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In this paper we study the limiting distributions of the least-squares estimators for the non-stationary first-
order threshold autoregressive (TAR(1)) model. It is proved that the limiting behaviors of the TAR(1)
process are very different from those of the classical unit root model and the explosive AR(1).
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1. Introduction

Since [13], threshold autoregressive (TAR) models have been extensively investigated in the
literature. The standard TAR(1) model can be written as follows:

=

Y, _ , if Y;— ,
{V+at1+8t nr;_1>r (1.1)

8+/3Yt_1+8t, ifY,_lfr,

where {g,} is a sequence of i.i.d. random variables with zero mean and a finite variance 02>0.
Petrucceli and Woolford [10] and Chan et al. [4] showed that, if ¢, has a strictly positive density,
then the necessary and sufficient condition for the strictly stationary and geometrically ergodic
solution to model (1.1) when y =§ =0 is

a<l1, B<1 and «af <1, (1.2)

see also [5,12]. The properties of the least-squares estimator (LSE) of model (1.1) were estab-
lished when {Y;} is stationary by Chan [3] and later by Chan and Tsay [5] for the continuous case
(i.e., y + ra =8 + rB). When («, 8) does not lie in the stationary region (1.2), the estimation
theory of the LSE of model (1.1) is challenging.

Pham, Chan and Tong [11] were the first to consider the non-stationary case of model (1.1).
They focus on the following case:

y=3§ and r=0 (1.3)
and assume that § is a known parameter. For the LSE of («, 8):

n—1
. 1Y >r)Y (Y1 —y)
_ =1 t t\ L1+
G = B AT (1.4)
=1 t >l") /
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Y, <Y (Y —y)
LY <n)Y?

A
ﬂn =

they show that

(&l’la /én) — (a, B) a.s.

if and only if one of the following conditions holds:

a<l1, B<1 and y=0,
a<l1, B<1 and y >0, (1.5)
a<l1, B<1 and y <O.

They also showed that, when o8 = 1, the estimator of « is strongly consistent. However, the rate
of convergence and the limiting distribution of LSE are two open questions when («, 8) lies in
the non-ergodic region.

Following [11], in this paper we study the limiting distribution of (¢, B,) for the following
cases:

Casel: y=6=0, a=1 and B <1,
Casell: y=6§6=0, a>1 and B<1.

For each case, we partially derive the limiting distribution of (&, ) under some suitable condi-
tions. Case I is related to the unit root problem, which is particularly interesting in economics and
finance. One usually tests whether or not a market is efficient via testing a unit root in AR model.
Unit root tests have been extensively studied in the literature; see, for example, [6—8]. When Y;
denotes a market index, case I can describe the phenomena that the market moves from efficiency
to inefficiency when the index crosses the threshold » and |8] < 1. Our result may provide a way
to test this phenomena. The results for case II can help us to understand the limiting behaviors
of the LSE in this complicated and dynamic system. Our proof is based on the limiting behavior
of Y, as t — 0o. The method of the proof is non-standard and may provide some insights for
future research in this area.

The paper is organized as follows. The main results are stated in Section 2. The proofs of the
main results are given in Sections 3 and 4. This paper also includes consistency of the LSE when
aff =1 in Section 5, which is of independent interest. Throughout, we let C and C(., denote
positive constants that may be different in every place, F; = o{Yyp, €1, ..., &}, and we assume
the initial value Yy in model (1.1) is a random variable independent with n and {&;; t > 1}.

2. Main results

We consider two different cases.
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2.1. Casel

Assume » <0 or r > 0 with @« = 1 and 8 = —1. The results are stated as follows.

Theorem 2.1. Assume y =6 =0 and EYO2 < oo. If either

) a=1,8<1landr <0;or
(i) ¢ =1, B =—1andr € R; is satisfied, then we have

B%(1) —1

n(, —1)= P UL
2 [, B2(1)dt

@2.1)

where B(t) is a standard Brownian motion.

