)),

provided W2(Rα(P1), Rα(P2)) > 0.

The connection between trimmings and the similarity model of Definition 1 is given by
the next result. Here dTV denotes the distance in total variation, namely, dTV(P1,P2) =
supB |P1(B) − P2(B)|, where B ranges among all Borel sets.
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Proposition 2. For α ∈ [0,1) the following are equivalent:

(a) P1 and P2 are α-similar.
(b) Rα(P1) ∩ Rα(P2) �= ∅.
(c) dTV(P1,P2) ≤ α.

If P1,P2 ∈ F2, then (a), (b) or (c) is equivalent to

(d) W2(Rα(P1), Rα(P2)) = 0.

Finally, the common core distribution, P0, in Definition 1 is unique if and only if dTV(P1,P2) = α.
In this case, P0 is given by the density f0 = (f1 ∧ f2)/(1 − α) with respect to μ if μ is a com-
mon σ -finite dominating measure for P1 and P2 and f1 and f2 are the corresponding densities
and we have the canonical decomposition Pi = (1 − α)P0 + αP ′

i , i = 1,2, P ′
i having density

1
α
(fi − f1 ∧ f2) with respect to μ.

Proof. If (a) holds, then P0(A) ≤ 1
1−α

Pi(A) for all Borel A. In particular, P0 � Pi and, if Ai =
{ dP0

dPi
> (1−α)−1}, obviously P0(Ai) = 0 and P0 ∈ Rα(P1)∩ Rα(P2), showing (b). Assume now

(b) and take P0 ∈ Rα(P1) ∩ Rα(P2). Then (1 − α)P0(A) ≤ Pi(A) for all A. If α = 0, then (c)
holds trivially. Otherwise define P ′

i (A) = (Pi(A) − (1 − α)P0(A))/α. Then P ′
i is a probability

and dTV(P1,P2) = αdTV(P ′
1,P

′
2) ≤ α, that is, (c) holds. Finally, we assume that (c) holds and

take μ to be a common σ -finite dominating measure for P1 and P2 and write f1 and f2 for the
corresponding densities. Then (see Lemma 2.20 in [20]) dTV(P1,P2) = 1−∫

(f1 ∧f2)dμ (where
a ∧ b means min(a, b)). Write ε = dTV(P1,P2) and assume ε > 0 (the case ε = 0 is trivial). We
set f ′

i = (fi − f1 ∧ f2)/ε, i = 1,2, and f0 = (f1 ∧ f2)/(1 − ε). f0, f
′
1, f

′
2 are densities with

respect to μ. We write P0,P
′
1,P

′
2 for the associated probabilities. Then (1) holds with ε1 = ε2 =

ε ≤ α. Equivalence of (b) and (d) follows from compactness of the sets of trimmings. The last
claim follows easily from the arguments above. �

Remark 1. It follows from Proposition 2 that W2(Rα(P1), Rα(P2)) > 0 if and only if
dTV(P1,P2) > α, that is, dTV(P1,P2) is the minimal level of trimming required to make P1 and
P2 equal. Also, if dTV(P1,P2) = α, then the probability P0 with density f0 = (f1 ∧ f2)/(1 − α)

with respect to μ (as in the proof above) is the unique element in Rα(P1) ∩ Rα(P2). This means
that, as in Proposition 1, there is also a unique pair, namely, (P0,P0) ∈ Rα(P1) × Rα(P2) such
that

W2(P0,P0) = W2(Rα(P1), Rα(P2)) = 0.

This extends the result in Proposition 1 to the case dTV(P1,P2) ≥ α.

Proposition 2 shows that the similarity model (1) can be expressed in terms of different metrics.
In fact, (d) would remain true if W2 were replaced by any other metric for which the sets of
trimmings are compact. With applications in mind, W2 turns out to be a more convenient choice.
In order to assess (1) from two samples of i.i.d. data with empirical distributions P1,n and P2,m,
say, we will have dTV(P1,n,P2,m) = 1 almost surely (provided P1 and P2 have densities) and we
cannot use (at least in a naïve fashion) formulation (c). On the other hand, W2 is well behaved
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in this respect and empirical versions of both the minimal distances and the minimizers are
consistent estimators of their theoretical counterparts. This is the content of the following result
(Theorem 2.17 in [2]). We quote it here for completeness.

Theorem 1 (Consistency). Let {Xn}n, {Yn}n be two sequences of i.i.d. random variables with
L(Xn) = P , L(Yn) = Q, P,Q ∈ F2, and write Pn, Qm for the empirical distributions based on
the samples X1, . . . ,Xn and Y1, . . . , Ym, respectively. Then, if min(m,n) → ∞,

W2(Rα(Pn), Rα(Qm)) → W2(Rα(P ), Rα(Q)) a.s.

Further, if P or Q � 	 and dTV(P,Q) ≥ α, then

W2(Pn,α,Pα) → 0 and W2(Qm,α,Qα) → 0 a.s.,

where (Pα,Qα) = arg minR1∈Rα(P ),R2∈Rα(Q) W2(R1,R2) and (Pn,α,Qm,α) are defined simi-
larly from Pn, Qm.

2.2. Related concepts and works

The similarity model (1) is obviously related to the so-called ‘contamination neighborhoods’ of
a probability P0, defined as

Vε(P0) := {(1 − ε)P0 + εP ′: P ′ ∈ P }
(5)

= {Q ∈ P : Q(A) ≤ (1 − ε)P0(A) + ε for every Borel set A},
which have been widely used in the theory of robust statistics after the pioneering works by Huber
[15,16]. In particular, Huber [16] introduced these neighborhoods in robust testing, providing a
robust version of the Neyman–Pearson lemma for simple hypothesis versus simple alternative.
This theory was completed for more general sets of hypotheses and alternatives, additionally
considering more flexible neighborhoods in Huber and Strassen [17], Rieder [22] and Buja [5].
In fact, Rieder’s neighborhoods of a probability P0, defined as

V R
ε,δ(P0) := {Q ∈ P : Q(A) ≤ (1 − ε)P0(A) + ε + δ for every Borel set A}, (6)

comprise contamination as well as total variation norm neighborhoods (taking δ = 0 or ε = 0,
resp.).

It can be easily shown (see also Proposition 2.1 in [2]) that P ∈ Vε(P0) is equivalent to
P0 ∈ Rε(P ). Thus, our statement P1 and P2 are α-similar can also be expressed, in terms of
contamination neighborhoods, as there exists a probability P0 such that P1,P2 ∈ Vα(P0). How-
ever, there are different possibilities for such P0, and the model considered in this paper, given
through any one of the equivalent statements in Proposition 2, cannot be expressed in terms of a
neighborhood, like (5) or (6) of a fixed probability.

Further related work includes Álvarez-Esteban et al. [1], where it is shown, for a probabil-
ity, P , on the real line, that Rα(P ) can be expressed in terms of the trimmings of the uniform
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law on (0,1), U(0,1). This set can be identified with the set Cα of absolutely continuous func-
tions h : [0,1] → [0,1] such that h(0) = 0, h(1) = 1, with derivative h′ such that 0 ≤ h′ ≤ 1

1−α
.

For function h, it is useful to write Ph for the probability measure with distribution function
h(P (−∞, t]). Then

Rα(P ) = {Ph: h ∈ Cα}. (7)

Hence, we can measure the deviation between the sets of trimmings of P and Q through

Tα(P,Q) := min
h∈Cα

W2(Ph,Qh).

We call Tα(P,Q) the common trimming distance between P and Q. If P and Q have quantile
functions F−1 and G−1, then a simple change of variable shows

W2(Ph,Qh) =
∫ 1

0

(
F−1(h−1(x)) − G−1(h−1(x))

)2 dx

=
∫ 1

0

(
F−1(y) − G−1(y)

)2
h′(y)dy.

