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Let P (E) be the space of probability measures on a measurable space (E, E ). In this paper we introduce a
class of nonlinear Markov chain Monte Carlo (MCMC) methods for simulating from a probability measure
π ∈ P (E). Nonlinear Markov kernels (see [Feynman–Kac Formulae: Genealogical and Interacting Par-
ticle Systems with Applications (2004) Springer]) K :P (E) × E → P (E) can be constructed to, in some
sense, improve over MCMC methods. However, such nonlinear kernels cannot be simulated exactly, so ap-
proximations of the nonlinear kernels are constructed using auxiliary or potentially self-interacting chains.
Several nonlinear kernels are presented and it is demonstrated that, under some conditions, the associated
approximations exhibit a strong law of large numbers; our proof technique is via the Poisson equation and
Foster–Lyapunov conditions. We investigate the performance of our approximations with some simulations.

Keywords: Foster–Lyapunov condition; interacting Markov chains; nonlinear Markov kernels; Poisson
equation

1. Introduction

Monte Carlo simulation is one of the most important elements of computational statistics. This
is because of its relative simplicity and computational convenience in constructing estimates of
high-dimensional integrals. That is, for a π -integrable f :E → R, we approximate:

π(f ) :=
∫

E

f (x)π(dx) (1.1)

by

SX
n (f ) = 1

n + 1

n∑
i=0

f (Xi),

where SX
n (du) := 1

n+1

∑n
i=0 δXi

(du) is the empirical measure based upon random variables
{Xk}0≤k≤n drawn from π . Such integrals appear routinely in Bayesian statistics, in terms of
posterior expectations; see [26] and the references therein. In those cases, E is often of very high
dimension and complex simulation methods such as MCMC [26] and sequential Monte Carlo
(SMC) [10,13] need to be used.
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It has long been known by Monte Carlo specialists that standard MCMC algorithms often
have difficulties in simulating from complicated distributions – for example, when the target π

exhibits multiple modes and/or possesses strong dependencies between subcomponents of X. In
the former case, the Markov chain can take an unreasonable amount of time to jump between
these modes and the estimates of (1.1) are very inaccurate.

As a result, there have been a large number of alternative methods proposed in the literature;
we detail some of them here. Many of these approaches have relied upon MCMC techniques such
as adaptive MCMC [5,20], which, in some instances, attempts to improve the mixing properties
of the transition kernel by using the information learned in the past. In addition, there are methods
that rely upon the simulation of parallel Markov chains [16] and genetic algorithm type moves;
see [22] for a review. These latter methods use the idea of running some of the parallel chains with
invariant probability measure η, where η is easier to explore and is related to π ; hence the samples
of the parallel chains can provide valuable information for simulating from π . Extensions to
MCMC-based simulation methods have combined MCMC with SMC ideas, see, for example,
[2,11]. Such approaches are often more flexible than MCMC.

In this paper, we consider another alternative: nonlinear MCMC via auxiliary or self-
interacting approximations. Such methods rely primarily upon the ideas of MCMC. However,
it is demonstrated below that the auxiliary/self-interacting approximation idea is similar to that
of approximating Feynman–Kac formulae [10] and as such is linked to SMC methodology. It
should be noted that related ideas have appeared, directly in [9] and indirectly in [23]; see [4,7]
for some theoretical analysis. Subsequent to the first versions of this work [3] a variety of related
articles have appeared: [6–8]; we cite these where appropriate, but note the substantial overlap
between our work and these papers.

1.1. Nonlinear Markov kernels via interacting approximations

Standard MCMC algorithms rely on Markov kernels of the form K :E → P (E). These Markov
kernels are linear operators on P (E); that is, μ(dy) = ∫

E
ξ(dx)K(x,dy), where μ,ξ ∈ P (E).

A nonlinear Markov kernel K :P (E) × E → P (E) is defined as a nonlinear operator on the
space of probability measures. Nonlinear Markov kernels, Kμ, can often be constructed to exhibit
superior mixing properties to ordinary MCMC versions. For example, let

Kμ(x,dy) = (1 − ε)K(x,dy) + ε

∫
E

μ(dz)K(z,dy), (1.2)

where K is a Markov kernel of invariant distribution π , ε ∈ (0,1) and μ ∈ P (E). Simulating
from Kπ is clearly desirable as we allow regenerations from π , with Kπ strongly uniformly
ergodic (see [27]). However, in most cases, it is not possible to simulate from Kπ and, instead,
an approximation is proposed.

A self-interacting Markov chain (see [12]) generates a stochastic process {Xn}n≥0 that is al-
lowed to interact with values realized in the past. That is, we might approximate, at time n+1, μ

by SX
n . This process corresponds to generating a value from the history of the process, and then a

mutation step, via the kernel K . In practice, the self-interaction can lead to very poor algorithmic
performance [3]; an auxiliary Markov chain is used to approximate the nonlinear kernel.
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1.2. Motivation and structure of the paper

In the context of stochastic simulation, self-interacting Markov chains (SIMCs), or IMCs, can
be thought of as storing modes and then allowing the algorithm to return to them in a relatively
simple way. Parametric adaptive MCMC can be thought of as an indirect application of this idea,
where parameters of the kernel are optimized via a stochastic approximation algorithm. This
approach does not retain all of the features of previously visited states. In other words, SIMCs can
be considered as a nonparametric, or infinite-dimensional, generalization of parametric adaptive
MCMC. It is thus the attractive idea of being able to fully exploit the information provided by
the previous samples that has motivated us to investigate such algorithms.

This paper is structured as follows. We begin by giving our notation in Section 2. In Section 3
our simulation methods are described and several nonlinear Markov kernels and self-interacting
approximations are introduced. In Section 4 we introduce some assumptions and some prelimi-
nary results, which are used to prove a strong law of large numbers (SLLN). In Sections 5 and 6,
some technical proofs and the SLLN are presented; this is for a particular nonlinear kernel intro-
duced in Section 3. This analysis is of interest from a theoretical point of view: it brings together
the literature of measure-valued processes and interacting particle systems [10] used in SMC
and the relatively recent literature on general state space Markov chains [25] used in MCMC. In
Section 7 some algorithms are investigated; our assumptions are verified and some parameter set-
tings are investigated for a toy example. In Section 8 some extensions to our ideas are discussed.
The proofs are all given in the Appendices.

2. Notation and definitions

2.1. Notation

2.1.1. Probability and measure

Define a measurable space (E, E ). Throughout, E will be assumed countably generated. B(Rk),
k ∈ N is used to represent the Borel sets with Lebesgue measure denoted by dx.

For a stochastic process {Xn}n≥0 on (EN, E ⊗N), GX
n = σ(X0, . . . ,Xn) denotes the natural

filtration. Pμ is taken as a probability law of a stochastic process with initial distribution μ and
Eμ the associated expectation. If μ = δx , with δ the Dirac measure, Px (resp., Ex ) is used instead
of Pδx (resp., Eδx ). For μ ∈ P (E), the product measure is written μ × μ = μ⊗2, with a clear
generalization to higher order products. For measurable f :E → R, μ(f ) = ∫

E
f (x)μ(dx).

If a σ -finite measure π is dominated by another η (denoted π � η), the Radon–Nikodym
derivative is written with the same notation (e.g., if π � η, then π(x)/η(x) = dπ/dη(x)). For
σ -finite measures π and η, π ∼ η denotes mutual absolute continuity.

2.1.2. Markov chains

Let (E, E ) be a measurable space. Throughout for a Markov transition kernel K :E → P (E) the
following standard notation is used: for measurable f :E → R, K(f )(x) := ∫

E
f (y)K(x,dy)

and for μ ∈ P (E) μK(f ) := ∫
E

K(f )(x)μ(dx).
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For Kμ, K :E × P (E) → P (E), given its existence, we will denote by ω(μ) (ω :P (E) →
P (E)) the invariant distribution of this Markov kernel. Recall that the empirical measure of an
arbitrary stochastic process (EN, E N, {Xn}n≥0,P) is defined, at time n, as

SX
n (du) := 1

n + 1

n∑
i=0

δXi
(du). (2.1)

Throughout this paper, we are concerned with two nonlinear kernels of the form

Kμ(x,dy) = (1 − ε)K(x,dy) + ε	(μ)(dy),

	(μ)(f ) =
∫

E

g(y)f (y)

μ(g)
μ(dy),

where K :E → P (E), F :E × P (E) → P (E) (see [10] for more on 	) and

Kμ(x,dy) = (1 − ε)K(x,dy) + εQμ(x,dy),
(2.2)

Qμ(f )(x) =
∫

E

μ(du)α(x,u)[f (u) − f (x)] + f (x),

where α(x,u) is defined later on.

2.1.3. Norms

For any k ∈ N, the Euclidean norm of x ∈ Rk is denoted |x|. For f :E → Rn, n ∈ N,
|f |∞ := supx∈E |f (x)|. For f : E → Rn the Lp-norm is defined, assuming it exists, as
(
∫
E

|f (x)|p dμ)1/p for μ ∈ P (E). For V :E → [1,∞) and f :E → Rn

|f |V := sup
x∈E

|f (x)|
V (x)

.

LV is the class of functions f :E → Rn such that |f |V < ∞. We also use the notions of the
V -total variation for a signed measure

‖λ‖V := sup
|f |≤V

|λ(f )|,

and the V -norm operator between two kernels K1,K2 :E → P (E)

‖|K1 − K2|‖V := sup
x∈E

‖K1(x, ·) − K2(x, ·)‖V

V (x)
.