Remark 2.1. Unlike the stationary case in [3], the limiting distribution of &, is independent
of r and B. (2.1) could be used to test whether (¢, 8) lies on the boundary {o =1, 8 < 1} if
we know r is zero or negative. We note that this test is the same as the Dickey—Fuller test. The
limiting distribution of ,én is still unclear. But when o < 1, 8 = 1 and r > 0, from the proof of
Theorem 2.1 and Remark 3.1, we have

B%X(1)—1

B, — 1) => ———
nhn =1 2 ) B2(t)dt

(2.2)

We should mention that Caner and Hansen [2] developed an asymptotic theory for a TAR model
with a unit root, but their model is not the same as model (1.1) since their threshold variable is
Yi 1 —-Y .

Remark 2.2. When ¢ =1, <1 and y =§ < 0, Chan et al. [4] show that {Y;} is ergodic,
and hence is strictly stationary by assuming that Yy has its distribution 7 (-) that is the invariant
probability distribution of {Y;}. Forthe case =1, § < 1,r <0and y =48 > 0, we have

n
Yoy +ent+ Yo =ny+ ) e+
k=1

Hence Y,, — oo a.s. It follows that maxj <<, |Yx —ky — Zle &l =0(1) a.s. By some standard
arguments using the martingale central limit theorem (CLT), it is not hard to see 3@, — 1) =
N(0,302/y?). In this case, j, is not a strongly consistent estimator.

2.2. Case Il

By (1.5), (&, ,3") is not a consistent estimator of («, 8) in this case. However, the following
theorem shows that ¢,, is a consistent estimator of «.

Theorem 2.2. Assume that y = 8 = 0 and one of the following conditions holds:
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HD) a>1,8<1,r=0and EY] < o0;
H2) a>1,8<1,r#0, EY02<ooandP(815x)<1f0ranyxeR.

Then we have
(@ = D7l @y — o) = n*/E”,

where n* and £* are independent random variables, n* 4 Yo ey, EF 4 & and
o B mg B mo
E=) ot (—) r + <—) Yo>0  as.forB<landB#0:; (2.3)
P o o

o] 00 o0

1Y,

EZE :Mgk—i-l |I{Y,>r}Yo>0 a.s. for =0, (2.4)
k=1 o t=0

where my =Y co, I{Yy < r} is almost surely finite.

Remark 2.3. In the explosive AR(1) model, ¥; = aY;_| + &, it is well known that the LSE of o
asymptotically follows a Cauchy distribution if & is normal. By Theorem 2.2, this conclusion
does not hold any more for model (1.1).

3. Proof of Theorem 2.1

Before proving Theorem 2.1, we first establish the limiting distribution for {¥;} when ¢t — oo as
follows.

Theorem 3.1. [f either (i) or (ii) in Theorem 2.1 holds, then

Yinn)
Jn

as n — oo, where DI0, 1] is the Skorokhod space.

= o|B(1)| on D[0, 1], 3.1

Remark 3.1. 1t is interesting to see that the limiting distribution in (3.1) does not depend on 8
and . This means that the effect of 8 and r on Y; is ignorable when ¢ is long enough. The pattern
of Y, is quite different from the unit root process in the AR(1) model in which Xp,,)/+/n =
o B(t) on D[O, 1], where X; = X;_1+¢&.1f =1, o < 1 and r > 0, then replacing Y; by —Y;,
we can get Yj,)/+/n = —o|B(t)| on D[O0, 1].

Proof of Theorem 3.1 under (ii). We first consider the case when &« = 1 and 8 = —1. Denote Y,
by Yy in this case. If r > 0, we have Yy = ¢, +|Y;_,|=2Y;_  [{0<Y; | <r},andifr <0, we
have Yy =g, +|Y;_,|+2Y;_ I{r <Y _, <0}. Hence,

max |Y7 — Y7 || < jmax lex| +2|r| = op(v/n).

1<k=<n
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So it is enough to show that |Ym]|/\/_ n = o|B(t)| on D[0, 1]. Note that

n n—1

=Y T14 ek+]—[1 Y§,

k=1 j=k

where Iy = I{Y; > r} — I{Y; <r}. It follows that

n
A Y= A e+ Y,
k=1

973

where A, = k o Ik Since E[Ak &; |fk 1] =1, we have by the martingale CLT (cf. [1]) that

1
[A[nt Y = 0 BQ).