Thus, Tα(P,Q) = 0 if and only if 	({y ∈ (0,1): F−1(y) �= G−1(y)}) ≤ α. It follows easily
from this that Tα(P,Q) = 0 if and only if there is a random variable Z defined on a probabil-
ity space (�, F ,P) and non-decreasing, left-continuous functions, ϕ1, ϕ2, with L(ϕ1(Z)) = P ,

L(ϕ2(Z)) = Q such that

P
(
ϕ1(Z) �= ϕ2(Z)

) ≤ α. (8)

In contrast, since dTV(P,Q) = min{P(X �= Y): L(X) = P, L(Y ) = Q} (see Lemma 2.20 in
[20]), we see that W2(Rα(P ), Rα(Q)) = 0 if and only if L(ϕ1(Z)) = P , L(ϕ2(Z)) = Q for
some random variable Z and measurable (not necessarily monotonic) ϕi such that (8) holds.
In summary, two random objects are α-similar if and only if they are different transforms of
a common random signal and the transforms differ from each other with probability at most
α; they are equivalent in terms of common trimming if and only if they are different monotonic
transforms of a common random signal and the transforms differ from each other with probability
at most α. In the somewhat artificial event that we believe that our two samples come from a
monotonic, possibly different, transform of some original signal, then the common trimming
similarity model is reasonable. Otherwise, the similarity model (1) is the natural choice. For a
less technical illustration of this idea we show in Figure 1 the different effect of independent and
common trimming. We have taken P = N(0,1), Q = 0.8N(0,1) + 0.2N(4,1) and three values
of the trimming level, α. In the first row we show the densities of Pα (blue line) and Qα (red line),
with (Pα,Qα) = arg minR1∈Rα(P ),R2∈Rα(Q) W2(R1,R2). In this case, trimming α = 0.2 results
in Pα = Qα , that is, trimming removes contamination. The second row shows the densities of
Phα (blue line) and Qhα (red line), with hα = arg minh∈Cα

W2(Ph,Qh). Clearly, Phα and Qhα

are different and this remains true no matter how close to 1 we choose α. If trimming is used
with the goal of removing contamination and assessing that the core of the two distributions are
equal, then it is clear that the common trimming approach fails to do so.
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Figure 1. Densities of optimally trimmed P and Q with independent trimming (first row) and common
trimming (second row).

In Álvarez-Esteban et al. [3] we have considered, under this common trimming setup, the
problem of testing whether a random sample can be considered ‘mostly normal’, that is, if the
generator of the sample is similar to a normal distribution with unknown parameters.

Finally let us mention the application in Álvarez-Esteban et al. [2] of some asymptotic results
for a related two-sample problem: Given X1, . . . ,Xn i.i.d. P and Y1, . . . , Ym i.i.d. Q, we consider
testing the related null hypotheses

H1: W2(Rα(P ), Rα(Q)) ≤ �0 vs. W2(Rα(P ), Rα(Q)) > �0,

H2: W2(Rα(P ), Rα(Q)) ≥ �0 vs. W2(Rα(P ), Rα(Q)) < �0

for a given threshold �0 > 0 to be chosen by the practitioner. Observe that rejecting the null
hypothesis H2 allows us to conclude that, with high confidence, the unknown random generators
P and Q are not far from similarity.

2.3. The over-fitting effect of trimming

In this subsection we keep the notation of Theorem 1 and assume that we deal with two indepen-
dent samples, X1, . . . ,Xn i.i.d. P and Y1, . . . , Ym i.i.d. Q. We write Pn, Qm for the empirical
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measures and Pn,α , Qm,α are minimizers of the W2 distance between trimmings of the empirical
distributions Pn,Qm.

It follows from Theorem 1 that W2(Pn,α,Qm,α) → 0 a.s. when the similarity model (1) holds
true and we may wonder about the rate of convergence in this limit. Note that under homogeneity,
that is, if P = Q and taking n = m for simplicity, we have under integrability assumptions

√
nW2(Pn,Qn) →w

(
2
∫ 1

0

B2(t)

f 2(F−1(t))
dt

)1/2

, (9)

where B is a Brownian bridge and f and F−1 are the density and quantile functions of P

(this follows easily, for instance, from Theorem 4.6 in [10]). Thus, random samples from
homogeneous generators have empirical distributions at W2-distance of exact order n−1/2,
while, for non-homogeneous random generators W2(Pn,Qn) → W2(P,Q), a positive constant.
Likewise, in the common trimming model of Section 2.2, if hn,α is such that Tα(Pn,Qn) =
W2((Pn)hn,α , (Qn)hn,α ) and we write P̃n,α = (Pn)hn,α , Q̃n,α = (Qn)hn,α (the optimal trim-
mings of the empirical measures), then, under Tα(P,Q) = 0, we have that

√
nW2(P̃n,α, Q̃n,α)

converges in law to a non-null limit (Theorem A.1 in [1]), whereas if Tα(P,Q) > 0, then
W2(P̃n,α, Q̃n,α) converges a.s. to a positive constant.

In the similarity model (1) the gap between the null and the alternative is of higher order. If
P and Q are not similar at level α, then W2(Pn,α,Qm,α) → W2(Pα,Qα) > 0 (Theorem 1). On
the other hand, if dTV(P,Q) < α, then our next result shows that

√
nW2(Pn,α,Qn,α) → 0 in

probability. To avoid integrability issues, we assume P and Q to have bounded support; this is
enough for applications, since a monotonic transformation of the data could achieve bounded-
ness while preserving the distance in total variation. Furthermore, it ensures that the conditions
dTV(P,Q) ≤ α and W2(Rα(P ), Rα(Q)) = 0 are equivalent.

Theorem 2. Assume P,Q ∈ F2 are supported in a common bounded interval and have densities
bounded away from zero and with bounded derivatives. Assume further that n/(n + m) → λ ∈
(0,1). If αn ∈ (0,1) satisfies αn ≥ dTV(P,Q) + rn√

n
for some rn → ∞, then

√
nW2(Pn,αn,Qm,αn) → 0 in probability. (10)

We give a proof of Theorem 2 in the Appendix. A similar over-fitting effect is observed if
a sample is over-trimmed to optimally fit a given model: If X1, . . . ,Xn are i.i.d. P , Pn,α =
arg minR∈Rα(Pn) W2(R,Q) and W2(Rα0(P ),Q) = 0 for some α0 < α, then (see Theorem 5 in
the Appendix)

√
nW2(Pn,α,Q) → 0 in probability.

Empirical evidence of this over-fitting effect is shown in Figure 2. A random sample of size
n = 1000 from a U(0,1) distribution was taken. This sample was trimmed using the proportions
α = 0,0.1,0.3 in order to obtain a sample as close to the U(0,1) as possible. We denote by Fα

n

the distribution function of Pn,α and in Figure 2, we represent the empirical processes Dα
n (t) =

n1/2(Fα
n (t) − t), t ∈ [0,1] for α = 0,0.1,0.3.
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Figure 2. Trajectories of the uniform empirical process (solid line) and two variants based on trimming.
The trimming levels are α = 0.1 and α = 0.3 (dashed and dotted lines).

Since the true random generator and the target are the same, no trimming is required in this
case to remove contamination and, for α > 0, we are over-trimming. Observe that D0.1

n and D0.3
n

do not differ too much from each other, while they are quite far from the untrimmed version.

3. A bootstrap assessment of similarity

We show in this section how we can use the over-fitting effect of trimming for the assessment
of the similarity model (1). Again, we will assume that we observe two independent random
samples X1, . . . ,Xn i.i.d. P , Y1, . . . , Ym i.i.d. Q. We would like to test the null hypothesis
H0: dTV(P,Q) ≤ α. Theorem 2 says that trimming beyond the similarity level kills random-
ness and results in (trimmed) samples that are more similar to each other than random samples
coming from the same generator. We will use a bootstrap approach to generate suitable random
samples from a common generator and compare the optimally trimmed distance to the distance
computed on the bootstrap replicates.

We write Pn, Qm for the empirical distributions and, given αn ∈ (0,1),

(Pn,αn,Qm,αn) = arg min
R1∈Rαn (Pn),R2∈Rαn (Qm)

W2(R1,R2),

so that W2(Pn,αn,Qm,αn) = W2(Rαn(Pn), Rαn(Qm)).
We consider now the pooled probability

Rn,m = n

n + m
Pn,αn + m

n + m
Qm,αn .

Rn,m is a random probability measure concentrated on {Z1, . . . ,Zn+m}, where Zj = Xj for
j = 1, . . . , n, and Zj = Yj−n for j = n + 1, . . . , n + m.
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Conditionally, given the data, we draw new random variables, X∗
1, . . . ,X∗

n′ , Y ∗
1 , . . . , Y ∗

m′ i.i.d.
Rn,m, with m′ = [n′m/n] and n′ to be chosen later. We will use the notation P

∗ for the bootstrap
probability, that is, the conditional probability given the original data {Xn}n, {Ym}m. Finally,
by P ∗

n′ and Q∗
m′ we will denote the empirical measures based on X∗

1, . . . ,X∗
n′ and Y ∗

1 , . . . , Y ∗
m′ ,

respectively. Now, we define

p∗
n,m := P

∗
{√

n′m′
n′ + m′ W2(P

∗
n′ ,Q∗

m′) >

√
nm

n + m
W2(Pn,αn,Qm,αn)

}
. (11)

p∗
n,m is the bootstrap p-value for the similarity model (1), with rejection for small values of

it. In practice p∗
n,m can be approximated by Monte Carlo simulation. We note that if nαn and

mαn are integer, typically the trimming process will not produce partially trimmed points and
Pn,αn and Qm,αn will be the empirical measures on the sets of non-trimmed data. If we take
αn → α, then if the similarity model fails, W2(Pn,αn,Qm,αn) will be large while W2(P

∗
n′ ,Q∗

m′)
will vanish. On the other hand, for similar distributions W2(Pn,αn,Qm,αn) will vanish at a faster
rate than W2(P

∗
n′ ,Q∗

m′) and rejection for small bootstrap p-values will result in a consistent rule.
We make this precise in our next result.