2.1.4. Miscellaneous

The notation a ∨ b := max{a, b} (resp., a ∧ b := min{a, b}) is adopted. The indicator function of
A ⊂ E is written IA(x). N0 = N ∪ {0}. Throughout the paper we denote a generic finite constant
as M , that is, the value of M may change from line to line in the proofs and is local to each proof.
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3. Nonlinear MCMC

3.1. Nonlinear Markov kernels

Nonlinear MCMC can be characterised by the following procedure:

• Identify a nonlinear kernel that admits π as an invariant distribution and can be expected to
mix faster than an ordinary MCMC kernel; for example, (1.2).

• Construct a stochastic process that approximates the kernel, which can be simulated in prac-
tice.

Based upon the previous work [3], we consider auxiliary stochastic processes to approximate
the nonlinear kernel. That is, it has been found in [3] that using the past history to approximate
the nonlinear kernel leads to very poor performance. All of the processes that are simulated in
this paper use an auxiliary Markov chain to approximate the nonlinear kernel. The difficulty is
then to design sensible nonlinear kernels that may lead to good empirical performance. The two
kernels we have designed are below.

3.2. Selection/mutation with potential

Let P be an MCMC kernel of invariant distribution η, and assume π � η. Let g(v) = π(v)
η(v)

and
set K to be an MCMC kernel of invariant distribution π . Consider the nonlinear kernel

Kμ(x,dx′) = (1 − ε)K(x,dx′) + ε	(μ)(dx′);
clearly, if μ = η, then one has πKη = π .

If it is possible to sample exactly from η, then one could sample exactly from Kη . However,
for efficient algorithms, this will not be the case. The following approximation is adopted at
time-step n + 1 of the simulation:

[(1 − ε)K(xn,dxn+1) + ε	(SY
n )(dxn+1)]P(yn,dyn+1);

that is, we are ‘feeding’ the chain {Xn}n≥0 the empirical measure SY
n . Intuitively, as n grows

large, SY
n (f ) → η(f ) and one samples from the original kernel of interest.

3.3. Auxiliary self-interaction with genetic moves

For any μ ∈ P (E) we define a nonlinear Markov kernel Qμ :P (E) × E → P (E)

Qμ(f )(x) =
∫

E

μ(du)α(x,u)[f (u) − f (x)] + f (x)

and for π ∼ η

α(x, y) = 1 ∧ π(y)η(x)

π(x)η(y)
.
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The idea here is to generate a sample from μ and accept or reject it as the new state on the basis
of the probability α. Clearly, πQη = π . Letting K and P be as above, the process is simulated
according to

{(1 − ε)K(xn,dxn+1) + εQSY
n
(xn,dxn+1)}P(yn,dyn+1)

at time n + 1.

3.4. Some comments

In the example in Section 3.2 we attempt to use some measure of information, through g, to
assist the resampling. The example of Section 3.3 provides a way to control the information that
is provided by the approximation SY

n . That is, the kernel QSY
n

, via α and the possible rejection,

will provide a criterion to check the consistency with the target of the value drawn from SY
n .

This may help improve estimation, if SY
n converges slowly. Note that the algorithm is related to,

but less sophisticated than, that of [23]. This is because we do not consider exchanges to occur
between states in equi-energy rings.

It should be remarked that similar kernels are investigated in [7]. The author deduces that for a
toy example it is hard to justify the use of such adaptive methods. However, a potential criticism
of that study is that it is for a unimodal target; ‘advanced’ methods are seldom necessary for such
scenarios. This is discussed further in Section 7.3.

3.5. Algorithm

The algorithm is (with the appropriate 	(μ) or Qμ):

0. (Initialization): Set n = 0 and X0 = x, Y0 = y, SY
0 = δy .

1. (Iteration): Set n = n + 1, simulate Yn ∼ P(Yn−1, ·) and Xn ∼ KSY
n−1

(Xn−1, ·).
2. (Update): SY

n = SY
n−1 + 1

n+1 [δYn − SY
n−1] and return to 1.

4. Assumptions

We now seek to prove an SLLN for the nonlinear MCMC algorithm described in Sec-
tion 3.3. Recall that we simulate a stochastic process on ((E × E)N, (E ⊗ E )⊗N, {Xn,Yn}n≥0,

{Gn}n≥0,P(x,y)), (x, y) ∈ E × E, with finite-dimensional law:

P(x,y),n(d(x0, y0, . . . , xn, yn)) = δ(x,y)(d(x0, y0))

n−1∏
i=0

KS
y
i
(xi,dxi+1)P (yi,dyi+1).

Note that the natural filtration is denoted as Gn = GX,Y
n for notational simplicity. Since {Yn} is

generated independently of {Xn}, we denote the probability law of the Markov chain {Yn} as Qy .
Note, again, that the proofs are given in the Appendices.
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4.1. Assumptions

Our assumptions on K , used to define our process, are now given. For M̄ ∈ R+, the notation
PM̄ (E) = {μ ∈ P (E) :μ(V ) < M̄} is adopted, with V defined below. In the remainder of the
paper we say that a set C ⊂ E is (1, θ)-small if it satisfies a 1-step minorization condition, with
parameter θ ∈ (0,1).

(A1) Stability of K .
(i) (Invariance and irreducibility). K :E → P (E) is a π -invariant and φ-irreducible

Markov kernel.
(ii) (One-step minorization on level sets). Define Cd := {x ∈ E :V (x) ≤ d} for any

d ∈ (1,∞). We assume that for any d ≥ 1, Cd is (1, θd)-small for some θd ∈ (0,1)

and νd ∈ P (E).
(iii) (One-step drift condition). There exist V :E → [1,∞) such that lim|x|→∞ V (x) =

∞, λ < 1, b < ∞, C ∈ E such that for any x ∈ E

KV (x) ≤ λV (x) + bIC(x).

(A2) Stability of P .
(i) (W -uniform ergodicity). P :E → P (E) is an η-invariant Markov kernel. Fur-

thermore, there exists W :E → [1,∞) such that P is a W -uniformly ergodic
Markov transition kernel with a one-step drift condition and one-step minoriza-
tion condition. In addition, there exists an r∗ ∈ (0,1] such that V ∈ LWr∗ (where
V :E → [1,∞) is defined in (A1)(iii)).

(A3) State-space constraint

(E, E ) is Polish.

4.2. Discussion of the assumptions

Our proofs of the SLLN will rely upon a martingale approximation via the solution of the Poisson
equation (e.g., [17]). For any M̄ < ∞, (A1) will allow us to establish a drift condition for the
kernel Kμ that is uniform in μ ∈ PM̄ (E); see [5]. In turn, one can establish: the existence of a
solution to Poisson’s equation, the existence of an invariant measure ω(μ) for Kμ and regularity
properties uniform in μ ∈ PM̄ (E). Then, due to (A2), the following facts are exploited: {SY

n (V )}
is Qy -a.s. finite and given {SY

n (V )}, {Xn} is a Markov chain. (A1) and (A.2) appear quite strong,
but can be verified in some important cases such as for random walk Metropolis kernels; see
[21], for example.

A key result, relying on both (A2) and (A3), which is of interest in itself, is that of the Qy -a.s.
convergence of V -statistics of {Yi}. This result will enable us to show that, Qy -a.s., ω(SY

i ) →
ω(η); this is needed for our proof.
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5. Common properties of Kμ

Using standard drift and minorization conditions, the existence of an invariant probability mea-
sure is established for any μ ∈ P∞(E) under (A1).

Proposition 5.1. Assume (A1). Let ε ∈ (0,1) as in (2.2), M̄ ∈ (0,∞), then for d > εM̄/[(1 −
ε)(1 − λ)] with λ and b as in (A1)(iii):

1. There exist (θ ′
d , νd) ∈ (0,1) × P (E) such that for any μ ∈ PM̄ (E) and (x,A) ∈ E × E :

Kμ(x,A) ≥ ICd
(x)θ ′

dνd(A),

KμV (x) ≤ λ̃V (x) + b̃ICd
(x)

with λ̃ = (1 − ε)λ + ε + εM̄
d

< 1, b̃ = (1 − ε)[λd + b] + ε[M̄ + d].
2. There exists a function ω :P∞(E) → P∞(E), such that for any μ ∈ P∞(E)

ω(μ) = ω(μ)Kμ.

3. There exist constants, ρ ∈ (0,1) and M < ∞ depending upon M̄ , ε, λ, b, V , d, θd (as
defined in equation (2.2) and (A1)), such that for any μ ∈ PM̄ (E), r ∈ (0,1] and f ∈ LV r

|Kn
μ(f ) − ω(μ)(f )|V r ≤ M|f |V r ρn.

Some continuity properties associated with the invariant measures are as follows.

Proposition 5.2. Assume (A1) and let M̄ ∈ (0,∞). Then there exists M < ∞ (depending solely
on M̄ and the constants in (A1)) such that for any r ∈ (0,1], μ,ξ ∈ PM̄ (E),

‖ω(ξ) − ω(μ)‖V r ≤ M‖|Kξ − Kμ|‖V r .

Noting that for any μ,ξ ∈ P (E) and r ∈ [0,1], ‖|Kξ −Kμ|‖V r = ε‖|Qξ −Qμ|‖V r we establish
global Lipschitz continuity results for μ �→ Qμ, which, together with the result above, will allow
us to deduce uniform Lipschitz continuity of μ → Kμ on PM̄ (E) for any M̄ ∈ (0,∞). This is to
be used in the proofs of many of the subsequent results.