Now, (3.1) follows from |Ai| = 1 and the continuous mapping theorem.

(3.2)

O

Proof of Theorem 3.1 under (i). Recall the definition of {¥,7} with the initial value Y; = Yp.

For any p > 0, observe that
Y, =Yy 1P =Yoot — Y, (P H{Yy—1 > Y, >r})

+ Va1 + Y P IH{Y o1 > 1Y, <7}
+1BY 1 =Y, (WP I{Yyy <1, Yy >}
+IBY 1+ Y, (NP I{Yyo <1, Y} <r}.

Since r <0, it follows that
IYn_1+Y,,*,1|”I{Yn_1 >r Yy | <r}

<Y1 =Y (1P I{Yy—1 >0
+ CplYy_(|PI{Y)y

7n1<r}

<r}+Cp I{Yy,—1 <0}

n—1 =

Furthermore, since 8 < 1 and r <0, we have

1BYu—1 =Y, (P H{Yy—1 <Y, >r Y | >BY,1}

<|Yn-1-— Y;_1|pI{Yn—l =r, Yr:—l >r,Y, n—l > BYn-1},

1BYu—1 =Y, (P IH{Yy—1 <1 Y, | >r Y, | <BYa_1p}
<2PIBY i |PI{Yy—1 <1} 4+ Cp g I{Yp—1 <7}
It follows from (3.3)—(3.5) that

Yy = Y317 < [Yao1 = Yy 1|P+qn<2qk,
k=1

(3.3)

34

(3.5)

(3.6)
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where
Gn = ClYn1|P Y1 <1} + CIY, 1P I{Y,_ <r}+ CI{Y,—1 <0} (3.7
We first have P(Y,, <r) — 0 by Lemma 3.2 below and P(Y;_, <r) — Oby (3.1) under o = 1
and B = —1 as n — oo. Furthermore, applying Lemma 3.1 below with p =2 for ¥; and Y, we
have

Eqn < CsupE(e] + Y I{Yy_1 <r}+ CsupE(e} + YHI{Y} | <r}
k k

+CP(Yy—1 <r)+CPX;_, <r)

n

— 0.
Thus, by (3.3) with p = 2 and the previous inequality, we have
1 n
E max |V —Y{*/n<—-) Eq—0
max |V — Y| /n< n}; ak

as n — 00. By (i) of Theorem 3.1 and the previous inequality, (ii) of Theorem 3.1 holds. This
completes the proof. ]

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Without loss of generality, we assume o = 1. Note that

n Zfz_ll I{Y; > r}Y &1
S Y, >y

n(@n —1) =

and

1n71 1 n—1 ) 5 5
- ;1{1/, > riYeg = o ;1{1@ > )Y, — YD) —e2 ]

—1 n—1
15 1
= E § :(Ytz-i-l _Yt2) - E E 1Y EV}(Y,%H _Ytz)
t=1 t=1

n—1

1
— %ZI{Y, > r}8t2+1.
=1

Since P(y, <r) — P(|B(1)| <0) =0 as n — 0o, we have

1nfl 1nfl
- > EIY <r)ely, = - > P, <) >0,
t=1 t=1
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as n — 00. Thus,

n—1

1
=Y 1Y > el > 1 (3.8)
n

t=1

in probability. Furthermore, we have n~! Z:’;ll EYTZI {Y; <r}— 0 by Lemmas 3.1 and 3.2 be-
low, and hence

1 n—1
Y1 =)0~ YD) > 0 39)
t=1

in probability. Thus, by (3.8) and (3.9), we have

1%1{)/ 1Y, ! (Y2 —Y?) ! +op(l) = 1192(1) !
- > = — - - = - - —-.
" I 2 2

t=1

Note that
n—1 2 1 2 1
_ I{Y; >r}Y Y,
=1 {; i :/ Yy > r} 28 dt:>/ B2(1)dr.
n 0 n 0
Theorem 2.1 follows from the continuous mapping theorem. U

We now prove Lemmas 3.1 and 3.2, which were used in the proof of Theorem 2.1.

