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We provide a development that unifies, simplifies and extends considerably a number of minimax results
in the restricted parameter space literature. Various applications follow, such as that of estimating location
or scale parameters under a lower (or upper) bound restriction, location parameter vectors restricted to a
polyhedral cone, scale parameters subject to restricted ratios or products, linear combinations of restricted
location parameters, location parameters bounded to an interval with unknown scale, quantiles for location-
scale families with parametric restrictions and restricted covariance matrices.
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1. Introduction

We provide a development that unifies, simplifies and extends considerably a number of min-
imax results in the restricted parameter space estimation literature. As illustrated with a series
of examples, the unified minimax result has wide applicability with respect to the nature of the
constraint, the underlying probability model and the loss function utilized.

To further put into context the findings of this paper, consider a basic situation where X ∼
N(θ,1), with θ ≥ a (a > −∞ known), and where θ is estimated under squared error loss (d −
θ)2. Katz [10] established that the Bayes estimator δU with respect to the flat prior on (a,∞)

dominates the minimum risk equivariant (MRE) estimator δ0(X) = X. However, δ0 remains
a useful benchmark estimator with its constant risk matching the minimax risk, and with any
improvement, such as δU , being necessarily minimax as well. In a technical sense and roughly
speaking, the form (and unboundedness) of the restricted parameter space [a,∞) preserves a
common structure with the unrestricted parameter space �, and the constructions of the least
favourable sequence of priors for both problems are isomorphic, leading to the same minimax
values. In contrast, the restriction to a compact interval θ ∈ [a, b] is quite different and lowers
the minimax risk (see example (C) in Section 3).

Now, the above phenomenon is not only more general (e.g., general location families with
absolutely continuous Lebesgue densities and strictly convex loss [5]), but similar results have
been established in various other situations, beginning with Blumenthal and Cohen [2] in the
context of ordered location parameters. Many other such contributions will be referred to below,
but at this point we refer to the monograph of van Eeden [22], as well as the review paper by
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Marchand and Strawderman [17], which contain a substantial amount of material and references
relating to such problems.

In this paper, we provide a unified framework for the above-mentioned problems, as well as
many others either for more general loss and/or model, or for new situations such as estimating
quantiles or covariance matrices under parametric restrictions. While results for certain of the
problems (e.g., (A) and (B)) are not new (although we generalize some to more general loss
functions) and certain others have been studied for squared error loss, we greatly expand the set
of loss functions for which minimaxity is established (e.g., (C)–(F)), certain of the problems (e.g.,
(G) and (H) and Remark 2) have not been extensively studied and thus our problems and results
are mostly new. In Section 2, we formalize the general argument, relying on the existence of a
least favourable sequence (Proposition 1), setting up conditions on the restricted parameter space
that facilitate a correspondence with the above sequence (Theorem 1) and inferring (Corollary 1)
that a minimax MRE estimator remains minimax with the introduction of a restriction on the
parameter space under given conditions. Detailed examples follow in Section 3. These include
the estimation of location or scale parameters under a lower (or upper) bound restriction, location
parameter vectors restricted to a polyhedral cone, scale parameters subject to restricted ratios or
products, linear combinations of restricted location parameters, location parameters bounded to
an interval with unknown scale, quantiles for location-scale families with parametric restrictions
and covariance matrices with restricted traces or determinants.

2. Main result

We begin with the following fact concerning minimax problems, presented as a synthesized
version of parts of the Appendix of [3], pages 254–268.

Proposition 1. Let R < ∞ be the minimax value in a problem with sample space X and param-
eter space �, both Euclidean. Suppose the probability measures are absolutely continuous with
respect to a σ -finite measure, that the loss L(θ, ·) is lower semicontinuous on the action space
and that L(θ, a) → b(θ) = supL(θ, ·) as ‖a‖ → ∞ for all θ . Then there exists a sequence of
prior distributions with finite support and with Bayes risks equal to rn, such that rn approaches
R as n → ∞, and there also exists a minimax procedure.