Proposition 5.3. Let μ,ξ ∈ P∞(E), then for any r ∈ (0,1]:
‖|Qμ − Qξ |‖V r ≤ 2‖μ − ξ‖V r .

6. Law of large numbers

6.1. Main result

Our main result is the following SLLN.
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Theorem 6.1. Assume (A1)–(A3). Let r ∈ [0,1). Then for any f ∈ LV r , (x, y) ∈ E × E

SX
n (f )

a.s.−→P(x,y)
π(f ).

The proof is detailed in Appendix B, but we outline its main steps below.

6.2. Strategy of the proof

The strategy of the proof is now outlined. Introduce the following sequence of probability distri-
butions {Sω

n := 1/(n + 1)
∑n

i=0 ω(SY
i )}n≥0, where ω(μ) is the invariant measure of Kμ (which,

if μ = SY
m, exists Qy -a.s.). This distribution can be used as a re-centering term in the following

decomposition,

SX
n (f ) − π(f ) = SX

n (f ) − Sω
n (f ) + Sω

n (f ) − π(f ). (6.1)

Let μ ∈ {SY
n (f )} and assume, for now, the almost sure existence of a solution f̂μ to Poisson’s

equation, that is, such that for any x ∈ E

f (x) − ω(μ)(f ) = f̂μ(x) − Kμ(f̂μ)(x).

Then, the first term on the right-hand side of (6.1) can be rewritten as

(n + 1)[SX
n − Sω

n ](f ) = Mn+1 +
n∑

m=0

[f̂SY
m+1

(Xm+1) − f̂SY
m
(Xm+1)]

(6.2)
+ f̂SY

0
(X0) − f̂SY

n+1
(Xn+1),

where

Mn =
n−1∑
m=0

[f̂SY
m
(Xm+1) − KSY

m
(f̂SY

m
)(Xm)]

is such that {Mn, GX
n } will be a martingale conditional upon GY∞. In addition, critical to our analy-

sis, will be that, QY -a.s., {SY
n (V )} is finite. This latter fact will enable us to control the various

terms in (6.2) on events of the type {supk≥0 SY
k (V ) ≤ M̄} for M̄ > 0. This is now elaborated.

6.3. {Mm} is Lp-bounded

One can establish the following uniform in time Lp-bounds of the solution to Poisson’s equation
and the sequence {Mn}, restricted to events {supk≥0 SY

k (V ) ≤ M̄} for any M̄ > 0.

Proposition 6.2. Assume (A1). Let r ∈ [0,1], p ∈ [1,1/r] for r �= 0 and p ≥ 1 otherwise and
M̄ ∈ (0,∞). Then there exists M < ∞ such that for any f ∈ LV r , (x, y) ∈ E × E and any
m ∈ N0,

E(x,y)

[|f̂SY
m
(Xm+1)|pI{supk≥0 SY

k (V )≤M̄}
]1/p ≤ MV (x)r .
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Proposition 6.3. Assume (A1). Let r ∈ [0,1], p ∈ [1,1/r] for r �= 0 and p ≥ 1 otherwise and
M̄ ∈ (0,∞). Then there exists M < ∞ such that for any f ∈ LV r , (x, y) ∈ E × E and any
m ∈ N0,

E(x,y)

[|Mm|pI{supk≥0 SY
k (V )≤M̄}

]1/p ≤ m1/2∨1/pMV (x)r .

This result will allow us to prove the P(x,y)-a.s. convergence of Mn to zero (cf. Appendix B).

6.4. Smoothness of the solution to Poisson’s equation and ω(SY
n )

As can be observed in (6.2), we have to control the fluctuations of the solution of the Poisson
equation {f̂SY

m+1
(Xm+1)− f̂SY

m
(Xm+1)}. Also, in (6.1), the convergence of ω(SY

m)(f ) to ω(η)(f )

Qy -a.s. must be established. Both of these issues are now dealt with.

Proposition 6.4. Assume (A1) and (A2). Let r ∈ [0,1), then for any f ∈ LV r , (x, y) ∈ E × E

lim
m→∞|f̂SY

m+1
(Xm+1) − f̂SY

m
(Xm+1)| = 0 P(x,y)-a.s.

Proposition 6.5. Assume (A1)–(A3). Let f ∈ LV and (x, y) ∈ E × E, then

lim
m→∞ω(SY

m)(f ) = ω(η)(f ) Qy-a.s.

7. Examples

In this section we present some applications of our algorithms. Specifically, it is demonstrated
that the assumptions hold in some very general scenarios. In addition, a numerical investigation
of our approach for a toy problem is given.

7.1. Verifying the assumptions

It is now shown that it is possible to verify the assumptions in Section 4.1 in quite general
scenarios. Let us concentrate upon the case where, for k ≥ 1, (E, E ) = (Rk,B(Rk)) and K

(resp., P – recall the invariant measure is η) is a symmetric random walk Metropolis kernel:

K(x,dx′) = απ(x, x′)qπ (x − x′)dx′ + δx(dx′)
{

1 −
∫

Rk

απ (x, x′)qπ (x − x′)dx′
}
, (7.1)

where (resp., P )

απ(x, x′) = 1 ∧ π(x′)
π(x)

and qπ (resp. qη) is a symmetric density (w.r.t. Lebesgue measure).
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7.1.1. Assumptions

A set of general conditions is introduced, such that the assumptions in Section 4.1 will hold.

(M1) Density π .

• π admits a positive and continuous density w.r.t. Lebesgue measure.

(M2) Definition of η.

• η(x) ∝ π(x)α̃ , with α̃ ∈ (0,1).

(M3) Boundedness.

• π is upper bounded and bounded away from 0 on compact sets.

(M4) Super-exponential densities.

• π is super exponential:

lim|x|→+∞
x

|x| · ∇ log(π(x)) = −∞.

(M5) Regularity of contours.

• The contours of π are asymptotically regular:

lim sup
|x|→+∞

x

|x| · ∇π(x)

|∇π(x)| < 0.

(M6) Lower bounds on qπ , qη.

• Both qπ and qη are such that there exists δ̃qπ > 0 (resp., δ̃qη > 0) and εqπ > 0
(resp., εqη > 0) such that

qπ(x) ≥ εqπ for |x| < δ̃qπ

(resp., qη(x) ≥ εqη for |x| < δ̃qη ).

7.2. Result

Proposition 7.1. Assume (M1)–(M6), then (A1)–(A3) hold for any r∗ ∈ (0,1) with

W(x) =
[ |π |∞

π(x)

]α̃sw

, sw ∈ (0,1),

V (x) =
[ |π |∞

π(x)

]sv

, sv ∈ (0, r∗α̃sw).

The proof is in Appendix F.
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7.2.1. Some comments

The conditions presented above are quite general. For example, they are satisfied if π is a mix-
ture of normals. More generally, it may be difficult to check the assumptions, but this is due
to the underlying nature of the geometric ergodicity assumptions; see [21] for more thorough
investigations.

7.3. Toy example

Our target distribution is

π(x) = 0.4ψ(x;0,0.5) + 0.6ψ(x;17.5,1)

with ψ(x;μ,σ 2) the normal density of mean μ and variance σ 2.
Our algorithms are run with K as a random walk Metropolis kernel with normal random

walk proposal density. The kernel is iterated 500 times (i.e., K = K̃ with K̃ as a random walk
Metropolis kernel); this is to reduce the amount of interaction, especially for large ε. η was taken
to be:

η(x) ∝ π(x)0.75.

The algorithms were run for the same CPU time and the results can be found, for 50 runs of the
algorithm, in Table 1. The assumptions (M1)–(M6) are satisfied here.

In Table 1, the algorithms in Sections 3.2 and 3.3 both perform reasonably well for small
values of ε. As expected, from the assumptions, as ε gets larger the accuracy falls. This is due to
the fact that the amount of auxiliary information that can enter into the {Xn} process is increased.
For small ε, the example in Section 3.3 appears to work better (more accurate estimation) due to
the more sophisticated interaction with the auxiliary chain. The drastic poor performance for the
kernel in Section 3.3, for large ε, is due to the fact that no transition occurs after the swapping
move.

To compare to the results of [7], we ran a random walk algorithm for 1 million iterations 50
times and a nonlinear algorithm (Section 3.3). The nonlinear algorithm was run with ε = 0.01
but the random walk kernel was not iterated. The auxiliary chain was run with α̃ = 0.75 (as in
(M2)). This was run for 110 000 iterations 50 times (which is approximately the same CPU time
as for the random walk Metropolis algorithm). Both algorithms are such that all initial values

Table 1. Estimates from mixture comparison for nonlinear MCMC. The estimates are for the expectation
of X; the true value is 10.5. Each algorithm is run 50 times for 2 million iterations after a 50 000 itera-
tion burn-in (Section 3.3; the simulations for Section 3.2 are adjusted for the appropriate CPU time). The
brackets are ±2 standard deviations across the repeats

Example ε = 0.05 ε = 0.25 ε = 0.5 ε = 0.75 ε = 0.95

Section 3.2 10.32 (±0.08) 10.74 (±0.12) 10.89 (±0.19) 10.37 (±0.18) 10.99 (±0.20)
Section 3.3 10.57 (±0.04) 10.52 (±0.09) 10.96 (±0.7) 10.02 (±0.93) 11.08 (±1.20)
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are drawn from a uniform on [0,10.5]. The estimated value for the first moment is 6.93 ± 16.96
(±2 standard deviations, across the 50 runs) and 10.41±2.03 for the random walk and nonlinear
methods, respectively. The random walk algorithm is unable to jump between the modes of the
target, while the auxiliary chain is able to do so; hence justifying our earlier intuition. This
slightly contradicts the ‘cautionary tale’ in [7] as it illustrates that such algorithms are potentially
useful in cases where random walk algorithms do not work well. We remark however, that one
must be careful with allowing too much auxiliary information to enter the chain {Xn}n≥0; this
can lead to poor results. This is consistent with Proposition 5.1, which indicates that d grows as
ε goes to 1.