Lemma 3.1. Suppose that E|Yy|? < 0o and E|eg|P < oo for some p > 0. Under the conditions
y=86=0,a=1and B < 1, for any event A, it holds that

EIY, |7 1{¥, <, A} = C(supElex | 114} + E|Yol” [{A} +P(4)).
k

Proof. Set X,, =Y, — r for n > 0. We can see that X,, = ¢, + X,'Ll — BX,_,, where ¢, =
en+ (B — Dri{X,—1 <0}. Suppose 8 <0. The lemma follows from

EIX,|PI{X, <0, A}
=E|Xu|"Hen < —(X, |, —BX, }). A}

n—1° (3.10)
< CpElen|PI{A} + C,EIX, | = BX, | |P1{lenl = X,/ — BX,_, A}

n—1

<2CpsupE|ex|P1{A} 4+ Cp p.-P(A).
k

Now we prove the lemma when 0 < 8 < 1. Set the events Ay = {Xi <0} for 1 <k <n. Note
that

n—1
EIXalPI{Xy <0, A} =Y EIXy|"I{Ay -+ An_gAS_i_y. A} +EIXulPI{A, - Ag, A} (3.11)
k=0
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We need to estimate E[ X, |PI{A, ---Ay—rA;_,_,}. Infact,on A, --- Ay A5 _, |, we have

k—1
X, = Zﬂ]en—j + ﬂan—k-

j=0
Set & = Z’}:O B/ len— ;. It follows that
EIXnlP I{Ap - Ap—k Ay _y_y, A}
< CpsEIEIPI{A, - Ap—ikAy_;_1, A}

+Cp.3 pE|Xn k|pl{An Ay kAn k— 17A}

<Cp/3E|§|pI{A Ak Ay i—1- A}
(3.12)

+CppkP <51;p Elex|PT{A} + C,,,,g,,P(A))

+ CpBrPEIX k1P IHlen—i| = Xp—i—1, AS_,_, A}
<CpﬁE|";:|pI{A Ay kAn k— 11A}

+2C,p% (sup Elex|PT{A} + cp,ﬁ,rP(A)).
k

Clearly, on A, ---Ag, we have X, = Z'j’ lﬂ en—j + B"Xo and hence by (3.11) and (3.12),
EIX,PI{X, < 0,A} < C(supy E|lex|?I{A} + E|Yo|?I{A} 4+ P(A)). The lemma is now
proved. O

Lemma 3.2. Suppose that EY02 < 00, Egg =0 and Eeg < 00. Under the conditions y =6 =0,
a=1,8<1landr <0,we have Y, /s/n = o|B(1)| as n — oo.

Proof. For K > 0, set

& = erl{lex] < K} — EerI{|ex| < K}, Er = &x — &k, k=>1.

Yo = YoI{|Yo| < K}, Yo=Yy — Y.

We now construct two TAR(1) processes {Z} and { 17;} as follows:

Yo =% + Va1 I{Ts >r}+ﬂ7 Yo =1}, nz1 (3.13)
V=8 + Y, Y, >r) =Y, I{Y;_ <r}), n=l (3.14)
By Theorem 3.1, when « = 1 and f = —1, we can see that

Yi/v/n = ok|B®|  onD[0,1], (3.15)
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with 0'12( :NVar(gl). Let g}, 1 <k <n, be defined as g in (3.7) by replacing {Y,} and {Y,7} with
{Y,} and {Y,}, respectively. Taking p > 2, by virtue of (3.6), we have

d < > k=1 Eqy
np/2

Yo — Y}

n

E max
1<k<n

Furthermore, using Lemma 3.1 with Y, replaced by {17 »} and {17 '}, respectively, we know that g},
is uniformly bounded for all k > 1. Thus, we have

Y — Y7 |P

E max < Cn~ PP,
1<k<n n
By (3.15) and the previous inequality, we have
Vin//n = ok|B@®)|  on DO, 1]. (3.16)