We make use of a classical framework for invariant statistical problems. This includes a group
of transformations G with an invariant family of probability measures {Pθ : θ ∈ �}, where X ∼
Pθ and X′ = g(X) implies X′ ∼ Pθ ′ with θ ′ = ḡθ and Ḡ = {ḡ: g ∈ G} forming a corresponding
group of actions on �. As well, for estimating a parametric function τ(θ) with loss L, additional
assumptions include the condition that τ(ḡθ) depends on θ only through τ(θ), and that the group
action on the decision space D satisfies the condition L(ḡθ, g∗d) = L(θ, d) for all θ, d (e.g.,
[16], Section 3.2). With the help of Proposition 1, we obtain the following result.

Theorem 1. Let a problem satisfying the conditions of Proposition 1 be invariant under a group
G and let δ0(X) be minimax for a full parameter space �. Suppose now that the parameter space
is restricted to a subset �∗; that there exist sequences ḡn ∈ Ḡ and Bn ⊆ �∗, such that ḡnBn ⊂
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ḡn+1Bn+1; and that
⋃

n ḡnBn = �. Then δ0(X) remains minimax in the restricted parameter
space problem.

Proof. Let πn, Sn and rn be, respectively, Proposition 1’s sequence of priors, sequence of cor-
responding finite supports and Bayes risks, with rn → R as n → ∞. Choose m(n) sufficiently
large so that m ≥ m(n) implies ḡmBm ⊃ Sn. As we show below, the prior distribution with fi-
nite support S∗

n = ḡ−1
m(n)(Sn) ⊂ �∗, given by π∗

n (θ) = πn(ḡ
−1
m(n)θ), has Bayes risk r∗

n = rn. This
implies directly that δ0(X) is minimax, since r∗

n = rn → R, as n → ∞ by Theorem 5.18 of [1].
It remains to show that the Bayes risks of πn and π∗

n coincide, and a standard argument is as
follows. Let δ(X) be any estimator. Then, for its risk, we have:

R(θ, δ) = EθL(θ, δ(X)) = EḡθL(θ, δ(g−1X)) = EḡθL(ḡθ, g∗δ(g−1X)) = R(ḡθ, g∗δ(g−1X)),

by invariance. It follows that, if we set θ̃ = ḡm(n)θ , then

rn = Eθ [R(θ, δn(X))] = Eθ
[
R

(
ḡ−1

m(n)θ, g∗−1
m(n)δn

(
gm(n)X

))]

= Eθ̃
[
R

(
θ̃ , g∗−1

m(n)
δn

(
gm(n)(X)

))] = r∗
n ,

where δn(X) is the Bayes estimator corresponding to πn and hence g∗−1
m(n)

δn(gm(n)(X)) is the
Bayes estimator corresponding to π∗

n . �

For applications, we will take Bn of Theorem 1 to match �∗, but it is potentially more conve-
nient to take Bn as a sequence of open neighborhoods. Now, since the best equivariant estimators
are often minimax, we deduce the following widely applicable result.

Corollary 1. If an MRE estimator in a given problem satisfying the conditions of Theorem 1 is
minimax, then it remains minimax in the restricted problem provided the restricted parameter
space �∗ satisfies the conditions of Theorem 1.

For the sake of clarity, we do not assume that the action space and the image of the restricted
parameter space coincide. Hence, minimax estimators that can be derived from Theorem 1 or
Corollary 1 are not forced to take values in �∗. The main motivation resides in the benchmark-
ing (i.e., dominating estimators that take values in �∗ are necessarily minimax) and preservation
of minimaxity (the minimax risks on � and �∗ are equivalent). An important class of further ap-
plications of Corollary 1 will arise in cases where δMRE is minimax for the unrestricted problem
� and the parameter space �∗ and loss L(θ, ·) are convex, in which case the projection of δMRE
onto �∗ will dominate δMRE and hence be minimax.

Remark 1. Notwithstanding the conditions required on the restricted parameter space �∗, the
applicability of Corollary 1 hinges on the minimaxity of the best equivariant estimator, in partic-
ular for unrestricted parameter space versions. As studied and established by several authors, it
turns out that it is frequently the case that a minimax equivariant rule exists. We refer to [1], Sec-
tion 6.7, [20], Section 9.5 and [16], note 9.3, pages 421–422, for general expositions and many
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useful references. In particular, the Hunt–Stein theorem gives, for invariant problems, condi-
tions on the group (amenability) that guarantee the existence of a minimax equivariant estimator
whenever a minimax procedure exists. [11] is a key reference. All of the examples below relate
to amenable groups, such as the additive and multiplicative groups, the group of location-scale
transformations and the group of lower triangular p × p non-singular matrices with positive
diagonal elements.