8. Summary

We have investigated a new approach to stochastic simulation: Nonlinear MCMC via auxiliary/
self-interacting approximations. Convergence results for several algorithms were established and
the algorithm was demonstrated on a toy example. As extensions to our ideas, the following may
be considered.

First, the conditions required for convergence may be relaxed. For example, [17] establishes
weaker-than-geometric ergodicity assumptions for the solution to the Poisson equation and func-
tional central limit theorem; also, [15] establishes drift conditions for polynomial ergodicity. It
would be of interest to see whether such conditions would be sufficient for the convergence of
our algorithms; see [28] for proofs for parametric adaptive MCMC.

Second, it would be interesting to design more elaborate methods to control the evolution of
the empirical measure. In our current algorithms, the empirical measure is only updated through
the addition of simulated points. It may enhance the algorithm to introduce some mechanisms
allowing the improvement of this quantity; for example, we could introduce a death process with
a rate associated with the un-normalized target distribution.

Appendix A: Common properties of Kμ

Proof of Proposition 5.1. The second and third statement of the proposition are a direct conse-
quence of the first point from [24], Theorem 2.3 (note the φ-irreducibility and aperiodicity follow
immediately). The minorization property is direct from the expression for Kμ and (A1)(ii) with
θ ′
d = (1 − ε) × θd . Let us focus on the drift condition.

For any x ∈ E, μ ∈ PM̄ (E):

Kμ(V )(x) ≤ (1 − ε)[λV (x) + bICd
(x)] + ε[μ(V ) + V (x)ϕ(x)],

where ϕ(x) = 1 − ∫
E

α(x, y)μ(dy). Then as μ(V ) < M̄ , one has

Kμ(V )(x) ≤ (1 − ε)[λV (x) + bICd
(x)] + ε[M̄ + V (x)].
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Let x ∈ Cc
d , then

Kμ(V )(x) ≤
[
(1 − ε)λ + ε + εM̄

d

]
V (x) = λ̃V (x).

For x ∈ Cd

Kμ(V )(x) ≤ (1 − ε)[λd + b] + ε[M̄ + d]
and hence one concludes that

Kμ(V )(x) ≤ λ̃V (x) + b̃ICd
(x). �

Proof of Proposition 5.2. This is a direct application of Proposition 5.1 and Lemma C.1. �

Proof of Proposition 5.3. The proof is given for r = 1 only. Let |f | ≤ V :

|[Qμ − Qξ ](f )(x)| =
∣∣∣∣∫

E

[μ − ξ ](du)[α(x,u){f (u) − f (x)}]
∣∣∣∣.

Now it is clear that, for any fixed x ∈ E:

|α(x,u){f (u) − f (x)}| ≤ [V (u) + V (x)],
i.e.,

|α(x,u){f (u) − f (x)}| ≤ 2V (u)V (x).

Thus

|[Qμ − Qξ ](f )(x)| ≤ 2V (x)‖μ − ξ‖V

and then the result easily follows. �

Appendix B: Proof of the main result

Proof of Theorem 6.1. Let r ∈ [0,1) and f ∈ LV r . Recall the strategy of the proof outlined in
Section 6.2, which relies on the decomposition:

SX
n (f ) − π(f ) = SX

n (f ) − Sω
n (f ) + Sω

n (f ) − π(f ) (B.1)

with

(n + 1)[SX
n − Sω

n ](f )

= Mn+1 +
n∑

m=0

[f̂SY
m+1

(Xm+1) − f̂SY
m
(Xm+1)] + f̂SY

0
(X0) − f̂SY

n+1
(Xn+1),
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where {Mn} is a martingale conditional upon GY∞. Proving the almost sure convergence of [SX
n −

Sω
n ](f ) relies on classical arguments. For any n ≥ 1, δ > 0 and M̄ ∈ (0,∞),

P(x,y)

(
sup
k≥n

|[SX
k − Sω

k ](f )| > δ
)

≤ P(x,y)

(
sup
k≥n

|Mk+1/(k + 1)| > δ/3, sup
k≥0

SY
k (V ) < M̄

)

+ P(x,y)

(
sup
k≥n

∣∣∣∣∣
k∑

m=0

[f̂SY
m+1

(Xm+1) − f̂SY
m
(Xm+1)]

∣∣∣∣∣/(k + 1) > δ/3, sup
k≥0

SY
k (V ) < M̄

)

+ P(x,y)

(
sup
k≥n

[|f̂SY
0
(X0)| + |f̂SY

k+1
(Xk+1)|]/(k + 1) > δ/3, sup

k≥0
SY

k (V ) < M̄
)

+ Qy

(
sup
k≥0

SY
k (V ) ≥ M̄

)
.

Let ε > 0. By assumption there exists M̄ > 0 such that Qy(supk≥0 SY
k (V ) ≥ M̄) ≤ ε/4. Now we

consider the remaining terms on the right-hand side of the above equation from bottom to top; it
is proved that there exists n0 > 0 such that for any n ≥ n0 each of these terms is less than ε/4.
Let p ∈ (1,1/r). By Proposition 6.2, one can apply Markov’s inequality and a Borel–Cantelli
argument to show that the term on the third line vanishes as n → ∞. By Proposition 6.4 and a
Cesáro argument one concludes that the term on the second line goes to zero as n → ∞. The
term dependent on {Mn} is dealt with by using an adaptation of a Birnbaum–Marshall inequality
(see [5]) for p ∈ (1,1/r).

Controlling the bias term requires a more novel approach. Note that

|Sω
n (f ) − π(f )| = 1

n + 1

∣∣∣∣∣
n∑

i=0

[ω(SY
i ) − ω(η)](f )

∣∣∣∣∣,
as ω(η) = π in our setup. In Proposition 6.5 it is proved that under our assumptions [ω(SY

i ) −
ω(η)](f ) → 0 Qy -a.s. as i → ∞. We conclude by invoking a Cesàro average argument. �

Proof of Proposition 6.2. Let M̄ ∈ (0,∞). The proof begins by conditioning upon the filtration
GY

m generated by the auxiliary process {Yn}; then, using the uniform in μ ∈ PM̄ (E), geometric
ergodicity is proved in Proposition 5.1. As a result, there exists an M < ∞ such that

E(x,y)

[|f̂SY
m
(Xm+1)|pI{supk≥0 SY

k (V )≤M̄}
]1/p

≤ ME(x,y)

[|V (Xm+1)
r |pI{supk≥0 SY

k (V )≤M̄}
]1/p

≤ MV r(x),

where we have used Jensen and the uniform drift condition on the set {supk≥0 SY
k (V ) ≤ M̄}

proved in Proposition 5.1 �
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Proof of Proposition 6.3. We follow a similar argument to that of [5], Proposition 6. Through-
out, denote by Bp a generic constant dependent upon p only. Also recall pr ≤ 1. The proof be-
gins by applying the Bürkholder–Davis inequality (see, e.g., [30], pages 499–500), which yields
for p ≥ 1

E(x,y)

[|Mn|pI{supk≥0 SY
k (V )≤M̄}

]1/p

≤ BpEy

[
E(x,y)

[(
n−1∑
m=0

[f̂SY
m
(Xm+1) − KSY

m
(f̂SY

m
)(Xm)]2

)p/2∣∣∣GY∞

]
I{supk≥0 SY

k (V )≤M̄}

]1/p

.

In the case p > 2, by similar manipulations to those featured in [5]

E(x,y)

[|Mn|pI{supk≥0 SY
k (V )≤M̄}

]1/p ≤ n1/2BpMV (x)r .

In the case p ≤ 2, one may apply the Cp-inequality to yield

E(x,y)

[|Mn|pI{supk≥0 SY
k (V )≤M̄}

]1/p

≤
[

n−1∑
m=0

E(x,y)

[|f̂SY
m
(Xm+1) − KSY

m
(f̂SY

m
)(Xm)|pI{supk≥0 SY

k (V )≤M̄

]]1/p

.