Since oxg — o as K — 00, it suffices to show that for any § > 0,

Jim _limsup P(|Y, — Y| = 8/n) =0. 3.17)
oo

—00 p—
By model (1.1) and model (3.13), we have
E(Y, — ¥p)? = Eép + E(Yyot — Yoo )2 I{Yue1 > 7, Yooy > 1}
+EWu—1 = BV ) 1Yyt > 1, Voot <7)
+EBYnot = Yoo ) Yoy <7, ¥y > 1)
+EBYuot — BYae ) I{(Yyoy < 1. ¥uoy <7}
It can be verified that
EYut = BYu)* I{Yno1 > 1, Yoy <7)
<EWnut = Yoo )2 I{Yyey > 1, Yy <1 Yooy > BY,y)
+CEY? [ I{Y,_1 <r}+ CP(Y,_1 <7).
Let M be any positive number. Then,
E(BYu—1 — YD) I{Yuo1 <7, Yooy > 1)
<EWn1 = Yao ) I{Yno1 <7, Vo1 > 1, Yay > BYu_1)
+CEY,  H{Yuo1 < =M, BYu1 = Voot > 1)+ Cpp P(Fumy <7+ 1BIM).
Combining the above inequalities, we can see that

E(Yn - i\;n)z =< Eéi + E(Yn—l - ?n—l)z +Zim
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where
Gu=CEY,} [ I{Yy 1 <1, Y, 1 <r}+CEY; [ I{Y, 1 <7}
+CEY, 1Y,y < =M, BYy_1 = Yy >} + Cpm PVt <7+ |BIM).
By induction we have

n
E(Y, — ¥,)? <nE&} +EY + ) Gi. (3.18)
k=1

Since 17,1/\/71:> ok |B(1)|, we have P(?,,,l <r+|B|M)— 0as n— oo. Note that

5 1 _ —-M s if <O’
I{y”1<_MvIBYnIZYn1>r}§{ {8n = +|r|} 1 ﬂ_

HY,_1 < —BM}, if0<p<1.
By Lemma 3.1,
EY2 [[{Yno1 < —M,BYy_1>Y, 1 >7)
< CsupE(ef + Y5 + Difen—1 < —M +|r|}
+ é sup E(e? 4+ Y2 4+ DI{Y,_1 < —BM)
and

EY? [ I{Yp1 <r, Y1 <r}+EY2 [I{Y,_ | <r} < CsupE(e} + Y2 + D)I{Y,_; <r}.
k
Since lim,,_; o P(?n <x) =0 for any x € R, we have

n
lim limsupn ! Zak =0.
k=1

M—>00 p—soo

This, together with Eé% — 0 as K — oo and (3.18), implies (3.17). O

4. Proof of Theorem 2.2

To prove Theorem 2.2, we need to establish the limiting distribution for {Y;} as t — oc.

Theorem 4.1. Let y = § = 0. Suppose either (H1) or (H2) in Theorem 2.2 holds. Then we
have E|Y,| = O(a"), Zfio I{Y; <r} <ooas.and Y,/a" — & > 0 a.s., where & is defined in
Theorem 2.2.

From this theorem, we can see that B,, — B — Z a.s. for some random variable Z. Thus, Bn is
not a strongly consistent estimator for 8. This explains why (1.5) is the necessary and sufficient
condition for consistency of (&j, B,). To prove Theorem 4.1, we need the following lemma.
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Lemma 4.1. Under the conditions of Theorem 4.1, we have: (i) E|Y,| = O(a"); (i) lim,— o Y5,/
n =o0 a.s. iflimsup,_, ¥, =00 a.s.

Proof. (i) Following the proof of Lemma 3.1, we can prove that, under the conditions (H1)
or (H2) in Theorem 2.2, E|Y, |I{|Y,| <r} =0(1)if 8 < 1l and E|Y,,|I{|Y,| <r}=0m)if g =1.
We next show that E|Y,, | = O(«"). Since

E|Yy| = E|Y,|I{Y, <r}
n—1
+ Y Bl I{Yy > Yy > Y > 1 Y <) (4.1)
k=0
+E|Y | I{Y,>r,Yy_1>r1,....,Y9>r}

and E|Y,|I{Y, > r,Y,—1 >71,...,Y9) > r} = O(¢"), we only need to estimate the second
term on the right-hand side of (4.1). Set By ={Y,, > r,Yy—1 > 7, ..., Yk41 > 1Y <r}.
On By, we have Y, = Z?zkﬂa"’fej + o *=ly, ;. Thus by noting that E|Y,|I{Bi} <
Emaxo<i<n | Y1 @" &1 1{B} + " *E[Yip1 [[{By) and E|Y,|I{Y, < r} = O(n), we
have

n—1 n n—1

> EIY,|I{Bi} < E max «"Tejl+0()Y "k =0").
0<i<n

k=1 - lj=i2 k=0

This together with (4.1) gives E|Y,| = O(«").