3. Examples

We focus here on various applications, illustrating how the results of Section 2 apply to both
existing and new results. We accompany this with further observations and remarks. As previ-
ously mentioned, such applications are quite varied with respect to model, loss and shape of the
restricted parameter space. At the expense of some redundancy, some particular cases are singled
out (e.g., (A) is a particular case of (D), while (B) is a particular case of (E)) for their practical
or historical importance. However, we do not focus here on specific determinations of the MRE
estimators, but do refer to textbooks that treat in detail such topics (e.g., [16]). Throughout, we
consider loss functions that satisfy the conditions of Proposition 1, and our findings relate to
univariate and multivariate continuous probability models with absolutely continuous Lebesgue
densities.

(A) (A single location parameter.) Consider a location model with X ∼ f0(x1 −θ, . . . , xn−θ),
with � = �, known f0 and invariant loss ρ(d − θ). Consider further a lower (or upper)
bounded parameter space �∗ (i.e., �∗ = [a,∞) or �∗ = (−∞, a]). On one hand, �∗
satisfies the conditions of Theorem 1 with the choices Bn = �∗, ḡn = −n for �∗ = [a,∞)

(and Bn = �∗, ḡn = n for �∗ = (−∞, a]). On the other hand, following [11] or [7] for
squared error loss, the MRE or Pitman estimator is minimax (and also Bayes with respect
to the flat prior for θ on �). Thus Corollary 1 applies and the MRE estimator is minimax
as well for the restricted parameter space �∗. The result is not new (see, e.g., [10], for
a normal model and squared error loss; [5], for strictly convex ρ; [18], for strict bowl-
shaped losses). Finally, we mention the implication that the minimaxity property is hence
shared by any dominator of the MRE estimator, which includes quite generally the Bayes
estimator of μ associated with the flat prior on �∗ (e.g., [5,18]).

(B) (A single scale parameter.) Analogously, consider scale families with densities 1
σn f1(

x1
σ

,

. . . , xn

σ
), with natural parameter space � = �+, known f1, invariant loss ρ(d/σ) and re-

stricted parameter spaces �∗ = [a,∞) or �∗ = (0, a] (with a > 0 known). With the mul-
tiplicative group on �+, these restricted parameter spaces satisfy the conditions of Theo-
rem 1 with Bn = �∗ and the choices ḡn = 1

n
and ḡn = n for �∗ = [a,∞) and �∗ = (0, a],

respectively. From [11], whenever a minimax estimator exists for the unconstrained case
σ > 0, it is necessarily given by the MRE estimator or equivalently by the Bayes estima-
tor with respect to the non-informative prior π(σ) = 1

σ
I(0,∞)(σ ). Thus Theorem 1 and

Corollary 1 apply and such MRE estimators remain minimax for constrained parameter
spaces [a,∞) and (0, a]; and this quite generally with respect to model f1 and loss ρ.

A version of the above minimaxity result for strict bowl-shaped losses was obtained
by Marchand and Strawderman [19]. Kubokawa [12] provided the result for entropy loss
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(i.e., ρ(z) = z − log z − 1), while van Eeden [22] provided the result (actually more gen-
eral, which relates to a vector of scale parameters as in (E) below) for scale invariant
squared error loss (i.e., ρ(z) = z2). Also, we refer to the three last references for earlier
results obtained for specific models f1, namely gamma and Fisher models. Finally, we
also point out that the above development applies to estimating powers σ r of σ by the
transformation xi → xr

i (e.g., [19], for more details).
(C) (Location-scale families with the location parameter restricted to an interval (possibly

compact).) For location-scale families with observables X1, . . . ,Xn having joint den-
sity 1

σn f2(
x1−μ

σ
, . . . ,

xn−μ
σ

), consider estimating μ with σ > 0 (unknown) under either:
(i) the compact interval restriction μ ∈ [a, b], or (ii) μ ∈ [a,∞); f2 known, invari-
ant loss ρ(

d−μ
σ

). For (i), Theorem 1 applies with Bn = �∗, ḡn = (−n(a+b)
2 , n), and

ḡn�
∗ = {(μ,σ ) ∈ � × �+: μ ∈ [−n(b−a)