Application of Minkowski, conditional Jensen and Proposition 6.2 yields

E(x,y)

[|Mn|pI{supk≥0 SY
k (V )≤M̄}

]1/p ≤ n1/pMV r(x)

from which we can conclude. �

Proof of Proposition 6.4. Our proof is based upon the decomposition of Proposition C.2 (in
Appendix C) and then using the Lipschitz continuity properties proved in Propositions 5.2 and
5.3. Let M̄ ∈ (0,∞) be given; suppose that we are on the set {supk≥0 SY

k (V ) ≤ M̄}. Then

|f̂SY
m+1

(Xm+1) − f̂SY
m
(Xm+1)|

=
∣∣∣∣∣∑
n∈N

n−1∑
i=0

[Ki

SY
m+1

− ω(SY
m+1)](KSY

m+1
− KSY

m
)[Kn−i−1

SY
m

− ω(SY
m)(f )(Xm+1)] (B.2)

−
∑
n∈N

[ω(SY
m+1) − ω(SY

m)](Kn
SY

m
− ω(SY

m)
)
(f )

∣∣∣∣∣.
Now, consider the first term. Since, for any m ≥ 0, the kernel KSY

m
satisfies:

‖[Kn
SY

m
− ω(SY

m)](f )‖V r ≤ MρnV (Xm+1)
r
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for some finite M and ρ ∈ (0,1) independent of SY
m ∈ PM̄ (E), it follows that:

|[Ki

SY
m+1

− ω(SY
m+1)](KSY

m+1
− KSY

m
)[Kn−i−1

SY
m

− ω(SY
m)(f )(Xm+1)]|

≤ MρiV (Xm+1)
r |(KSY

m+1
− KSY

m
)[Kn−i−1

SY
m

− ω(SY
m)(f )]|V r .

Then, adopting the continuity result for KSY
m

:

‖|Kμ − Kξ |‖V r ≤ 2‖μ − ξ‖V r

for any μ,ξ ∈ P∞(E), it follows that:

|(KSY
m+1

− KSY
m
)[Kn−i−1

SY
m

− ω(SY
m)(f )]|V r ≤ Mρn−i−1‖SY

m+1 − SY
m‖V r .

Since ‖SY
m+1 − SY

m‖V r ≤ [V (Ym+1)
r + SY

m(V r)]/(m + 2)∑
n,i

|[Ki

SY
m+1

− ω(SY
m+1)](KSY

m+1
− KSY

m
)[Kn−i−1

SY
m

− ω(SY
m)(f )(Xm+1)]|

≤ M

(1 − ρ)2

V (Xm+1)
r

m + 2
[V (Ym+1)

r + SY
m(V r)].

Turning to the second sum on the right-hand side of (B.2), using the continuity result

‖ω(μ) − ω(ξ)‖V r ≤ M‖|Kμ − Kξ |‖V r

(for M < ∞ not depending on μ,ξ ∈ PM̄ (E) by Proposition 5.3) and the continuity of the kernel
Kμ (Lemma C.1 ) yields,

∣∣[ω(SY
m+1) − ω(SY

m)](Kn
SY

m
− ω(SY

m)
)
(f )

∣∣ ≤ Mρn [V (Ym+1)
r + SY

m(V r)]
m + 2

,

from which we obtain a similar bound for the second sum on the right-hand side of (B.2).
We now establish an Lp-bound, for p > 1 of this upper bound on {supk≥0 SY

k (V ) ≤ M̄}, which
will allow us to use a Borel–Cantelli argument to complete the proof. Note that it is naturally
sufficient to consider V (Xm+1)

r

m+2 V (Ym+1)
r on {supk≥0 SY

k (V ) ≤ M̄}, and we focus on

E(x,y)

[
V (Xm+1)

rpV (Ym+1)
rpI{supk≥0 SY

k (V )≤M̄}
]1/p

= E(x,y)

[
E(x,y)[V (Xm+1)

rp|GY∞]V (Ym+1)
rpI{supk≥0 SY

k (V )≤M̄}
]1/p (B.3)

≤ MV (x)rEy

[
V (Ym+1)

rpI{supk≥0 SY
k (V )≤M̄}

]1/p ≤ MV (x)rWrr∗
(y),

where we have used that, conditional upon GY∞ and on the event {supk≥0 SY
k (V ) ≤ M̄}, the fol-

lowing bound holds E(x,y)[V (Xm+1)
pr |GY∞]1/p ≤ M0V (x)r for some deterministic constant M0
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depending only on M̄ and the parameters of the drift condition in (A1). Similarly, M ≥ M0 only
depends on M̄ and the parameters of the drift conditions in (A1)–(A2). With p > 1 we conclude
that

∞∑
m=0

P(x,y)

({
1

m + 1
V (Xm+1)

r [V (Ym+1)
r + SY

m(V r)] > ε, sup
k≥0

SY
k (V ) ≤ M̄

})
< ∞.

The result then follows by using for any δ > 0 the bound,

P(x,y)

(
sup
k≥m

|f̂SY
k+1

(Xk+1) − f̂SY
k
(Xk+1)| > δ

)
≤ Qy

(
sup
k≥0

SY
k (V ) ≥ M̄

)
+ P(x,y)

(
sup
k≥m

|f̂SY
k+1

(Xk+1) − f̂SY
k
(Xk+1)| > δ, sup

k≥0
SY

k (V ) ≤ M̄
)

and using the fact that for any ε > 0 one can find an M̄ large enough to ensure that the first term
on the right-hand side is less than ε/2 and then m0 such that for any m ≥ m0 the second term on
the right-hand side is also upper bounded by ε/2. �

Proof of Proposition 6.5. Note first that for any i, j ∈ N, f ∈ LV and x ∈ E such that V (x) < ∞
we have the following bound,

|[ω(SY
i ) − ω(η)](f )|

≤ |ω(SY
i )(f ) − K

j

SY
i

(f )(x)| + |Kj

SY
i

(f )(x) − Kj
η (f )(x)| + |Kj

η (f )(x) − ω(η)(f )|.

Let ε, δ > 0 and M̄ > η(V ) be such that Qy(supk≥0 SY
k (V ) ≥ M̄) < ε/4. On the event

{supk≥0 SY
k (V ) < M̄} we have by Proposition 5.2 the existence of M < +∞ and ρ ∈ [0,1) (in-

dependent of i) such that the first and last terms on the right-hand side are bounded by Mρj . We
can therefore fix m such that

Qy

(
sup

j≥m,i≥0
|ω(SY

i )(f )−K
j

SY
i

(f )(x)|+ |Kj
η (f )(x)−ω(η)(f )| > δ/2, sup

k≥0
SY

k (V ) < M̄
)

≤ ε/2.

Now from Lemma D.2 one may conclude that there exists m0 > 0 such that for any m ≥ m0

Qy

(
sup
i≥m

|Kj

SY
i

(f )(x) − Kj
η (f )(x)| > δ/2, sup

k≥0
SY

k (V ) < M̄
)

≤ ε/4.

The proof is completed by noting that the results above imply that for m ≥ m0,

Qy

(
sup
i≥m

|[ω(SY
i ) − ω(η)](f )| > δ

)
≤ ε. (B.4)

�
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Appendix C: Standard technical results on Markov chains

Lemma C.1. Let (E, E ) be a measurable space, b̄ < ∞, λ̄ ∈ (0,1) and C̄ ∈ E . Then for any
Markov transition probabilities P1,P2 :E → P (E) satisfying for (x,A) ∈ E × E and i = 1,2,

PiV (x) ≤ λ̄V (x) + IC̄ (x)b̄, (C.1)

Pi(x,A) ≥ IC̄ (x)ε̄ν̄(A). (C.2)

There exist M̄(·) < ∞, ρ̄ ∈ [0,1), invariant probability measures π1,π2 ∈ P (E) (corresponding
to P1 and P2, respectively), such that for any n ≥ 1, r ∈ [0,1] and any |f | ≤ V r

|[P n
1 − π1](f )|V r ∨ |[P n

2 − π2](f )|V r ≤ M̄(r)ρ̄n

for any n ≥ 1,

‖|P n
1 − P n

2 |‖V r ≤ M̄(r)‖|P1 − P2|‖V r

and

‖π1 − π2‖V r ≤ M̄(r)‖|P1 − P2|‖V r .

Proof. Let r ∈ [0,1] and f ∈ LV r . We have the following decomposition:

|[P n
1 − P n

2 ](f )| =
∣∣∣∣∣
n−1∑
i=0

P i
1

([P1 − P2]{[P n−i−1
2 − π2](f )})∣∣∣∣∣.

For any |f | ≤ V r , in a similar manner to Proposition 3 of [5]:

|[P n
1 − P n

2 ](f )| ≤ M̄(r)

n−1∑
i=0

ρ̄n−i−1P i
1(‖P1 − P2‖V r )

= M̄

n−1∑
i=0

ρ̄n−i−1P i
1

(‖P1 − P2‖V r

V r
V r

)

≤ M̄(r)‖|P1 − P2|‖V r

n−1∑
i=0

ρ̄n−i−1P i
1(V r).

From the drift condition (A2) and conditional Jensen one can bound P i
1V r by [λ̄ + b̄/(1 −

λ̄)]rV (x)r for r ∈ [0,1] and hence conclude that:

|[P n
1 − P n

2 ](f )| ≤ M̄(r)‖|P1 − P2|‖r
V .

Since the right-hand side is independent of n, the inequality holds in the limit and hence, by
V -uniform ergodicity, the result. �
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Proposition C.2. Assume (A1). Then, for r ∈ [0,1], ξ,μ ∈ P∞(E), f ∈ LV r we have the fol-
lowing decomposition for the differences in the solution to the Poisson equation:

f̂ξ (x) − f̂μ(x) =
∑
n∈N

{
n−1∑
i=0

([Ki
ξ − ω(ξ)](Kξ − Kμ){[Kn−i−1

μ − ω(μ)](f )}(x)
)

− [ω(ξ) − ω(μ)]([Kn
μ − ω(μ)](f )

)}
.