Theorem 3. With the above notation, assume that P,Q have densities satisfying the assumptions
of Theorem 2. Assume further that n/(n + m) → λ ∈ (0,1) and take αn = α + K/

√
n ∧ m with

K > 0. Then, if n′ → ∞ and n′ = O(n),

(i) if dTV(P,Q) < α, then p∗
n,m → 1 in probability,

(ii) if dTV(P,Q) > α, then p∗
n,m → 0 in probability.

A proof of Theorem 3 is given in the Appendix. It roughly says that a test of the similarity
model (1) that rejects α-similarity for values of p∗

n,m above a fixed threshold L ∈ (0,1) is a
consistent rule. In order to make a sensible choice of the threshold, L, as well as of the con-
stant, K , in Theorem 3, we still need to control the probability of rejection at the boundary
of the null hypothesis; that is, in the case dTV(P,Q) = α. In this case we write again P0 for
the common part of P and Q in the canonical decomposition in Remark 1. If P̃n ∈ Rαn(P ) and
Q̃n ∈ Rαn(Q), with αn as in Theorem 3, are such that W2(P̃n, Q̃n) → 0, then, by uniqueness, we
have W2(P̃n,P0) → 0. We introduce the following assumption about rates in this convergence:
If P̃n ∈ Rαn(P ), Q̃n ∈ Rαn(Q) (and αn = dTV(P,Q) + K√

n
), then, for some ρ ∈ (0,1],

W2(P̃n, Q̃n) = O(n−1/2) ⇒ W2(P̃n,P0) = O(n−ρ/2). (12)

Under this assumption we can control the type I error probability using our next result.

Theorem 4. Under the assumptions and notation of Theorem 3, if P and Q are such that
dTV(P,Q) = α and satisfy (12), taking n′ → ∞, n′ = o(nρ) and

αn = α +
√

α(1 − α)√
n ∧ m

�−1(√1 − γ
)

with γ ∈ (0,1), then lim supn P(p∗
n,m ≤ β) ≤ β + γ .
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The main consequence is that we can test the similarity model (1) at a given level β + γ ∈
(0,1). To be precise, if we replace our ideal H0: dTV(P,Q) ≤ α by H̃0 consisting of pairs
(P,Q) satisfying the assumptions in Theorem 3 and dTV(P,Q) < α or dTV(P,Q) = α plus
Condition (12), then, if we reject for p∗

n,m ≤ β , Theorems 3 and 4 ensure

sup
(P,Q)∈H̃0

lim sup
n

P(P,Q)(p
∗
n,m ≤ β) ≤ β + γ,

where P(P,Q) denotes probability assuming the laws of the X’s and the Y ’s are P and Q, respec-
tively. It is in this sense that we can say that the procedure is conservative, having an asymptotic
level of, at most, β + γ ; nevertheless, the test will consistently reject the similarity model if it
fails. In the next section we show the performance in practice of this procedure. Of course, one
would like to control

lim sup
n

sup
(P,Q)∈H0

P(P,Q)(p
∗
n,m ≤ β)

instead of the bound given by our results. Some of the limitations of our procedure come from the
smoothness requirements posed by our choice of metric, W2. This could, perhaps, be overcome
with the use of the L1 Wasserstein metric (but we would lose the uniqueness and consistency
results given in Proposition 1 and Theorem 1) and consideration of a less restrictive null hypoth-
esis, H̃0. Uniformity in (P,Q) ∈ H0 is a more delicate issue, since one can take P and Q at an
arbitrary (but positive) Wasserstein distance from each other, but such that they are at distance
one in total variation. Perhaps a different choice of metric could lead to some type of uniform
bound. We believe this issue is worth further research.

Turning to the meaning of Condition (12), observe that the contaminations, P ′
1, P ′

2, in the
canonical decomposition in Proposition 2 have disjoint support but can be arbitrarily close in
Wasserstein distance. With Condition (12) we avoid pathological cases in which some inconve-
nient distribution of the contaminations allows that some trimmings of P and Q, with trimming
size slightly above the similarity level, are close to each other without being too close to the com-
mon core. Rather than pursuing an involved technical analysis we include a couple of illustrative
examples that show that the best possible rate ρ depends on the degree of separation between
the contaminating distributions P ′

1, P ′
2 in the canonical decomposition. In the well-separated

case (when the distance between the supports of P ′
1 and P ′

2 is positive), under additional tech-
nical conditions we can take ρ = 1 and we have that the optimal trimming, Pn,αn , approaches
the common part, P0, at the parametric rate: W2(Pn,αn,P0) = OP (n−1/2). Without this sepa-
ration we cannot take ρ greater than 4/5 and we have a nonparametric rate of convergence:

W2(Pn,αn,P0) = OP (n−2/5). Again, in our examples we assume P and Q to have bounded sup-
port since this is enough for applications.

Example 1 (The well-separated case). Assume P and Q are probabilities on the real line with
quantile functions, F−1 and G−1, such that G−1(t) = F−1(t +α), 0 < t < 1 −α and F−1 has a
bounded derivative (as in Figure 3(a)). Then dTV(P,Q) = α and, taking αn = α + K√

n
for some

K > 0 and writing P0 for the common part in the canonical decomposition for P and Q, we
have that if P̃n ∈ Rαn(P ), Q̃n ∈ Rαn(Q), then

W2(P̃n, Q̃n) = O(n−1/2) ⇒ W2(P̃n,P0) = O(n−1/2).
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Figure 3. Canonical decomposition in the separated (left) and non-separated (right) cases.

Example 2 (The non-separated case). We assume now that P and Q differ only in location and
have a symmetric, unimodal density. Without loss of generality, we write F(· + μ/2) and F(· −
μ/2) for the distribution functions of P and Q, respectively, and f for the density associated
to F . We suppose that F has bounded support and f is strictly positive on it. Further, we assume
f to be continuously differentiable with f ′ < 0 in (0, sup(supp(F ))). If μ and α satisfy 1 − α =
2(1 − F(μ/2)) = 2F(−μ/2), then dTV(P,Q) = α (see Figure 3(b)). If P̃n ∈ Rαn(P ), Q̃n ∈

Rαn(Q), then

W2(P̃n, Q̃n) = O(n−1/2) ⇒ W2(P̃n,P0) = O(n−2/5).

A proof of the claims in the last two examples is sketched in the Appendix.
While this work is concerned mainly with testing α-similarity in two-sample problems, in

many real problems the interest could be focused on the estimation on the common core P0.
The results in Section 2 ensure that the pooled probability, Pn,m, in our bootstrap procedure is a
consistent estimator of P0 if α equals the (unknown) distance in total variation between P and Q.
Our simulations in Section 4 (see Figure 5 and the related comments) suggest that the bootstrap
p-value curves (the values of p∗

n,m as a function of α) change sharply from 0 to 1 around the true
similarity level. Maybe this rapid growth could be used to give some estimation of the similarity
level and, as a result, of the common core. Further research is needed.

We conclude this section by presenting a simple upper bound for the transportation cost be-
tween empirical measures. This result, together with Theorem 2, is the key in our proofs of
Theorems 3 and 4 and has some independent interest. The proof is also included in the Ap-
pendix. Here X1,1, . . . ,X1,n;X2,1, . . . ,X2,m are i.i.d. R

k-valued random vectors with common
distribution P and Y1,1, . . . , Y1,n;Y2,1, . . . , Y2,m are i.i.d. Q. We write Pn,1 and Pm,2 for the em-
pirical measures based on X1,1, . . . ,X1,n and X2,1, . . . ,X2,m, respectively, and, similarly, Qn,1
and Qm,2 for the empirical measures based on the Yi,j . Let us define

Sn,m := Wp(Pn,1,Pm,2) and Tn,m := Wp(Qn,1,Qm,2).