2 ,
n(b−a)

2 ], σ > 0}. As well, Kiefer [11] tells us
that the MRE estimator of μ or, equivalently, Bayes with respect to the Haar right invariant
prior π(μ,σ ) = 1

σ
1(0,∞)(σ ), is minimax for the unrestricted problem with � = � × �+

(subject to existence). The conclusion derived from Corollary 1 is that δMRE is also min-
imax for the restricted parameter space with μ ∈ [a, b], σ > 0, while a similar develop-
ment and conclusion applies for (ii) with Bn = �∗ and ḡn = (−n,1), a result of which also
follows from (G) below. The result for compact interval restriction (i) generalizes the re-
sult previously obtained for scaled squared error loss (i.e., ρ(z) = z2) by Kubokawa [13].

Finally, we point out that a compact interval restriction on μ with known σ typically
leads to a different conclusion, with a corresponding MRE estimator that is not minimax.
A somewhat familiar justification for this (e.g., see [16], page 327 for a normal mean μ

and squared error ρ) is as follows. Consider ρ to be strictly bowled-shaped in the sense
that ρ′(·) is positive on (0,∞) and negative on (−∞,0). Denote V0 and δTMRE as the
constant risk of δMRE and the truncation of δMRE onto the parameter space [a, b], re-
spectively. Observe that V0 = R(μ, δMRE) > R(μ, δTMRE) for all μ ∈ [a, b], and that the
compactness of the parameter space coupled with the continuity of the risk R(μ, δTMRE)

imply that supμ∈[a,b] R(μ, δTMRE) < V0 and that, consequently, δMRE is not minimax.
(D) (Location parameters restricted to a polyhedral cone.) Consider independently generated

copies of X ∼ f0(x1 − μ1, . . . , xp − μp), with f0 known, and μ = (μ1, . . . ,μp)′ re-
stricted to a Polyhedral cone

�∗
C = {μ ∈ �p: Cμ ≥ 0}, (1)

where C(q ×p) (q ≤ p) is of full rank (and the 0 is a q × 1 vector of 0’s). Such restricted
parameter spaces include:

(i) orthant restrictions where some or all of the μi ’s are bounded below by 0;
(ii) order restrictions of the type μ1 ≤ μ2 ≤ · · · ≤ μr with r ≤ p;

(iii) tree order restrictions of the type μ1 ≤ μi for some or all of the μi ’s;
(iv) umbrella order restrictions of the type μ1 ≤ μ2 ≤ · · · ≤ μm ≥ · · · ≥ μp (m known).

With Bn = �∗
C and ḡn ∈ �p as the additive group elements such that Cḡn =

−n(1, . . . ,1)′, we obtain ḡn�
∗
C = {μ ∈ �p: Cμ ≥ −n(1, . . . ,1)′} and choices that satisfy

Theorem 1. Furthermore, for invariant losses ρ(‖d − μ‖), the results of Kiefer [11] tell
us that, subject to risk finiteness, the MRE or Bayes estimator for μ with a flat prior on
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�p is minimax for the unconstrained problem μ ∈ �p . We infer by Corollary 1 that the
same estimator is minimax for any polyhedral cone �∗

C as in (1).
Other than problems in (A), the above unifies and extends several previously estab-

lished results, beginning with the Blumenthal and Cohen [2] case of order constraints and
squared error ρ, and including more recent findings by Tsukuma and Kubokawa [21] for
multivariate normal models, the general constraint in (1) and squared error ρ (also see
[15] and [22], for further results and references). A much-studied and important case is
the normal model with X ∼ Np(μ, Ip), μ ∈ �∗

C and loss ‖d − μ‖2, for which the above
results apply with δMRE(X) = X. As an interesting corollary of a result by Hartigan [8]
and of the above, it follows that the Bayes estimator δU of μ with respect to a flat prior
on �∗

C , which Hartigan showed dominates X, is minimax for �∗
C . To conclude, we point

out that a particular case of Hartigan’s result was obtained by Blumenthal and Cohen [2]
for ordered location parameters in (ii) with r = p = 2. They actually provide a class of
model densities f0, including normal, uniform and gamma densities, through conditions
that ensure that δU (also referred to as the Pitman estimator by the authors) is minimax
under squared error loss. They also report on numerical evidence indicating that δU is not
minimax in general with respect to f0.