Proof. Adopting the resolvent solution to the Poisson equation (which exists under our assump-
tions), we have

f̂ξ (x) − f̂μ(x) =
∑
n∈N0

[([Kn
ξ − ω(ξ)](f )(x)

) − ([Kn
μ − ω(μ)](f )(x)

)]

=
∑
n∈N

[
n−1∑
i=0

Ki
ξ

([Kξ − Kμ]{[Kn−i−1
μ − ω(μ)](f )})(x) + ω(μ)(f ) − ω(ξ)(f )

]

=
∑
n∈N

{
n−1∑
i=0

([Ki
ξ − ω(ξ)](Kξ − Kμ){[Kn−i−1

μ − ω(μ)](f )}(x)
)

− [ω(ξ) − ω(μ)]([Kn
μ − ω(μ)](f )

)}

since

−
n−1∑
i=0

ω(ξ)[Kξ − Kμ](Kn−i−1
μ (f )) = −ω(ξ)

(
f − Kn

μ(f )
)
.

�

Appendix D: Convergence of the iterates

The main result of this section is Lemma D.2, where it is established that for any q ≥ 1, f ∈ LV

lim
n→∞|[Kq

SY
n

− Kq
η ](f )(x)| = 0, Qy-a.s., (D.1)

with Kμ as in (2.2). The proof consists of showing that K
q
μ(f )(x) can be rewritten as μ⊗q(g)

for some function g :Eq → R to be given below. We will then use results from Appendix E,
associated with V -statistics for an appropriate class of functions, to complete our argument.

Introduce the following family of Markov transition probabilities on (E × E, E ⊗ E ), indexed
by z1 ∈ E,
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Tz1((w0,w
′
0);d(w1,w

′
1))

:= (1 − ε)K(w0,dw1)δw0(dw′
1)

+ ε
[
α(w0, z1)δ(z1,w0)(dw1,dw′

1) + (
1 − α(w0, z1)

)
δ(w0,w

′
0)

(dw1,dw′
1)

]
.

For any w0,w
′
0 ∈ E and z := (z1, . . . , zq) ∈ Eq, we define the iterates of this family of kernels

as follows: for k = 2, . . . , q and any f ∈ LV ,

T k
z1,...,zk

(f ⊗ 1)(w0,w
′
0) := T k−1

z1,...,zk−1

(
Tzk

(f ⊗ 1)(·))(w0,w
′
0), (D.2)

where for any x, x′ ∈ E, (f ⊗ 1)(x, x′) := f (x). Let z := (z1, . . . , zq) ∈ Eq . Following an argu-
ment identical to that developed in the proof of Lemma D.2 it is possible to show that for any
k = 1, . . . , q T k

z1,...,zk
(f ⊗ 1)(w0,w

′
0) belongs to LVz1,...,zk

where for w,w′ ∈ E,

Vz1,...,zk
(w,w′) := V (w) + V (w′) +

k∑
i=1

V (zi).

Proposition D.1. Assume (A1). For any q ≥ 1, (z1, . . . , zq) ∈ Eq , μ ∈ P∞(E), f ∈ LV , x, x′ ∈
E we have that

Kq
μ(f )(x) =

∫
Eq

T
q
z1,...,zq

(f ⊗ 1)(x, x′)μ⊗q(d(z1, . . . , zq)).

Proof. The result is proved by induction. One immediately checks that for any z1 ∈ E, f ∈ LV ,
w0,w

′
0 ∈ E,

Tz1(f ⊗ 1)(w0,w
′
0) = (1 − ε)K(f )(w0) + ε

[
α(w0, z1)f (z1) + (

1 − α(w0, z1)
)
f (w0)

]
,

and hence

μ
(
Tz1(f ⊗ 1)(w0,w

′
0)

) =
∫

E

Tz1(f ⊗ 1)(w0,w
′
0)μ(dz1) = Kμ(f )(w0).

Now assume the property is true for k − 1 ≥ 1. Then

μ⊗k
(
T k

z1,...,zk
(f ⊗ 1)(w0,w

′
0)

) = μ⊗(k−1)
(
T k−1

z1,...,zk−1

{
μ

(
Tzk

(f ⊗ 1)(·))}(w0,w
′
0)

)
= μ⊗(k−1)

(
T k−1

z1,...,zk−1

(
Kμ(f ) ⊗ 1

)
(w0,w

′
0)

)
,

as required. �

Now, to establish (D.1) we need to show that T
q
z1,...,zq

(f )(w0,w
′
0) lies within the class of

functions for which Lemma E.2 applies; this is proved below.

Lemma D.2. Assume (A1)–(A3). Let q ≥ 1 be fixed and f ∈ LV . Then for any x ∈ E

lim
n→∞|[Kq

SY
n

− Kq
η ](f )(x)| = 0 Qy-a.s.
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Proof. Our objective is to use the representation established in Proposition D.1 along with the
result in Lemma E.2. To that end we show that for any f ∈ LV , then T

q
z1,...,zq

(f ⊗ 1)(w0,w
′
0) ∈

LV (q)
z

, z(q) = (z1, . . . , zq), where T
q
z1,...,zq

(f ⊗1)(w0,w
′
0) is as in (D.2). The result can be proved

by induction. Now, for any k = 1, . . . , q , wk−1,w
′
k−1 ∈ E and z = (z1, . . . , zq) ∈ Eq

Tzk

(
Vz(q)

)
(wk−1,w

′
k−1) := (1 − ε)

[
K(V )(wk−1) + V (wk−1) +

q∑
i=1

V (zi)

]

+ ε

{
α(wk−1, zk)

[
V (wk−1) + V (zk) +

q∑
i=1

V (zi)

]

+ (
1 − α(w0, z1)

)[
V (wk−1) + V (w′

k−1) +
q∑

i=1

V (zi)

]}
.

Since there exists M < ∞ such that for any x ∈ E, K(V )(x) ≤ MV (x) we conclude that there
exists C1 > 0 such that for any k = 1, . . . , q , wk−1,w

′
k−1 ∈ E and z(q) ∈ Eq

Tzk
(Vz(q) )(wk−1,w

′
k−1) ≤ C1 Vz(q) (wk−1,w

′
k−1). (D.3)

This implies that for any g ∈ LV
z(q)

then Tzk
(g)(wk−1,w

′
k−1) ∈ LV

z(q)
. Now we can proceed with

the induction. Assume that for some k − 1 ≥ 1, if g ∈ LV
z(q)

, then T k−1
z1,...,zk−1

(g)(w,w′) ∈ LV
z(q)

.
Then by definition

T k
z1,...,zk

(f ⊗ 1)(w0,w
′
0) = T k−1

z1,...,zk−1
{Tzk

(f ⊗ 1)(·)}(w0,w
′
0),

and the induction follows. Now, for any fixed w0,w
′
0 one has that T

q
z1,...,zq

(f ⊗ 1)(w0,w
′
0) ∈

LW(q) and the result follows from Lemma E.2. �

Appendix E: Results on U and V -statistics for Markov chains

Let (E, E ) be a Polish space and η ∈ {μ ∈ P (E) :μ(W) < ∞}. Denote � = EN and F = E ⊗N

and consider a time-homogeneous Markov chain {Xn}n≥0 with transition kernel P such that
ηP = η with X0 = x. Denote by Px the corresponding probability distribution. Note that {Xn}
should not be confused with the process introduced in Section 3.5.

For any sequence {Zn}, Zn ∈ E, any q ∈ N and f :Eq → R, denote for any n ≥ 1 the associ-
ated V -statistic

S
⊗q
n,Z(f ) = 1

(n + 1)q

∑
ϑ∈(q,n+1)

f
(
Zϑ(1), . . . ,Zϑ(q)

)
, (E.1)

where (q,n + 1) is the set of all mappings of {0, . . . , q − 1} into {0, . . . , n}.
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The main result of this section is Lemma E.2, where it is shown that under additional assump-
tions on P and f , that

lim
n→∞S

⊗q
n,X(f ) = η⊗q(f ),

Px -a.s. The proof relies on a coupling argument with another Markov chain {Yn}n≥0 defined on
(�, F ) with the same transition P , but initialized at stationarity, that is, Y0 ∼ η. Pη denotes the
corresponding probability distribution.

The conditions on {Xn}n≥0 and {Yn}n≥0 referred to above are given in (A2), and will, in
particular, imply geometric ergodicity. The class of functions to which our results apply is defined
as follows. Let (Wr)(q)(x(q)) := ∑q

i=1 W(xi)
r for any r ∈ (0,1), x(q) := (x1, . . . , xq) ∈ Eq ; we

will consider below the following class of functions

L(Wr )(q) :=
{
f ∈ mEq : sup

x(q)∈Eq

∣∣f (
x(q)

)∣∣/(Wr)(q)
(
x(q)

)
< ∞

}
.

For any sequence {Zn}, Zn ∈ E, any q ∈ N and f :Eq → R denote for any n ≥ 1 the associated
U -statistic

S
�q
n,Z(f ) = 1

(n + 1)q

∑
ϑ∈〈q,n+1〉

f
(
Zϑ(1), . . . ,Zϑ(q)

)
, (E.2)

where 〈q,n + 1〉 is the set of one-to-one mappings from {0, . . . , q − 1} into {0, . . . , n} and nq :=
n!/(n− q)!. A preliminary result on U -statistics is first established, based on the aforementioned
coupling.