Proposition 3. With the above notation, if p ≥ 1, then

Wp(L(Sn,m), L(Tn,m)) ≤ 2Wp(P,Q).
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4. Empirical analysis of the procedure

In this section we explore the performance of the procedure for finite samples. The section is
divided in two subsections that address the analysis of a planned simulation study and of a case
study, respectively. To simplify our exposition we will assume equal sizes in the two samples
through the first subsection. All the computations have been carried out with the programs avail-
able at http://www.eio.uva.es/~pedroc/R.

4.1. A simulation study

We consider first an example that illustrates the over-fitting effect on the bootstrap p-values. We
generate 200 pairs of samples of size n = 1000 obtained from the N(0,1) and the 0.9N(0,1) +
0.1N(10,3) distributions. Then, for each pair of samples, we carry out the bootstrap procedure
(1000 bootstrap replicates in each run) for trimming levels α = 0.09 and 0.11. At this point an
important caution when dealing with mixtures should be made, namely the distinction between
the level (0.1 in our case) of the “contaminating” distribution in the mixture and the similarity
level between the non-contaminated and contaminated distributions. Of course, both distributions
are similar at level 0.1, but they are also similar at a lower level (recall the canonical decompo-
sition in Remark 1). For example, since the supports of the U(0,1) and U(1,2) distributions are
disjoint, then the minimum level of similarity between the U(0,1) and 0.9U(0,1) + 0.1U(1,2)

distributions is 0.1; but between the N(0,1) and 0.9N(0,1) + 0.1N(μ,3) distributions, it is
strictly lower for every μ. For instance, this level is 0.0484 if μ = 0, 0.0653 for μ = 3; or 0.0989
when μ = 10.

Figure 4 shows the absolute frequencies of the bootstrap p-values, p∗
n,n, obtained in this ex-

ample.

Figure 4. Histograms, for different sizes of trimming, of the bootstrap p-values obtained from 200 pairs of
samples from P = N(0,1) and Q = 0.9N(0,1) + 0.1N(10,3) distributions.

http://www.eio.uva.es/~pedroc/R
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Figure 5. Curves of bootstrap p-values obtained by varying the trimming level (α). Colors depend on the
real proportion of data coming from the N(10,3) distribution in each particular sample.

As stated above, the similarity level between the considered distributions is 0.0989. Thus,
the probability of obtaining an observation from the non-common part in the mixture is 0.0989.
Taking into account sample sizes and the number of samples considered, the expected number
of times in which we obtain at most 110 ‘contaminating’ observations in both samples is 158.13.
In these cases, after 0.11 trimming, we will be comparing similar samples and should have no
evidence against similarity. We note that 158 is slightly below the observed frequency in the
right bar of the right histogram in Figure 4. On the other hand, the expected number of times in
which the amount of ‘contaminating’ data exceeds 90 in both samples is 132.02. In this event,
0.09 trimming is unable to remove contamination and we should have strong evidence against
similarity. We can check that 132 is close to the observed frequency in the left bar of the left
histogram in Figure 4.

The comments above suggest that the p-values are very sensitive to the effective proportion
of contamination in the data. This is further illustrated with the plots in Figure 5, which show
the curves of bootstrap p-values conditioned to different ranges of contaminating proportion in
the second sample (the amount of data coming from the N(10,3) distribution). In this figure
we observe that the transition from p-values close to 0 to p-values close to 1 is very fast along
the trimming level. In other words, the effect of under-/over-trimming becomes apparent very
quickly.

We show next a simulation study to illustrate the power performance for finite samples of
the bootstrap procedure introduced in Section 3, when the trimming level, αn, is determined
as in Theorem 4. We consider two different cases, comparing samples of the same size, n,
of P = N(0,1) versus Qi, i = 1,2. In the first case, Q1 = (1 − ε)N(0,1) + εN(10,1); the
contamination is due to outliers. In the second case, the contamination is due to inliers and
Q2 = (1 − ε)N(0,1)+ εN(0,3). In both cases, the null hypothesis is H0: dTV(P,Qi) ≤ 0.1 and
we use 1000 bootstrap pairs of samples to obtain p∗

n,n, rejecting H0 if p∗
n,n ≤ 0.05 = β . Then we
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Table 1. Observed rejection frequencies for H0: dTV(P,Q1) ≤ 0.1, P = N(0,1), Q1 = (1 − ε)N(0,1) +
εN(10,1), where ν = dTV(P,Q1) and β = 0.05

ρ: 1 4/5 2/3 1/2

ν n γ : 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

0.10 100 0.008 0.001 0.016 0.003 0.043 0.006 0.047 0.007
ε � 0.10 300 0.030 0.007 0.040 0.015 0.059 0.017 0.065 0.019

1000 0.052 0.009 0.092 0.016 0.098 0.018 0.114 0.022

0.15 100 0.130 0.044 0.207 0.090 0.246 0.130 0.252 0.170
ε � 0.15 300 0.587 0.386 0.648 0.458 0.687 0.507 0.703 0.556

1000 0.996 0.980 0.998 0.985 0.998 0.986 0.999 0.990

0.20 100 0.576 0.403 0.685 0.515 0.732 0.585 0.738 0.624
ε � 0.20 300 0.990 0.973 0.992 0.981 0.993 0.985 0.993 0.986

1000 1 1 1 1 1 1 1 1

0.25 100 0.919 0.842 0.953 0.893 0.969 0.917 0.970 0.929
ε � 0.25 300 1 1 1 1 1 1 1 1

1000 1 1 1 1 1 1 1 1

compute the rejection frequencies in 1000 iterations of the procedure, obtaining the values shown
in Tables 1 and 2. We do this for different values of ε (then different values of ν = dTV(P,Qi))
and different resampling orders n′ = nρ . The simulation shows that the bound given in Theo-
rem 4 is approached for moderate sizes in the first case (see Table 1, ν = 0.10). However, in the
second case, the procedure is conservative. The main conclusion is that in both cases the contam-
ination is detected, but detection is more difficult in the case in which the contamination comes
from inliers.

We close this subsection with a comparison to classical testing procedures that could be
adapted to the setup of similarity testing. We recall from Proposition 2 that testing α-similarity
of P and Q is equivalent to testing whether supA |P(A) − Q(A)| ≤ α, with A ranging among
all (measurable) sets. If we focus on sets of type A = (−∞, x], then we could test the null
hypothesis H0: supx∈R |F(x) − G(x)| ≤ α using the Kolmogorov–Smirnov statistic: Dn =
supx∈R |Fn(x) − Gn(x)|, where Fn and Gn denote the empirical distribution functions (d.f.’s)
based on the Xi and the Yj , respectively (and we have assumed for simplicity samples of equal
size). It is known (see [21]) that, provided supx∈R |F(x)−G(x)| = λ > 0,

√
n(Dn −λ) converges

weakly to Zλ(F,G) = max(Z1,Z2) with

Z1 = sup
{x:F(x)−G(x)=λ}

B1
(
G(x) + λ

) − B2(G(x)),

Z2 = sup
{x:G(x)−F(x)=λ}

B2(G(x)) − B1
(
G(x) − λ

)
,

where B1,B2 are independent Brownian bridges on (0,1). With standard arguments it can be
shown that P(Zλ(F,G) > t) ≤ P(Zλ > t) for t > 0, with Zλ = sup0≤x≤1−λ B1(x + λ) − B2(x).
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Table 2. Observed rejection frequencies for H0: dTV(P,Q2) ≤ 0.1, P = N(0,1), Q2 = (1 − ε)N(0,1) +
εN(0,3), where ν = dTV(P,Q2) and β = 0.05

ρ: 1 4/5 2/3 1/2

ν n γ : 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

0.10 100 0 0 0 0 0 0 0 0
ε � 0.21 300 0 0 0 0 0 0 0 0

1000 0 0 0 0 0 0 0 0

0.15 100 0.002 0.000 0.002 0.001 0.002 0.001 0.003 0.001
ε � 0.31 300 0.013 0.003 0.016 0.005 0.017 0.006 0.027 0.008

1000 0.185 0.089 0.196 0.100 0.210 0.103 0.235 0.120

0.20 100 0.037 0.017 0.048 0.022 0.060 0.023 0.065 0.027
ε � 0.41 300 0.397 0.253 0.418 0.279 0.437 0.293 0.490 0.330

1000 0.992 0.979 0.994 0.979 0.995 0.982 0.994 0.983

0.25 100 0.254 0.146 0.277 0.163 0.301 0.189 0.324 0.195
ε � 0.52 300 0.924 0.846 0.928 0.856 0.936 0.866 0.949 0.888

1000 1 1 1 1 1 1 1 1

0.30 100 0.565 0.426 0.599 0.456 0.629 0.484 0.654 0.508
ε � 0.62 300 0.996 0.993 0.998 0.993 0.998 0.993 0.999 0.995