(ii) For any M > 1, define A, = Ufin{Y, < t3/2}. Let § > 0 and T > max(r, 0) satisfy o >
14+8+87T Y8 Define t =max{k:Y_| <T,....Y <T,Yiy1 > T, k>—1}, Y_1 =0. We
canseethatt <ocoas.and {t =k} ={Y1 <T,.... Yk <T,Yk4r1 >T}iso (Yo, €1,..., Ek+1)
measurable. Forany no +3 <n, M >0, T > M

no
P(A,) <P(r >no)+ Y P(t =k, A,)
k=—1

no o
<P(t > ng) + ZP(r:k,An, {|sj|§8((j—k—2)2+T)}>

k=—1 j=k+2

no 0o
+ ZP(r:k,An, {|8j|>5((j—k—2)2+T)})'

k=—1 j=k+2

Note that on the event

B:= {‘C:k, ﬁ {lej] 55((j—k—2)2+T)}}’

j=k+2
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1/8 (t—k=1—(—k=2)
sincea > 146+ 877 /° and (kT

< 8T /8 for t > k + 3, we have
Yiv1 > T >,
Yieo =aYpi1 + e >al —8T >T +1,

Yies=aYi+es =a(T +1) =81 +T) > T +2°,

Vi=aYii+e>a(t—k—22+T)=8(t —k—2)*+T)
S(t—k—1)*+T

for any t > k + 1. That is, for any ¢ satisfying t —ng — 1 > t3/* and k < ng, we have Y, > 13/2
on event B. Thus, for n satisfyingn —no — 1 > n3/* and k < no, we have

o]

{r:k,A,,, {|5j|§8((j_k_2)2+T)}}=®

j=k+2

and

no
P(A)<P(r>no)+ZP(r_k U {lejl >8((G —k— 2)2+T)})

k=—1 j=k+2
no o0
=P(t>nop)+ Y _ P(r:k)P( U {le)l ><S((j—k—2)2+T)}>
k=—1 j=k+2

<P(t>no)+ZP(r—k) Z (lejl > 8(( —k—2*+T)).

k=—1 j=k+2

Letting n — oo and then ng — oo implies that for any M > 0,

= Elei|?
(On)s Eremn 2 =
n=1

k=—1 j=k+2

o0
§CT_IZI<_2—>0 as T — oo.
k=1

The lemma is proved. (]

Proof of Theorem 4.1. E|Y,,| = O(«") follows from Lemma 4.1(i). We next give the proofs for
the other conclusions.

Proof under (H1). Define X,, by the equations X, = ¢, + X:[_l - ,3+X;_1, Xo = Yo. Then
we have YV, > X, forany n > 0. If 8 =1, then X, = ZZ:I ex + Xo and limsup,_, Y, =
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limsup,,_, o, Xn = 00 a.s. If B < 1, then by Theorem 3.1, X,, — oo in probability. So ¥, — oo
in probability, which implies limsup,,_, ., ¥, = 0o a.s. By Lemma 4.1 we have Y,,/n — o0 a.s.
Hence Z?io 1{Y; <0} < oo a.s. Thus & in (2.3) or (2.4) is well defined and Y, /a" — £ a.s.