Remark 2. As an extension of the above, a similar development holds with the intro-
duction of an unknown scale parameter σ (σ > 0). Indeed for (at least two) independent
copies from density 1

σp f2(
x1−μ1

σ
, . . . ,

xp−μp

σ
), invariant loss ρ(

‖d−μ‖
σ

) and restricted pa-
rameter space μ ∈ �∗

C , σ > 0, Theorem 1 and Corollary 1 apply as above, but with
the MRE estimator of μ now being generalized Bayes with respect to the prior mea-
sure π(μ,σ ) = 1

σ
1(0,∞)(σ )1�p (μ). Moreover, if estimating an unconstrained σ (or σ r )

is the objective, the MRE estimator of σ can be shown to be minimax as well with the
parametric restrictions (subject to risk finiteness). This means that any minimax estimator
of σ r for an unconstrained problem remains minimax even when μ ∈ �∗

C .

(E) (Ratios or products of scale parameters.) For independently generated copies of X ∼
(
∏

i σi)
−1f1(

x1
σ1

, . . . ,
xp

σp
) with f1 a known Lebesgue density (on (�+)p), � = (�+)p ,

consider the restriction τ = ∏
i (σi)

ri ≥ c > 0, with the ri ’s known and estimating τ under
invariant loss ρ(d

τ
). The parametric function τ includes interesting cases of ratios σi

σj
and

products σiσj (with or without nuisance parameters σk , k �= i, j ), and the constraint on τ

represents a natural scale parameter analog of (1) with q = 1. With Bn = �∗, and ḡn ∈
(�+)p the multiplicative group element given by ḡn = (n−1/r1, . . . , n−1/rp ), we obtain
ḡn�

∗ = {(σ1, . . . , σp) ∈ (�+)p:
∏

i (σi)
ri ≥ c

np }. Thus, the conditions of Theorem 1 are
satisfied, and Theorem 1 applies. Corollary 1 applies as well, by virtue of Kiefer [11],
indicating that the MRE estimator (if it exists), or equivalently Bayes with respect to the
prior measure

∏
i

1
σi

1(0,∞)(σi), remains minimax for estimating τ under the lower bound
constraint above. We refer to [16], Chapter 3, problems 3.34–3.37 for examples. Finally,
with the minimax result here being quite general with respect to the loss ρ (as well as
with respect to the type of constraint and the model), we point out that the particular case
of scale-invariant squared error loss (i.e., ρ(z) = (z − 1)2) is covered by van Eeden [22],
Lemma 4.5.
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(F) (Linear combinations of restricted location parameters.) Consider location models with
X = (X1, . . . ,Xk)

′ ∼ ∏
i fi(xi − μi), known fi ’s, where we wish to estimate θ =

∑k
i=1 aiμi = a′μ, under loss ρ(d − θ) and the restriction μ ∈ �∗ = {μ ∈ �n: μi ≥ 0 for

i = 1, . . . , k}. For the unconstrained version with μ ∈ � = �k , the MRE estimator (also
Bayes with respect to the flat prior on �k) is minimax [11], subject to existence and risk
finiteness. Hence, Corollary 1 (or Theorem 1) applies with Bn = �∗, ḡn = (−n, . . . ,−n)

indicating that an MRE estimator remains minimax in the constrained problem μ ∈ �∗
for estimating θ . Kubokawa [14] has recently established the above for squared error loss,
where the MRE estimator, whenever it exists, is the unbiased estimator

∑k
i=1 ai(Xi − bi)

with E(Xi − μi) = bi . The result is extended here with respect to ρ, and achieved with a
different and more general proof.

(G) (Quantiles with parameter space restrictions.) Consider location-scale models with
(X1, . . . ,Xm)′ ∼ 1

σm

∏
i f0(

xi−μ
σ

); m ≥ 2, f0 known, μ ∈ �, σ > 0; with the objective of
estimating a quantile parameter μ + ησ ; (of known order

∫ η

−∞ f0(z)dz) under invariant

loss ρ(
d−μ−ησ

σ
). Now, consider restricted parameter spaces such as:

�∗
1 = {(μ,σ ) ∈ � × �+: μ + ησ ≥ 0}

and

�∗
2 = {(μ,σ ) ∈ � × �+: μ ≥ a,σ ≥ b ≥ 0}.