1000 1 1 1 1 1 1 1 1

Hence, if we choose z
(β)
α such that P(Zα > z

(β)
α ) = β , then the test that rejects when

Dn > α + 1√
n
z(β)
α

is asymptotically of level β for testing H0: supx∈R |F(x) − G(x)| ≤ α. The critical value z
(β)
α

can be approximated by Monte Carlo simulation. We could try to use this procedure for test-
ing the α-similarity model. Though, since we can find distributions that are arbitrarily close in
Kolmogorov–Smirnov distance but far from each other in total variation distance, this alternative
procedure can fail badly. We show this in our last simulation study (see Table 3). We have taken
P = N(0,1) and Q = 0.70N(0,1) + 0.15N(2.35,1) + 0.15N(−2.35,1), a mixture with three
normal components. Here we have supx∈R |P(−∞, x]−Q(−∞, x]| = 0.1 and dTV(P,Q) = 0.2
and we test H0: dTV(P,Q) ≤ 0.1 at level 0.05. We show the observed frequencies of rejection

Table 3. Observed rejection frequencies for H0: dTV(P,Q) ≤ 0.1, P =
N(0,1), Q = 0.70N(0,1) + 0.15N(2.35,1) + 0.15N(−2.35,1) at level 0.05

n 100 300 500 1000

Dn 0.007 0.004 0.003 0.002
W2 0.007 0.091 0.320 0.875
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Figure 6. Best trimmings between markers 1 and 2, in the example of Section 4.2, α = 0.05 (white),
α = 0.10 (white + yellow) and α = 0.15 (white + yellow + orange).

for Dn and our bootstrap procedure based on W2 as in Theorem 4 with ρ = 4/5, γ = 0.01. In
this case we reject for bootstrap p-values larger than 0.04 to make the asymptotic probability of
type I error less than 0.05. We have considered sampling sizes n = 100,300,500 and 1000 and
have produced 10,000 replicates of the tests in each case. We see that the Kolmogorov–Smirnov
test fails to detect the dissimilarity, even for large sample sizes, while the bootstrap procedure
suggested in this paper works reasonably for moderate sizes.

4.2. A case study

The data from this case study come from an admission exam to the Universidad de Valladolid.
308 exams on the same subject were randomly assigned to 2 markers. The distribution of the
exams was not exactly balanced and markers received 152 and 156 exams, respectively. Each
exam was given a grade between 0 and 10 points. In the admission exams some marking criteria
are given to the markers with the goal of making the grading process “homogeneous”. The main
goal of this study is to determine whether the markers are using the same common criteria. Some
degree of deviation from this common pattern is allowed for each marker. Therefore, we would
like to assess the similarity of the samples of marks for the different markers.

The use of nonparametric methods strongly rejects, at level 0.05, homogeneity between the
considered marking distributions (Wilcoxon–Mann–Whitney, p-value = 0.000; and Kolmogo-
rov–Smirnov, p-value = 0.003). In Figure 6 we show the histograms corresponding to the full
data sets and the progressive effects of best trimming, minimizing the Wasserstein distance
between the remaining subsample distributions. The white portions of the bars represent the
trimmed observations when the trimming size is α = 0.05, the union of the white and yellow
portions are the trimmed observations when α = 0.1 and the orange portions complete the trim-
ming corresponding to α = 0.15. Notice that the best trimming is far from being symmetric.

In Table 4 we have included the p-values corresponding to the bootstrap procedure introduced
in Section 3. In every case, for fixed β = 0.05 and taking αn as in Theorem 4, we used 1000 boot-
strap samples to compute the p-values for the null hypothesis H0: dTV(P,Q) ≤ α. In general
terms, these p-values show that both samples are not 0.05-similar, but they can be considered
0.10-similar. The considerations made in Section 3 about Condition (12) show the convenience
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Table 4. Bootstrap p-values arising from the introduced bootstrap methodology, applied to the similarity
analysis between markers (β = 0.05)

ρ: 1 4/5 2/3 1/2

α γ : 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

0 0 0 0 0 0 0 0 0
0.05 0.059 0.133 0.016 0.058 0.007 0.034 0.005 0.019
0.10 0.884 0.975 0.717 0.865 0.567 0.708 0.371 0.597
0.15 1 1 1 1 1 1 0.997 0.999
0.20 1 1 1 1 1 1 1 1

of using resampling orders less than or equal to n4/5, as we don’t know if the supports of the
contaminating distributions are well separated or not.

Appendix

A.1. Proof of Theorem 2

Our proof is based on a parallel result for the one-sample case. Let Pn be the empirical measure
based on i.i.d. random variables X1, . . . ,Xn with common distribution P . In the particular case
P = Q and α = 0 we have nW 2

2 (Pn,Q) = OP (1) under sufficient integrability assumptions (see
[10]). From the obvious bound W2(Rα(Pn),Q) ≤ W2(Pn,Q) we see that nW 2

2 (Rα(Pn),Q) =
OP (1). Our first result here shows that nW 2

2 (Rα(Pn),Q) = oP (1) even if P �= Q.

Theorem 5. Assume that Q ∈ Rα0(P ) for some α0 ∈ [0,1), where Q is supported in a bounded
interval, having a density function that is bounded away from zero on its support, and with a
bounded derivative. If αn ≥ α0 + rn/

√
n for some sequence 0 ≤ rn → ∞, then

√
nW2(Rαn(Pn),Q) → 0 in probability as n → ∞.

Proof. Arguing as in the proof of Proposition 2 we can check that Q ∈ Rα0(P ) is equivalent to
P = (1 − α0)Q + α0P

′ for some distribution P ′. Hence, we can assume Xn = (1 − Un)Yn +
UnZn, where {Yn}n, {Zn}n and {Un}n are independent i.i.d. sequences with laws Q, P ′ and
Bernoulli with mean α0, respectively. Write Nn = ∑n

i=1 I (Ui = 1). Then Nn follows a bino-
mial distribution with parameters n and α0. Hence,

√
n(Nn/n − α0) → √

α0(1 − α0)Z, with Z

standard normal. We assume w.l.o.g. that convergence holds, in fact, a.s. Write n′ = n − Nn,
X̃1, . . . , X̃n′ for the Yi ’s in the sample with associated Ui = 0 (the uncontaminated fraction of
the sample: X̃1, . . . , X̃n′ are i.i.d. Q) and P̃n′ for the empirical measure on the X̃i ’s. Observe
that P̃n′ ∈ Rα̃n

(Pn) with α̃n = Nn/n. Now we note that given α,β ∈ [0,1), if Q ∈ Rα(P ),
then Rβ(Q) ⊂ Rα+β−αβ(P ). Hence, Rα̂n

(P̃n′) ⊂ Rαn(Pn) for α̂n = (αn − α̃n)/(α̃n) provided
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αn > α̃n, which eventually holds. Consequently,

W2(Rαn(Pn),Q) ≤ W2(Rα̂n
(P̃n′),Q).

Thus, the result will follow if we prove it in the particular case P = Q and α0 = 0.
We proceed in this case writing F and f for the distribution and density functions of P .

Recalling the parametrization in (7) we have

W 2
2 (Rαn(Pn),P ) = min

h∈Cαn

W 2
2 ((Pn)h,P ) = min

h∈Cαn

∫ 1

0

(
F−1

n (h−1(t)) − F−1(t)
)2 dt

and we see that nW 2
2 (Rαn(Pn),P ) = minh∈Cαn

Mn(h), where

Mn(h) =
∫ 1

0

(
ρn(t)

f (F−1(t))
− √

n
(
F−1(h(t)) − F−1(t)

))2

h′(t)dt

and ρn(t) = √
nf (F−1(t))(F−1

n (t) − F−1(t)) is the weighted quantile process. Without loss of
generality, we can assume that {Xn}n are defined in a sufficiently rich probability space in which
there exist Brownian bridges, Bn, satisfying

n1/2−ν sup
1/n≤t≤1−1/n

|ρn(t) − Bn(t)|
(t (1 − t))ν

=
{

OP (logn), if ν = 0,
OP (1), if 0 < ν ≤ 1/2

(13)

(this is guaranteed by Theorem 6.2.1 in [8]). Now, defining

Ñn(h) =
∫ 1

0

(
Bn(t)

f (F−1(t))
− √

n
(
F−1(h(t)) − F−1(t)

))2

h′(t)dt,

and assuming w.l.o.g. that αn ≤ 1 − δ for some δ > 0 we have that

sup
h∈ Cα

|Mn(h)1/2 − Ñn(h)1/2| ≤
(

1

δ

∫ 1

0

(
ρn(t) − Bn(t)

f (F−1(t))

)2

dt

)1/2

= oP (1).