Now we prove & > 0 a.s. Let e, = &, — BY,_|. We have E|e,| = O(n) for 8 < 1. Define
m =sup{n:a"/n < M}.Thenm ~ log M/loga — oo as M — oo. By the inequality (a +b)* >
a — |b|, we have

+ —+ n
Yo _en Yn71>€_n_|€n—1| Yn*2>...>_ Z lex] Y_nT 42)
ol ol o=l = gn a1 a2 — - ok am
k=m+1
n
From (4.2) we can get £ > — Z,fimH ‘;—’,‘cl + ft’—’,}l a.s. Since M (m + 1) /a™*! < 1, we have
o0 o0 o o0
Mk k—m Mk k+1
—k
> rabEiaise Yo Moo g kom S Ml oSkl
k=m+1 k=m-+1 k=m+1 k=0
where C does not depend on M. So we have
o el
limsupP(M Y 2 =p)<cnt—0 (4.3)
M—o0 k=mt1 &

as 7 — oo. It is easy to see that MY, /a™ > Y, /m — oo a.s. as M — oco. Hence, by (4.2)
and (4.3), P(§ <0) = P(M§ <0) <P(Y,,/m <n) +PWM Z,fimﬂ E—Ill > 1) — 0 by letting
M — oo first and then n — oo. This proves £ > 0 a.s.

Proof under (H2). We first assume that limsup,_, ., ¥, = oo a.s. Then it follows from
Lemma 4.1 that ¥,,/n — oo a.s. and hence Z;’il I{Y; <r} <ooas.,Y,/a" — & as. By writing
Y, =e, —l—ozY:'_l, where e, =&, + BY,—1 [{Yy—1 <r} —aY,_11{0<Y,_1 <r}if r >0, and
en=¢n+ BYu1I{Yn—1 <r}+aY,—11{r <Y,—1 <0} if r <0, we can show that £ > 0 a.s.
following the proof of Theorem 4.1 under (H1).

It remains to show that limsup,,_, ., ¥,, = oo a.s. We claim that if, forall y <7,

P(Y; <rforallt>0]Yy=y)=0, 4.4

then limsup,,_, . ¥, = 0o a.s. The proof is similar to that of [11]. Let ¢ > |r|. Since for any
x>0,P(e1 <x)<1,wehaveforallr <y <c,

P(Y1 >clYo=y)=Play+e1>c)>P(e; > c(l +a)) >0,
which yields that for any ¢ > |r|

inf P(Y; > cforsome? > 0|Yy=1y)>0.

r<y=<c
Then by Proposition 5.1 in [9], for any initial distribution on Yy,

{Y; € [r, ¢) infinitely often} C {Y; € [c, co) infinitely often}. “.5)
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Using similar arguments in [11], we can see that if for all y € R
P(Y; > r for some t|Yg =y) =1, 4.6)

then
P(Y; > r infinitely often) = 1

and hence by (4.5) we have P(Y; € [c, 00) infinitely often) = 1 for any ¢ > 0. This yields
limsup,,_, ,, ¥, =00 as.

Now it suffices to show that (4.6) or, equivalently, (4.4) holds. Note that (4.4) is a direct con-
sequence of the following results:

k
A, F’(f?ﬁ‘;‘n (; B e + /3"y> < r) =0 fory<r. 4.7
If B =1, then (4.7) holds by the law of iterated logarithm. If 8 <0, we have
k—i <
k—1
{Zﬁ" ‘e + B y—ek+ﬁ<2ﬂ" e+ <! ) Sr,likfn}

i=1 i=1
Clex<r+|prl,1 <k <n}.

Therefore
k
k—i
P(lgl/?fn(zﬂ i+ p y><”><P<m]?x &k <r+|,3r|>

It remains to prove (4.7) for 0 < < 1. Set k; = jn'/2 for 1 < j <n'/2. Then for any x > 0 we

have
kj
k—i ki—i
max B <x | <P| max B e )| <x
<1<k<n<z l) ) <1<j<nl/2<2 l
1=
<P| max Z B e | <
1<]<nl/2 4
i=kj—nl/
kj—n'/4—1
+P| max Z ,ka*"e,‘ >x .
I<j<nl/? i
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Since E|e| < 00, we have

By independence, we have

kj
P( max < E ,kaig,->§2x>
o 1/2
I<j=n ik —nl/A

Il
P
0

=
. =
™~
bt
=
<.
|
™
A
[\
=
S~—
S~———
N

Also
0l 00
P( D BT < 2x> < P(Zﬂf“e,- < 3x> + An,
j=1 j=1

where A, < CZ?’;HW ﬂj — 0 as n — oo. So it suffices to show that for any x > 0,
P(Z‘J’-i] ,6/"18]- < x) < 1. In fact, if there exists some x > 0 such that