Proposition E.1. Assume (A2) and (A3). Let {Xn}n≥0 and {Yn}n≥0 be as defined above. Then
for any q ∈ N, r ∈ [0,1), f ∈ L(Wr )(q) and x ∈ E, there exists a coupling {X̌n, Y̌n}n≥0 on some

probability space (� × �, F ⊗ F , P̃), such that

lim
n→∞|S�q

n,X̌
(f ) − S

�q

n,Y̌
(f )| = 0 P̃-a.s.

Proof. Let P
(n)
x (resp., P

(n)
η ) denote the law of (Xn,Xn+1, . . .) (resp., (Yn,Yn+1, . . .)). Then,

convergence in total variation of the processes is sufficient to imply that:

lim
n→∞

∥∥P(n)
x − P(n)

η

∥∥
TV = 0.

By Theorem 2.1 of Goldstein [19] the coupling exists; that is, there is a probability space (� ×
�, F ⊗ F , P̃) such that P̃(� × ·) = Px(·) and P̃(· × �) = Pη(·) (note the dependence on x of P̃

is omitted for notational simplicity). The process on this space is written {X̌n, Y̌n}n≥0 and T is
the associated coupling time. Choose q ∈ N. For any δ > 0, M ∈ N, n > M ∨ q , one has that

P̃

(
sup
k≥n

|S�q

k,X̌
(f ) − S

�q

k,Y̌
(f )| > δ

)
≤ P̃

(
sup
k≥n

|S�q

k,X̌
(f ) − S

�q

k,Y̌
(f )| > δ,T ≤ M

)
+ P̃(T > M)
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with S
�q

n,X̌
(f ) as defined in (E.2). Now let ε > 0 be given and choose M such that P̃(T > M) <

ε/2. The first term on the right-hand side of the above inequality is now dealt with:

P̃

(
sup
k≥n

|S�q

k,X̌
(f ) − S

�q

k,Y̌
(f )| > δ,T ≤ M

)
=

M∑
l=1

P̃

(
sup
k≥n

|S�q

k,X̌
(f ) − S

�q

k,Y̌
(f )| > δ,T = l

)
. (E.3)

Then, on the event {T = l}, one has that the terms involved in the definitions of S
�q

n,X̌
(f ) and

S
�q

n,Y̌
(f ) only differ for ϑ ’s such that ϑ(i) ∈ {0, . . . , l − 1} for some i ∈ {1, . . . , q}. For any

k > m > 0, introduce the subset of 〈q, k + 1〉
�m,k := {

ϑ ∈ 〈q, k + 1〉 :∃i ∈ {1, . . . , q} s.t. ϑ(i) < m
}
.

Then for any l ∈ {1, . . . ,M}, with X̄ϑ(i) = X̌ϑ(i) and Ȳϑ(i) = Y̌ϑ(i)I{ϑ(i)<l} + X̌ϑ(i)I{ϑ(i)≥l} and
the notation

�(f )X̄,Ȳ (ϑ(1), . . . , ϑ(q)) := f
(
X̄ϑ(1), . . . , X̄ϑ(q)

) − f
(
Ȳϑ(1), . . . , Ȳϑ(q)

)
,

we have

P̃

(
sup
k≥n

|S�q

k,X̌
(f ) − S

�q

k,Y̌
(f )| > δ,T = l

)

= P̃

(
sup
k≥n

1

(k + 1)q

∣∣∣∣ ∑
ϑ∈�l,k

�(f )X̄,Ȳ (ϑ(1), . . . , ϑ(q))

∣∣∣∣ > δ,T = l

)
.

Let us denote for l, n ∈ N such that n > l

Al,n :=
{

sup
k≥n

1

(k + 1)q

∣∣∣∣ ∑
ϑ∈�l,k

�(f )X̄,Ȳ (ϑ(1), . . . , ϑ(q))

∣∣∣∣ > δ

}
.

It is now shown that P̃(Al,n) vanishes as n → ∞, which in turn will prove that the above vanishes
as well for any l ∈ {1, . . . ,M}. Since f ∈ L(Wr )(q) , there exists some (deterministic) constant
M̄ < ∞ such that

P̃(Al,n) ≤ P̃

(
sup
k≥n

M̄

(k + 1)q

∣∣∣∣∣ ∑
ϑ∈�l,k

{
q∑

i=1

[
W

(
X̄ϑ(i)

)r + W
(
Ȳϑ(i)

)r]}∣∣∣∣∣ > δ

)
.

Consequently

P̃(Al,n) ≤ Px

(
sup
k≥n

M̄

(k + 1)q

∣∣∣∣∣ ∑
ϑ∈�l,k

{
q∑

i=1

[
W

(
Xϑ(i)

)r + W
(
Xϑ(i)

)r
I{ϑ(i)≥l}

]}∣∣∣∣∣ > δ/2

)

+ Pη

(
sup
k≥n

M̄

(k + 1)q

∣∣∣∣∣ ∑
ϑ∈�l,k

{
q∑

i=1

W
(
Yϑ(i)

)r
I{ϑ(i)<l}

}∣∣∣∣∣ > δ/2

)
.
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The drift condition on P yields the classical result supi≥0{Ex[W(Xi)] ∨ Eη[W(Yi)]} < ∞. Note
in addition that the cardinality of �l,k is

l

(
k

q − 1

)
q! = (k + 1)q

ql

k + 1
.

Hence one may use an Lp-proof similar to that in Proposition 6.4, with p ∈ (1,1/r) along with
a Borel–Cantelli argument via Markov’s inequality, to conclude that limn→∞ P̃(Al,n) = 0. This
allows us to complete the proof by choosing n such that each of the M terms in the summation
(E.3) is less than ε/2M .

�

Lemma E.2. Assume (A2) and (A3). Let q ∈ N, r ∈ [0,1), f ∈ L(Wr )(q) , x ∈ E and {Xi} be as
defined earlier. Then,

lim
n→∞|[S⊗q

n,X − η⊗q ](f )| → 0 Px-a.s.

Proof. The idea of the proof is to use the almost sure convergence results for U -statistics of
ergodic stationary processes established in [1]. In order to achieve this, the coupling P̃ introduced
in Proposition E.1 is utilized. In particular, for any δ > 0, consider the following upper bound

Px

(
sup
k≥n

|[S⊗q
k,X − η⊗q ](f )| > δ

)
= P̃

(
sup
k≥n

|[S⊗q

k,X̌
− S

�q

k,X̌
](f ) + [S�q

k,X̌
− S

�q

k,Y̌
](f ) + [S�q

k,Y̌
− η⊗q ](f )| > δ

)
≤ Px

(
sup
k≥n

|[S⊗q
k,X − S

�q
k,X](f )| > δ/3

)
+ P̃

(
sup
k≥n

|[S�q

k,X̌
− S

�q

k,Y̌
](f )| > δ/3

)
+ Pη

(
sup
k≥n

|[S�q
k,Y − η⊗q ](f )| > δ/3

)
.

The convergence to zero of terms on the right-hand side of the inequality above from right to left
are now considered. Since {Yn}n≥0 is an homogeneous Markov chain, started in stationarity, it is
a stationary ergodic process. In addition, as f is bounded by integrable products, (E, E ) is Polish
and {Yn}n≥0 is absolutely regular (or weakly Bernoulli) [14], Theorem U of [1] can be invoked;
the last term goes to zero (note that the proofs of [1] extend to Polish spaces). By Proposition E.1,
the second term goes to zero.

Let us turn to the first term on the right-hand side of the inequality above. We use an argument
similar to that of Theorem 5.1 of [18]. This uses the following identity

(n + 1)q [S�q
n,X − S

⊗q
n,X](f ) = [(n + 1)q − (n + 1)q ]S�q

n,X(f ) −
∑

ϑ∈〈q,n+1〉
f

(
Xϑ(1), . . . ,Xϑ(q)

)
,

where 〈q,n + 1〉 := (q,n + 1) \ 〈q,n + 1〉. Let p ∈ (1,1/r). Since f ∈ L(Wr )(q) , for any
(i1, . . . , iq) ∈ {0, . . . , n}q then by Minkowski’s inequality, followed by Jensen’s inequality and
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the fact that via the drift condition supi≥0 Ex[W(pr)(Xi)] < MW(pr)(x) for some M < ∞

Ex[|f (Xi1, . . . ,Xiq )|p]1/p ≤ ‖f ‖(Wr )(q)

q∑
l=1

Ex[W(Xil )
rp]1/p ≤ Mq‖f ‖W(q)W

r(x).

As a result

Ex[|S�q
n,X(f )|p]1/p ≤ Mq‖f ‖W(q)W

r(x)

and

Ex

[∣∣∣∣ ∑
ϑ∈〈q,n+1〉

f
(
Xϑ(1), . . . ,Xϑ(q)

)∣∣∣∣p]1/p

≤ M[(n + 1)q − (n + 1)q ]q‖f ‖W(q)W
r(x),

which allows us to conclude that there exists Cq < ∞ such that for any n > q

Ex[(n + 1)q |[S�q
n,X − S

⊗q
n,X](f )|p]1/p ≤ Cq [(n + 1)q − (n + 1)q ]Wr(x).

Now since (n + 1)q − (n + 1)q = O(nq−1) and p > 1, a Borel–Cantelli argument can be used.
The proof of the lemma now follows. �

Appendix F: Verifying the assumptions

Proof of Proposition 7.1. Verifying many of the assumptions (A1) and (A2) is fairly simple and
can be found in, for example, [21] (i.e., (A1)(i)(iii) and (A2)). The small-set condition (A1)(ii)
can easily be proved in a similar way to the proof of Theorem 2.2 in [29] and is thus omitted.
This leaves us with the latter part of (A2) ((A3) is clearly true here).