The last equality follows from (13), taking ν = 0, because, since f is bounded below

∫ 1−1/n

1/n

(
ρn(t) − Bn(t)

f (F−1(t))

)2

dt ≤ logn√
n

∫ 1

0

1

f 2(F−1(t))
dtOP (1) = oP (1).

Thus, the conclusion will follow if we show minh∈Cαn
Ñn(h) → 0 in probability or, equivalently,

if we show that minh∈Cαn
Nn(h) → 0 in probability, where

Nn(h) =
∫ 1

0

(
B(t)

f (F−1(t))
− √

n
(
F−1(h(t)) − F−1(t)

))2

h′(t)dt



626 Álvarez-Esteban, del Barrio, Cuesta-Albertos and Matrán

and B is a fixed Brownian bridge. To check that minh∈Cαn
Nn(h) → 0 in probability, we observe

that minh∈Cαn
Nn(h) ≤ 1

δ
mink∈Gn

Rn(k), where

Rn(k) =
∫ 1

0

(
B(t)

f (F−1(t))
− √

n
(
F−1(t + k(t)/

√
n
) − F−1(t)

))2

dt

and Gn is the set of real-valued, absolutely continuous functions on [0,1] such that k(0) = k(1) =
0 and −√

n ≤ k′(t) ≤ rn for almost every t . We assume w.l.o.g. rn ≤ rn+1 for every n. Then
Gn ⊂ Gn+1 for every n and G := ⋃

n≥1 Gn is the set of all absolutely continuous functions on
[0,1] such that k(0) = k(1) = 0 and k′ is (essentially) bounded. From our hypotheses it follows
easily that, for k ∈ G ,

Rn(k) → R(k) :=
∫ 1

0

(
B(t) − k(t)

f (F−1(t))

)2

dt

and hence mink∈Gn
Rn(k) → 0 (therefore nW 2

2 (Rαn(Pn),P ) → 0) will follow if we show that
infk∈G R(k) = 0. But this can be checked easily by noting, for instance, that if kn is the function
that interpolates B(t) at knots i/n, i = 0, . . . , n, and is linear in between, then we have kn ∈ G
and R(kn) → 0. �

Proof of Theorem 2. We write α0 = dTV(P,Q) and take P0 as in the canonical decomposition
in Proposition 2 (we take μ to be the Lebesgue measure there). Then P0 ∈ Rα0(P ) holds with P

and P0 playing the roles of P and Q and the density of P0 satisfies the assumptions in Theorem 5
(in fact f0 = (f ∧ g)/(1 − α0) has a bounded derivative a.e., but this suffices for the strong
approximation in the proof of Theorem 5). Hence,

√
nW2(Rαn(Pn),P0) → 0 in probability and

similarly for
√

nW2(Rαn(Qn),P0). The triangle inequality for W2 yields the conclusion. �

A.2. Asymptotic theory for the bootstrap

The behavior of the bootstrap p-value under the alternative follows from the next result.

Proposition 4. Assume Xn,1, . . . ,Xn,n′ ;Yn,1, . . . , Yn,m′ are i.i.d. random variables with common
distribution Pn ∈ F2 such that W2(Pn,P ) → 0. If P ∗

n′ and Q∗
m′ denote the empirical measures

on Xn,1, . . . ,Xn,n′ and Yn,1, . . . , Yn,m′ , respectively, and n′,m′ → ∞, then

W2(P
∗
n′ ,Q∗

m′) → 0 in probability.

Proof. By Proposition 3 it is enough to consider the case Pn = P for all n. But then Pn′ →w

P a.s. by the Glivenko–Cantelli theorem while the law of large numbers gives convergence of
second-order moments. These two facts imply that W2(P

∗
n′ ,P ) → 0 (and for W2(Q

∗
m′ ,P ) as

well). �

Now we take care of the null hypothesis. The next result will be useful for P and Q away from
the boundary. Its proof is analogous to that of Theorem 2.1 in [4].
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Proposition 5. Assume Xn,1, . . . ,Xn,n′ are i.i.d. random variables with common distribution

Pn ∈ F2 such that W2(Pn,P ) → 0. If X̄n,n′ := 1
n′

∑n′
i=1 Xn,i , then

√
n′(X̄n,n′ − μn) →w N(0, σ 2),

where μn = E(X̄n,n′) and σ 2 is the variance of P .

Proof of Theorem 3. We will assume for simplicity n = m and n′ = m′. The general case can
be handled with straightforward modifications. We consider first the case dTV(P,Q) > α. In this
case we have (Theorem 1) that W2(Pn,αn,Pα) → 0 and W2(Qn,αn,Qα) → 0 a.s. Since

W 2
2

(
aP1 + (1 − a)P2, aQ1 + (1 − a)Q2

) ≤ aW 2
2 (P1,Q1) + (1 − a)W 2

2 (P2,Q2)

for probabilities Pi,Qi ∈ F2 and a ∈ [0,1] (see [2]) it follows that W2(Rn,n, λPα + (1 −
λ)Qα) → 0 a.s. Note that

p∗
n,n = P

∗
(

W2(P
∗
n′ ,Q∗

n′) >

√
n

n′ W2(Pn,αn,Qn,αn)

)
.

Now, Theorem 1 implies that W2(Pn,αn,Qn,αn) → W2(Rα(P ), Rα(Q)) > 0, while n/n′ is
bounded away from 0 by assumption. This, together with Proposition 4, gives (ii).

We assume now that dTV(P,Q) < α. Then Theorem 2 ensures that
√

nW2(Pn,αn,Qn,αn) → 0
in probability. Now, if P1,P2 are probabilities in F2 with means μ1,μ2 and P̄1, P̄2 are their cen-
tered versions, then it is easy to check that W 2

2 (P1,P2) = (μ1 − μ2)
2 + W 2

2 (P̄1, P̄2) and, there-
fore, W 2

2 (P1,P2) ≥ (μ1 − μ2)
2. Let X̄∗

n′ and Ȳ ∗
n′ , respectively, denote the means corresponding

to the X’s and Y ’s bootstrap samples, and μn be the mean of the parent bootstrap distribution,
Rn,n. Then

n′W 2
2 (P ∗

n ,Q∗
m) ≥ n′(X̄∗

n′ − Ȳ ∗
n′)2 = (√

n′(X̄∗
n′ − μn) − √

n′(Ȳ ∗
n′ − μn)

)2
.

From the Glivenko–Cantelli theorem we have a.s. tightness of {Pn}n and {Qn}n and, as a con-
sequence, of Pn,αn and Qn,αn (see Proposition 2.1 in [2]). We can assume, taking subsequences
if necessary, that Pn,αn →w P0 and Qn,αn →w Q0 for some probabilities P0,Q0. A little thought
shows that, necessarily, P0 ∈ Rα(P ) and Q0 ∈ Rα(Q). Since W2(Pn,αn,Qn,αn) → 0, necessar-
ily, P0 = Q0 ∈ Rα(P ) ∩ Rα(Q). Also, since P,Q ∈ F2, the strong law of large numbers shows
that the map x2 is uniformly integrable with respect to {Pn}n and {Qn}n a.s., hence also with
respect to {Pn,αn}n and {Qn,αn}m. Thus, perhaps through subsequences, W2(Pn,αn,P0) → 0 and
W2(Qn,αn,P0) → 0, hence W2(Rn,n,P0) → 0 for some P0 ∈ Rα(P ) ∩ Rα(Q).

The function that sends P to its variance is continuous in F2 for the W2 metric. Hence,
since Rα(P ) ∩ Rα(Q) is compact, the variance attains its minimum there. Let us write σ 2

0 =
minR∈Rα(P )∩Rα(Q) Var(R). Then σ0 > 0 (a trimming of a probability with a density has a den-
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sity, hence, cannot have null variance) and if we write σ 2 for the variance of P0, we have

p∗
n,n = P

∗(√n′W2(P
∗
n′ ,Q∗

n′) >
√

nW2(Pn,αn,Qn,αn)
)

≥ P
∗
(∣∣∣∣

√
n′

2σ
(X̄∗

n′ − Ȳ ∗
n′)

∣∣∣∣ >

√
n

2σ
W2(Pn,αn,Qn,αn)

)

≥ P
∗
(∣∣∣∣

√
n′

2σ
(X̄∗

n′ − Ȳ ∗
n′)

∣∣∣∣ >

√
n

2σ0
W2(Pn,αn,Qn,αn)

)
.