1= P(Zﬁjlgl S_x) = EF(X - Z/leé‘/)’
j=1 =2

where F(-) is the distribution function of ¢, then F(x — Z;’iz /Sj_lgj) =1 a.s. That is,
Z?iz ﬂj_lsj = —o0 a.s. This is impossible since 0 < 8 < 1 and E|e1| < co. ([

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. Note that

o (@ — o) _ " Z;:l] I(Y; >r)Ye41
a?—1 a 2@ - )Y Iy, > YR

Since Y, /a" — & > 0 a.s., we have (o2 — 1)a—2" Z’:Z_ll Ytzl{Y, >r} — £2 as. By the fact
E|Y,|I{Y, <r}=0() for B <1, we have

n—1 n—1

a_n<ZYl‘8t+l _ZYt8t+11{Yt>r}) -0 a.s.
t=1 t=1

We next prove that o ™" (Z;’;ll Yiero) — & Z;’:_f a'e;11) — 0 in probability. For K > 0, let

& =g {|e;| < K}, l<t=<n
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We have oz’”E|Zf=_l1 Yi(e,41 — €121)| < CE|golI{|leo] > K} — 0 as K — o0. So it suffices
to prove that a_”(Z:’;ll Y€1 — SZ;’;II a'€,11) — 0 in probability, which follows from
Y,/a" — & as. and [£;] < K. Hence

N - -1
(@, —a) o« YT dl e
a?—1 £

—-0 in probability.
Note that Yj,/2)/a"/? — & a.s.and ™" (Z’::_ll ale ] — Z:lz_[iz/2]+l a'g; 1) — 0in probability.
We have

~ — -1
"Gy —a) @ Z?:[n/z]_,_l o'ery
a2 -1 Y[,,/z]/a[”/z]

-0 in probability.

By the independence between Z';;[ln J21+1 @ €1 and Yy 2), we see that

n—1
(a‘" > Ott8z+1,Y[n/2]/Ol["/2])=>(77*,§*),

t=[n/2]+1

which finishes the proof. O

5. A further result when a8 =1

We next consider the LSE of (&, 8) under the constraints o8 = 1. We estimate o by minimizing
0,(x), where

n

Qn(0) =) (Vi =xYi I{Yioy <r}—x 'Y I{Yiy = r))%
t=2

Pham, Chan and Tong [11] showed that the estimator &, by minimizing Q, (x) under a8 = 1
and « < 0, is strongly consistent. The following theorem shows that &, is still strongly consistent
under ¢ =1 and @ > 0.

Theorem 5.1. Let y =5§=0,aB8 =1 and 0 < a # 1. Assume that P(e; <x) <1 and P(e; >
x) < 1 for any x € R. Then @, obtained by minimizing Q, (x) is strongly consistent.

Proof. We only prove the theorem for « > 1. The proof for the other case 0 < o < 1 is similar.
We have

On(x) — On(a)

n n
=(x—a)? Y Y2 Y >r) =2 —) Y &Y I{Y,y >r}
=2 t=2
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x - ‘I)Z Y <)

n
— 2()671 — 057]) ZSth—ll{Yt—l <r}
t=2

> (x — ) Z > I{Yi— > ) — 2(x—a)Zs,Y, Yy >r)— Ze,
=2 =2

By Theorem 4.1, we can see that

ZY, TV >r)—= @ =Dl as;

2n
o
t=2

n
ZSth—ll{Yz—l >r} = O@>?) a.s;
=2

n
ZY,Z_ll{Yt_l <r}=0() as;
t=2

n
ZS,Y,_ll{Yt_l <r}=0() as.
=2

Hence for any § > 0, we have

lim 1nf (Q,,(x) — Qn(oz)) =00 a.s.

n—00 x:|x—o|>

Since Q,(x) is continuous on [o — §, @ + §], it always admits a minimum on this interval. This
shows that limsup,_, ., |&, — | < § a.s. for any § > 0 and completes the proof. ]
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