Taking Bn = �∗
1 and ḡn = (−n, 1

n
) such that ḡn�

∗
1 = {(μ,σ ) ∈ �×�+: μ+ησ ≥ −n}

and ḡn�
∗
2 = {(μ,σ ) ∈ � × �+: μ ≥ a

n
− n,σ ≥ b

n
}, we see that the conditions of The-

orem 1 are satisfied. Moreover, subject to existence or risk finiteness, the results of
Kiefer [11] tell us the MRE estimator is minimax for the unrestricted parameter space
� = � × �+. Hence, Corollary 1 applies and tells us that such MRE estimators are mini-
max for restricted parameter spaces �∗

1 and �∗
2. Previously studied models, for which the

above results apply, include exponential and normal f0’s. For instance, consider a stan-
dard normal f0 and squared error ρ, where equivariant estimators are of the form X̄+ηcS,
δMRE(X1, . . . ,Xm) = X̄ +ηcmS, with constant and minimax risk 1 +η2(1 − (m− 1)c2

m),
and where X̄ = 1

m

∑m
i=1 Xi,S

2 = ∑m
i=1(Xi −X̄)2 and cm = 
(m/2)√

2
((m+1)/2)
([6], page 182).

The general result above tells us the δMRE remains minimax for parameter spaces �∗
1 and

�∗
2 under squared error loss.
Observe also that the above development relative to �∗

1 is still valid whenever η = 0,
which relates to the problem of estimating a median or mean for symmetric f0’s, with
the corresponding minimaxity result previously obtained by Kubokawa [12] for scale-
invariant squared error loss (i.e., ρ(z) = z2 above). Similar results follow with an upper
bound of 0 for �∗

1, as well as an upper bound for μ and/or an upper bound for σ in
the case of �∗

2. Finally, we point out that the minimaxity result and development above
follow without emendation for the general case of non-independent components with joint
density 1

σm f (
x1−μ

σ
, . . . ,

xm−μ
σ

).
(H) (Restricted covariance matrices.) Consider a summary statistic S ∼ Wishart(�,p,m)

with m ≥ p and � positive definite. Moreover, suppose that we wish to estimate �
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with invariant loss (under the general linear group) L(�, δ) = ψ(�−1δ), with ψ(y) =
tr(y) − log |y| − p and ψ(y) = tr(y − Ip)2 as interesting examples. A standard method
to derive a minimax estimator here (e.g., [4], Section 6.2) is to consider the best equivari-
ant estimator under the subgroup G+

T of lower triangular matrices with positive diagonal
elements. Such equivariant estimators can be shown to have constant risk, be of the form
δA(S) = (S1/2)A(S1/2)′ with A symmetric and S1/2 the unique square root of S element
belonging to G+

T and with the optimal choice (MRE) being minimax. For instance, under
loss tr(�−1δ − Ip)2, the BEE is minimax and given by δA0 , with A0 the diagonal matrix
with elements (m + p − 2i + 1)−1; i = 1, . . . , p; [9].

Now, consider restrictions on � of the type �∗ = {� > 0: |�| ≥ c1 > 0} or �∗ =
{� > 0: tr(�) ≥ c2 > 0}. It is easy to see in both cases that the conditions of Theorem 1
apply with ḡn = 1

n
Ip and Bn = �∗. Hence, the above MRE estimators remain minimax

under the above restrictions by virtue of Corollary 1.

Concluding remarks

We have provided in this paper a rich and vast collection of novel minimax findings for restricted
parameter spaces. Furthermore, we have established a unified framework not only applicable to
many new situations, but also covering many generalizations of existing minimax results with
respect to model and loss. For the sake of clarity and in a summary attempt to draw a sharper dis-
tinction between existing and new results to the best of our knowledge, we point out or reiterate
that:

• Results in (A) and (B) are not new except for the slight generalization on the loss with our
results here applicable to losses that are not necessarily strictly bowl-shaped.

• Situations (C)–(F) have been studied by others with existing minimax results for squared
error ρ. Our results cover more general losses ρ in all these cases.

• Remark 2, situations (G) and (H), correspond for the most part to new problems and the
given results are novel.
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