Thus, Proposition 5 and the fact that
√

nW2(Pn,αn,Qn,αn) → 0 yield that p∗
n,n → 1 in probabil-

ity, showing (i). �

Proof of Theorem 4. As in the proof of Theorem 2, we assume that Xn = (1 − Un)An + UnBn,
Yn = (1 − Vn)Cn + VnDn with {An}n, {Bn}n, {Cn}n, {Dn}n, {Un}n, {Vn}n independent i.i.d.
sequences of which {An}n and {Cn}n have common distribution P0 while {Un}n and {Vn}n are
Bernoulli with mean α. We write Nn = ∑n

i=1 I (Ui = 1) and Mn = ∑n
i=1 I (Vi = 1). Also we put

n′
1 = n − Nn, n′

2 = n − Mn and write X̃1, . . . , X̃n′
1

and Ỹ1, . . . , Ỹn′
2

for the data corresponding to
Ui = 0 and Vi = 0, respectively.

On the set En := (Nn ≤ nαn,Mn ≤ nαn), the empirical measures on X̃1, . . . , X̃n′
1

and

Ỹ1, . . . , Ỹn′
1

(which we denote P̃n′
1

and Q̃n′
2
) satisfy P̃n′

1
∈ Rαn(Pn) and Q̃n′

2
∈ Rαn(Qn). Hence,

we have W2(Pn,αn,Qn,αn) ≤ W2(P̃n′
1
, Q̃n′

2
). Thus,

P(p∗
n,n ≤ β) ≤ P(EC

n ) + P
(
(p̃∗

n ≤ β) ∩ En

)
,

where

p̃∗
n = P

∗(√n′W2(P
∗
n′ ,Q∗

n′) >
√

n(1 − α)W2(P̃n′
1
, Q̃n′

2
)
)
.

By the central limit theorem (CLT) we have P(EC
n ) → γ . Hence it suffices to control P((p̃∗

n ≤
β) ∩ En). If J1, . . . , Jn′ , L1, . . . ,Ln′ are i.i.d. random variables with law P0, independent of the
data (both original and bootstrap) and μn′ , νn′ are the empirical measures, then Theorem 3 and
the fact that W2(L(aX), L(aY )) = aW2(L(X), L(Y )) for a > 0 imply

W2
(

L∗(√n′W2(P
∗
n′ ,Q∗

n′)
)
, L

(√
n′W2(μn′ , νn′)

)) ≤ 2
√

n′W2(Rn,n,P0).

By Lemma 1 below
√

n′W2(Rn,n,P0)IEn → 0 in probability. The assumptions on P and Q yield
that

√
n′W2(μn′ , νn′) converges weakly to a non-null limiting distribution as in (9) (with a proof

as in Theorem 4.6 in [10]). We call η the limit probability measure. Then∣∣p̃∗
n − η

((√
n(1 − α)W2(P̃n′

1
, Q̃n′

2
),∞))∣∣IEn → 0

in probability. As a consequence,

P
(
(p̃∗

n ≤ β) ∩ En

) − P
((

η
((√

n(1 − α)W2(P̃n′
1
, Q̃n′

2
),∞)) ≤ β

) ∩ En

) → 0.
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But

P
((

η
((√

n(1 − α)W2(P̃n′
1
, Q̃n′

2
),∞)) ≤ β

) ∩ En

)
≤ P

((
η
((√

n(1 − α)W2(P̃n′
1
, Q̃n′

2
),∞)) ≤ β

)) → β,

since, as above,
√

n(1 − α)W2(P̃n′
1
, Q̃n′

2
) converges weakly to η. This completes the proof. �

The following technical result has been used in the proof of Theorem 4.

Lemma 1. With the notation and assumptions of Theorem 4,
√

n′W2(Rn,n,P0)IEn = oP (1).

Proof. We use the parametrization in (7). We have Pn,αn = (Pn)hn , Qn,αn = (Qn)ln , for some
hn, ln ∈ Cαn . Writing F−1

n , G−1
n , F−1 and G−1 for the quantile functions of Pn, Qn, P and Q

we have W 2(Pn,αn,Qn,αn) = ‖F−1
n ◦ h−1

n − G−1
n ◦ l−1

n ‖2, with ‖ · ‖2 denoting the usual norm in

L2(0,1), namely, ‖b‖2
2 = ∫ 1

0 b2. Now

‖(F−1
n ◦ h−1

n − G−1
n ◦ l−1

n ) − (F−1 ◦ h−1
n − G−1 ◦ l−1

n )‖2

≤ ‖F−1
n ◦ h−1

n − F−1 ◦ h−1
n ‖2 + ‖G−1

n ◦ l−1
n − G−1 ◦ l−1

n ‖2

≤ 1√
1 − αn

(‖F−1
n − F−1‖2 + ‖G−1

n − G−1‖2),

where we have used that
∫ 1

0 (F−1(h−1(t))−G−1(h−1(t))2 dt = ∫ 1
0 (F−1(x)−G−1(x)2h′(x)dx.

The assumptions on P and Q ensure that, as in (9), ‖F−1
n − F−1‖2 + ‖G−1

n − G−1‖2 =
OP (n−1/2). On the other hand, on En,

‖F−1
n ◦ h−1

n − G−1
n ◦ l−1

n ‖2 = W2(Pn,αn,Qn,αn) ≤ W2(P̃n′
1
, Q̃n′

2
) = OP (n−1/2).

Combining these two facts we see that W2(Phn,Qhn)IEn = ‖F−1 ◦ h−1
n − G−1 ◦ l−1

n ‖2IEn =
OP (n−1/2). Using (12) we see that W2(Phn,P0) = O(n−ρ/2). Since W2(Phn,Pn,αn) =
OP (n−1/2), we conclude that W2(Pn,αn,P0)IEn = O(n−ρ/2). Convexity and a similar argument
for Qn,αn yield the result. �

Proof of Example 1. The fact that dTV(P,Q) = α follows from noting (with some abuse of
notation) that for F̃−1 ∈ Rα(P ) and G̃−1 ∈ Rα(Q)

F̃−1(t) ≤ F−1(α + (1 − α)t
) ≤ G̃−1(t).

Hence, the probability P0 with quantile F−1
0 (t) = F−1(α + (1 − α)t) is the unique element in

Rα(P ) ∩ Rα(Q). Next we observe that, for F̃−1 ∈ Rαn(P ),

F−1(t) ≤ F−1(αn + (1 − αn)t
)

≤ F−1
0 (t) + (

F−1(αn + (1 − αn)t
) − F−1(α + (1 − αn)t

))
.
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Similarly, if G̃−1 ∈ Rαn(Q), G̃−1(t) ≥ F−1
0 (t) − (F−1(αn + (1 − αn)t) − F−1(α + (1 − αn)t))

and, combining both inequalities, we get |F−1
0 (t) − F̃−1(t)| ≤ |F̃−1(t) − G̃−1(t)| + |F−1(αn +

(1 − αn)t) − F−1(α + (1 − αn)t)| and the bound follows from the triangle inequality. �

Proof of Example 2. We write F0 for the distribution function of P0, hence, F−1
0 (y) =

μ/2+F−1((1−α)y) for y ∈ (0,1/2] and F−1
0 (y) = −μ/2+F−1(α+(1−α)y) for y ∈ [1/2,1).

Similarly, we write F̃n and G̃n for the distribution functions of P̃n and Q̃n, respectively. Neces-
sarily, P̃n(0,∞) ≤ 1

1−αn
(1 −F(

μ
2 )) = 1

2 (1 + K
(1−αn)

√
n
). We write βn = 1

2 − P̃n(0,∞). It follows

from the fact that W2(P̃n, Q̃n) → 0 that W2(P̃n,P0) → 0 and, therefore, that βn → 0. We give
next a lower bound for W2(P̃n, Q̃n), assuming that βn > 0. If this is the case

F̃−1
n (t) ≤ −μ

2
+ F−1

(
α + (1 − αn)(t − βn) + K

2
√

n

)
, t ∈

(
0,

1

2
+ βn

)
. (14)

On the other hand G̃−1
n ((1 − αn)t) ≥ μ/2 + F−1((1 − αn)t). Standard computations show that

there is a unique a = a(βn) > 0 such that F(a − μ
2 ) − F(a + μ

2 ) + α = (1 − α)βn and that

−μ

2
+ F−1(α + (1 − α)(t − β)

) ≤ μ/2 + F−1((1 − α)t
)

for t ∈ ( 1
1−α

F (−a − μ
2 ), 1

2 ). From this we get that

W2(P̃n, Q̃n) ≥ √
g1(βn) − sn,1 − sn,2, (15)

where g1(β) = ∫ 1/2
F(−a−μ/2)/(1−α)(μ + F−1((1 − α)t) − F−1(α + (1 − α)(t − β)))2 dt , s2

n,1 =∫ 1/2
F(−a−μ/2)/(1−α)(F

−1((1 −α)t)−F−1((1 −αn)t))
2 dt , s2

n,2 = ∫ 1/2
F(−a−μ/2)/(1−α)(F

−1(α + (1 −
α)(t − βn)) − F−1(α + (1 − αn)(t − βn) + K

2
√

n
))2 dt. A routine use of Taylor expansions yields

limβ→0+ g1(β)

β5/2 = (1 − α)3/2
√|f ′(μ/2)|

f 2(μ/2)
> 0, s2

n,1 = O(
√

βnn
−1) and s2

n,2 = O(
√

βnn
−1). From

this and (15) we obtain

βn = O(n−2/5), (16)

with a similar bound being satisfied by γn = 1
2 − Q̃n(−∞,0).