In our case,

V (x) =
[ |π |∞

π(x)

]sv

for any sw ∈ (0,1) (see [21], Theorems 4.1 and 4.3). The expression for W(x)[ |π |∞
π(x)

]α̃sw

, sw ∈ (0,1),

follows similarly. For the last part of (A2), fix r∗, sw ∈ (0,1); then

V (x)

W(x)r
∗ = |π |sv−r∗α̃sw∞ π(x)r

∗α̃sw−sv ,

which is upper bounded if sv ∈ (0, r∗α̃sw). �



On nonlinear Markov chain Monte Carlo 1013

Acknowledgements

We thank two referees and the associate editor for valuable comments that vastly improved the
paper. We also thank the editor for his patience with the paper. The second and third authors
acknowledge the Institute of Statistical Mathematics, Japan, for their support during the writing
of the paper. We also thank Adam Johansen for some useful comments on previous versions.

References

[1] Aaronson, J., Burton, R., Dehling, H., Gilhat, D., Hill, T. and Weiss, B. (1996). Strong laws for L-
and U -statistics. Trans. Amer. Math. Soc. 348 2845–2866. MR1363941

[2] Andrieu, C., Doucet, A. and Holenstein, R. (2010). Particle Markov chain Monte Carlo methods (with
discussion). J. Roy. Statist. Soc. Ser. B 72 269–342.

[3] Andrieu, C., Jasra, A., Doucet, A. and Del Moral, P. (2008). Non-Linear Markov chain Monte Carlo.
ESIAM Proc. 19 79–84. MR2405652

[4] Andrieu, C., Jasra, A., Doucet, A. and Del Moral, P. (2008). On the convergence of the equi-energy
sampler. Stoch. Anal. Appl. 26 298–312. MR2399737

[5] Andrieu, C. and Moulines, É. (2006). On the ergodicity properties of some adaptive MCMC algo-
rithms. Ann. Appl. Probab. 16 1462–1505. MR2260070

[6] Atchadé, Y.F. (2009). Resampling from the past to improve MCMC algorithms. Far East. J. Theor.
Stat. 27 81–99. MR2514400

[7] Atchadé, Y.F. (2010). A cautionary tale on the efficiency of some adaptive Monte Carlo Schemes.
Ann. Appl. Probab. 20 841–868. MR2680550

[8] Atchadé, Y.F., Fort, G., Moulines, É. and Priouret, P. (2011). Adaptive Markov chain Monte Carlo:
Theory and methods. In Inference and Learning in Dynamic Models (D. Barber, S. Chiappa and
A.T. Cemgil, eds.). Cambridge: CUP. To appear.

[9] Brockwell, A.E., Del Moral, P. and Doucet, A. (2011). Sequentially interacting Markov chain Monte
Carlo methods. Ann. Statist. 38 3387–3411.

[10] Del Moral, P. (2004). Feynman–Kac Formulae: Genealogical and Interacting Particle Systems with
Applications. New York: Springer. MR2044973

[11] Del Moral, P., Doucet, A. and Jasra, A. (2006). Sequential Monte Carlo samplers. J. Roy. Statist. Soc.
Ser. B 68 411–436. MR2278333

[12] Del Moral, P. and Miclo, L. (2004). On convergence of chains with occupational self-interactions.
Proc. R. Soc. Lond. A. Math. Phys. Eng. Sci. 460 325–346. MR2052266

[13] Doucet, A., De Freitas, J.F.G. and Gordon, N.J. (2001). Sequential Monte Carlo Methods in Practice.
New York: Springer. MR1847783

[14] Doukhan, P. (1994). Mixing: Properties and Examples. Lecture Notes in Statistics 85. Berlin: Springer.
MR1312160

[15] Fort, G. and Moulines, É. (2003). Polynomial ergodicity of Markov transition kernels. Stochastic
Process. Appl. 103 57–99. MR1947960

[16] Geyer, C. (1991). Markov chain maximum likelihood. In Computing Science and Statistics: The 23rd
Symposium on the Interface (E. Keramigas, ed.) 156–163. Fairfax, VA: Interface Foundation.

[17] Glynn, P.W. and Meyn, S.P. (1996). A Lyapunov bound for solutions of the Poisson equation. Ann.
Probab. 24 916–931. MR1404536

[18] Grams, W.F. and Serfling, R.J. (1973). Convergence rates for U -statistics and related statistics. Ann.
Statist. 1 153–160. MR0336788

http://www.ams.org/mathscinet-getitem?mr=1363941
http://www.ams.org/mathscinet-getitem?mr=2405652
http://www.ams.org/mathscinet-getitem?mr=2399737
http://www.ams.org/mathscinet-getitem?mr=2260070
http://www.ams.org/mathscinet-getitem?mr=2514400
http://www.ams.org/mathscinet-getitem?mr=2680550
http://www.ams.org/mathscinet-getitem?mr=2044973
http://www.ams.org/mathscinet-getitem?mr=2278333
http://www.ams.org/mathscinet-getitem?mr=2052266
http://www.ams.org/mathscinet-getitem?mr=1847783
http://www.ams.org/mathscinet-getitem?mr=1312160
http://www.ams.org/mathscinet-getitem?mr=1947960
http://www.ams.org/mathscinet-getitem?mr=1404536
http://www.ams.org/mathscinet-getitem?mr=0336788


1014 Andrieu, Jasra, Doucet and Del Moral

[19] Goldstein, S. (1979). Maximal coupling. Probab. Theory Related Fields 46 193–204. MR0516740
[20] Haario, H., Saksman, E. and Tamminen, J. (2001). An adaptive Metropolis algorithm. Bernoulli 7

223–242. MR1828504
[21] Jarner, S.F. and Hansen, E. (2000). Geometric ergodicity of Metropolis algorithms. Stochastic Process.

Appl. 85 341–361. MR1731030
[22] Jasra, A., Stephens, D.A. and Holmes, C.C. (2007). On population-based simulation for static infer-

ence. Statist. Comput. 17 263–279. MR2405807
[23] Kou, S.C., Zhou, Q. and Wong, W.H. (2006). Equi-energy sampler with applications to statistical

inference and statistical mechanics (with discussion). Ann. Statist. 34 1581–1619. MR2283711
[24] Meyn, S.P. and Tweedie, R.L. (1994). Computable bounds for geometric convergence rates of Markov

chains. Ann. Appl. Probab. 4 981–1011. MR1304770
[25] Meyn, S.P. and Tweedie, R.L. (2009). Markov Chains and Stochastic Stability, 2nd ed. Cambridge:

CUP. MR2509253
[26] Robert, C.P. and Casella, G. (2004). Monte Carlo Statistical Methods. New York: Springer.

MR2080278
[27] Roberts, G.O. and Rosenthal, J.S. (1998). Two convergence properties of hybrid samplers. Ann. Appl.

Probab. 8 397–407. MR1624941
[28] Roberts, G.O. and Rosenthal, J.S. (2007). Coupling and ergodicity of adaptive MCMC. J. Appl.

Probab. 44 458–475. MR2340211
[29] Roberts, G.O. and Tweedie, R.L. (1996). Geometric convergence and central limit theorems for mul-

tidimensional Hastings and Metropolis algorithms. Biometrika 83 95–110. MR1399158
[30] Shiryaev, A. (1996). Probability. New York: Springer. MR1368405

Received April 2007 and revised March 2010

http://www.ams.org/mathscinet-getitem?mr=0516740
http://www.ams.org/mathscinet-getitem?mr=1828504
http://www.ams.org/mathscinet-getitem?mr=1731030
http://www.ams.org/mathscinet-getitem?mr=2405807
http://www.ams.org/mathscinet-getitem?mr=2283711
http://www.ams.org/mathscinet-getitem?mr=1304770
http://www.ams.org/mathscinet-getitem?mr=2509253
http://www.ams.org/mathscinet-getitem?mr=2080278
http://www.ams.org/mathscinet-getitem?mr=1624941
http://www.ams.org/mathscinet-getitem?mr=2340211
http://www.ams.org/mathscinet-getitem?mr=1399158
http://www.ams.org/mathscinet-getitem?mr=1368405

	Introduction
	Nonlinear Markov kernels via interacting approximations
	Motivation and structure of the paper

	Notation and definitions
	Notation
	Probability and measure
	Markov chains
	Norms
	Miscellaneous


	Nonlinear MCMC
	Nonlinear Markov kernels
	Selection/mutation with potential
	Auxiliary self-interaction with genetic moves
	Some comments
	Algorithm

	Assumptions
	Assumptions
	Discussion of the assumptions

	Common properties of Kµ
	Law of large numbers
	Main result
	Strategy of the proof
	{Mm} is Lp-bounded
	Smoothness of the solution to Poisson's equation and omega(SnY)

	Examples
	Verifying the assumptions
	Assumptions

	Result
	Some comments

	Toy example

	Summary
	Appendix A: Common properties of Kµ
	Appendix B: Proof of the main result
	Appendix C: Standard technical results on Markov chains
	Appendix D: Convergence of the iterates
	Appendix E: Results on U and V-statistics for Markov chains
	Appendix F: Verifying the assumptions
	Acknowledgements

	References