We turn now to the upper bound for W2(P̃n,P0). From the triangle inequality we get

W2(P̃n,P0) ≤
(∫ 1/2

0
(F̃−1

n − F−1
0 )2

)1/2

+
(∫ 1

1/2
(F̃−1

n − F−1
0 )2

)1/2

≤ W2(P̃n, Q̃n) +
(∫ 1/2

0
(G̃−1

n − F−1
0 )2

)1/2

+
(∫ 1

1/2
(F̃−1

n − F−1
0 )2

)1/2

.

We consider next
∫ 1

1/2(F̃
−1
n − F−1

0 )2. Since P̃n ∈ Rαn(P ) we have

F̃−1
n (t) ≤ −μ

2
+ F−1(αn + (1 − αn)t

)
, t ∈ (0,1). (17)
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Keeping the above notation for βn, assume first that βn ≤ 0. Then

F̃−1
n (t) ≥ −μ

2
+ F−1

(
α + (1 − αn)t + K

2
√

n

)
, t ∈

(
1

2
,1

)
(18)

(this follows upon noting that F̃−1
n ( 1

2+) ≥ 0 and F̃−1
n (t) = F−1(h−1(t)), h−1 growing with slope

at least 1 − αn). For t ∈ ( 1
2 ,1), (17) and (18) still hold if we replace F̃−1

n by F−1
0 . Hence, in this

case
∫ 1

1/2(F̃
−1
n −F−1

0 )2 ≤ ∫ 1
1/2(F

−1(αn + (1 −αn)t)−F−1(αn + (1 −αn)t − K
2
√

n
))2 dt =: s2

n,3.

If βn > 0, then, arguing as above, we have

F̃−1
n (t) ≥ −μ

2
+ F−1

(
α + (1 − αn)(t − βn) + K

2
√

n

)
, t ∈

(
1

2
+ βn,1

)
, (19)

while (14) holds in (0, 1
2 + βn). Now we use the bound

(∫ 1

1/2
(F̃−1

n − F−1
0 )2

)1/2

≤
(∫ 1/2+βn

1/2
(F̃n

−1 − F−1
0 )2

)1/2

+
(∫ 1

1/2+βn

(F̃−1
n − F−1

0 )2
)1/2

and proceed as follows. For t ∈ ( 1
2 +βn,1) (17) and (19) hold again after replacing F̃−1

n by F−1
0 .

This and the triangle inequality yield

(∫ 1

1/2+βn

(F̃−1
n − F−1

0 )2
)1/2

≤
(∫ 1

1/2+βn

(
F−1(α + (1 − α)t

) − F−1(α + (1 − α)(t − βn)
))2 dt

)1/2

(20)

+ 2

(∫ 1

1/2

(
F−1(αn + (1 − αn)t

) − F−1
(

αn + (1 − αn)t − K

2
√

n

))2

dt

)1/2

= √
g2(βn) + 2sn,3.

For the interval ( 1
2 , 1

2 + βn) we write G−1(t) = μ
2 + F−1((1 − αn)t) (the minimal quan-

tile function in Rαn(Q)). Then (
∫ 1/2+βn

1/2 (F̃−1
n − F−1

0 )2)1/2 ≤ (
∫ 1/2+βn

1/2 (F̃−1
n − G−1)2)1/2 +

(
∫ 1/2+βn

1/2 (G−1 − F−1
0 )2)1/2. We observe now that G̃−1(t) ≥ G−1

n (t) and also that, for t ∈
( 1

2 , 1
2 + βn), −μ

2 + F−1(α + (1 − α)(t − βn)) ≤ 0 ≤ μ
2 + F−1((1 − α)t). Combining these

facts with (14) we obtain

|F̃−1
n (t) − G−1(t)| ≤ |F̃−1

n (t) − G̃−1
n (t)|

+ ∣∣F−1((1 − αn)t
) − F−1((1 − α)t

)∣∣
+

∣∣∣∣F−1
(

α + (1 − αn)(t − βn) + K

2
√

n

)
− F−1(α + (1 − α)(t − βn)

)∣∣∣∣.
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As a consequence,(∫ 1/2+βn

1/2
(F̃−1

n − F−1
0 )2

)1/2

≤ W2(P̃n, Q̃n) +
(∫ 1/2+βn

1/2

(
μ + F−1((1 − α)t

) − F−1(α + (1 − α)t
))2 dt

)1/2

+ 2

(∫ 1/2+βn

1/2

(
F−1((1 − αn)t

) − F−1((1 − α)t
))2 dt

)1/2

+
(∫ 1/2+βn

1/2

(
F−1

(
α + (1 − αn)(t − βn) + K

2
√

n

)

− F−1(α + (1 − α)(t − βn)
))2

dt

)1/2

= W2(P̃n, Q̃n) + √
g3(βn) + 2sn,4 + sn,5,

where g3(β) = ∫ 1/2+β

1/2 (μ + F−1((1 − α)t) − F−1(α + (1 − α)t))2 dt . Again a Taylor expan-

sion shows that g3(βn) = O(β3
n) = o(n−1). Similarly, we get sn,j = o(n−1), j = 4,5, and, as a

consequence (∫ 1/2+βn

1/2
(F̃−1

n − F−1
0 )2

)1/2

= O(n−1/2). (21)

Collecting the estimates in (20) and (21), we obtain(∫ 1

1/2
(F̃−1

n − F−1
0 )2

)1/2

≤ √
g2(βn) + 2sn,3 + O(n−1/2). (22)

We note next that F−1 has a bounded derivative and, as a consequence, s2
n,3 = O(n−1). Similarly,

we find that g2(βn) = O(β2
n). Summarizing,

(∫ 1

1/2
(F̃−1

n − F−1
0 )2

)1/2

= O(n−2/5).

A similar analysis works for
∫ 1/2

0 (G̃−1
n − F−1

0 )2 and completes the proof. �

Proof of Proposition 3. We take (X1,1, Y1,1) to be an optimal coupling for P and Q with respect
to the ‖x −y‖p-cost and (X1,i , Y1,i ), 2 ≤ i ≤ n, and (X2,j , Y2,j ), 1 ≤ j ≤ m, independent copies
of (X1,1, Y1,1) (hence E‖Xi,j − Yi,j‖p = W p

p (P,Q)). Then Sn,m = minπ (a(π))1/p and Tn,m =
minπ (b(π))1/p , where

a(π) =
∑

1≤i≤n,1≤j≤m

πi,j‖X1,i − X2,j‖p,
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b(π) is defined similarly by replacing Xi,j by Yi,j and π takes values in the set of n×m matrices
with non-negative entries πi,j such that

∑
1≤j≤m πi,j = 1

n
and

∑
1≤i≤n πi,j = 1

m
.

We observe next that, by the triangle inequality,

|a(π)1/p − b(π)1/p| ≤
( ∑

1≤i≤n,1≤j≤m

πi,j‖(X1,i − X2,j ) − (Y1,i − Y2,j )‖p

)1/p

≤
(

1

n

∑
1≤i≤n

‖X1,i − Y1,i‖p

)1/p

+
(

1

m

∑
1≤j≤m

‖X2,j − Y2,j‖p

)1/p

.

As a consequence, we have that |Sn,m − Tn,m| is upper bounded by the right-hand side of the
above display and, from the elementary inequality (a+b)p ≤ 2p−1ap +2p−1bp for non-negative
a, b, we get

E(Sn,m − Tn,m)p ≤ 2p−1E‖X1,1 − Y1,1‖p + 2p−1E‖X2,1 − Y2,1‖p

= 2p W p
p (P,Q).

This completes the proof. �
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