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We compare estimators of the (essential) supremum and the integral of a function f defined on a measurable
space when f may be observed at a sample of points in its domain, possibly with error. The estimators
compared vary in their levels of stratification of the domain, with the result that more refined stratification is
better with respect to different criteria. The emphasis is on criteria related to stochastic orders. For example,
rather than compare estimators of the integral of f by their variances (for unbiased estimators), or mean
square error, we attempt the stronger comparison of convex order when possible. For the supremum, the
criterion is based on the stochastic order of estimators.
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1. Introduction

In many situations, the cost of computing the value of a function f is very high, because either
the analytic expression of the function is extremely complex or the value is the result of a costly
experiment. For example, f could be the level of toxicity as a reaction to different doses of
certain drugs, the output of a chemical experiment, or the survival time of a patient undergoing
a certain treatment. Therefore the function can be computed only at a limited number of points.
One standard way to choose these points is via some Monte Carlo randomization. Different
possibilities arise: points could be sampled totally at random or some stratification could be used.
When properly carried out, stratification is known to improve the performance of estimators.
The purpose of this paper is to qualify the above statement in some relevant cases and compare
different sampling stratifications according to some suitable criteria.

Often the object of interest is some functional of f, such as its supremum or integral. Monte
Carlo estimation of such functionals is the subject of a very large number of papers. In most cases
some regularity of the function f is assumed; see, for example, [18,26]. Under some regularity
conditions it is often reasonable to estimate the entire function and then use a plug-in method to
estimate the functional. When no regularity is assumed for f , then it may be more reasonable to
estimate the functional directly.

Given a measurable space (U, U ), let f :U → R be a measurable function f . In order to esti-
mate θ := supx∈U f (x), we can draw a sample X1, . . . ,Xn of n points in U and use the estimator
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T := max(f (X1), . . . , f (Xn)). Alternatively we can sample the X’s by resorting to some strat-
ification. Ermakov, Zhiglyavskiı̆ and Kondratovich [6], Kondratovich and Zhigljavsky [11] and
Zhigljavsky and Žilinskas [25] prove that, if we consider two partitions of U, one of which is
a refinement of the other, and we sample in proportion to the measure of each element of the
partition, then the more refined partition produces a stochastically larger estimator of the supre-
mum. Since these estimators are almost surely smaller than θ (hence biased) and consistent, the
stochastically larger one performs better. Thus, the more we stratify, the better the estimator we
obtain.

In our paper we extend this result and show that the stochastic comparison for estimators of
the supremum holds also when observations are censored, that is, when for a sample of pairs of
random variables (Ui,Zi) we only know whether Zi ≤ f (Ui) or not. In applications, there may
be situations where exact evaluation of f (u) at a given point is difficult or expensive, whereas
a comparison of f (u) to a given constant t is (at least for most values of t ) much easier. For
example, if f (u) represents a lifetime, it may be easier to see if it has exceeded a certain value,
rather than wait to obtain the exact value f (u) itself. This amounts to censoring.

When we want to estimate the integral I (f ) of the function f , then it is easy to construct
an unbiased estimator of I (f ) by using different stratified samples. Unbiasedness of these es-
timators implies that the comparison criterion cannot be the stochastic order, as used for the
maximum.

In much of the literature estimators are compared in terms of a given loss function, which may
be arbitrary. Typically the loss function is quadratic, so the criterion is the mean square error,
that is, the variance, when the estimator is unbiased. More generally, it may be possible to find
comparison criteria that are valid for large classes of loss functions; for instance, all losses of the
type |W − I (f )|p , where W is an estimator of I (f ) and p ≥ 1, or even the class of all convex
loss functions. The use of the entire class of convex loss functions in inference goes back at least
to [13] and [14]. Similar ideas were later used by Berger [2], Kozek [12], Lin and Mousa [15],
Eberl [5], Bai and Durairajan [1], and Petropoulos and Kourouklis [20]. A comparison of the
performance of different estimators, with respect to all convex loss functions, can be achieved
by considering the convex order. Comparison of experiments in terms of the convex order traces
back to [3,4].

It is well known that stratification reduces the variance of estimators of I (f ), but, as will
be shown below, stratification does not necessarily reduce E[|W − I (f )|p], for p �= 2, which
implies that, even if stratification is useful in L2, it may be counterproductive in L1. We will
show that in some circumstances stratified sampling is better not just in L2, but in terms of
the convex order, which in turn implies that it is better in Lp for every p ≥ 1. This is the case
when observations are censored, the function f is univariate and monotone, or the function is
multivariate and monotone and the sampling is independent across coordinates. Papageorgiou
[19] shows the computational advantage of using randomized methods to compute the integral
of monotone d-variate functions, and shows how this depends on d .

Our results also hold when the function f can only be observed with noise; for instance, when
f is observed as the outcome of some experiment. Moreover, our regularity assumptions on the
function f are rather non-restrictive: measurability when estimating the maximum, boundedness
when observations are censored, and sometimes monotonicity when estimating the integral.



594 L. Goldstein, Y. Rinott and M. Scarsini

We emphasize that, in our framework, evaluation of f by experiment is the costly part and
any precalculations, such as those required for computing strata and sampling from the condi-
tional distributions in strata, even if computer-time consuming, are considered to have a relatively
negligible cost.

The paper is organized as follows. Section 2 fixes notation and reviews various properties
of stochastic orders and certain dependence structures. Section 3 compares estimators of the
supremum of a function, considering also the case of censored observations. Section 4 compares
estimators of integrals: First a variance comparison is shown to hold in general, even when ob-
servations are affected by errors. Then a counterexample is provided for a non-quadratic loss
function. Then censored observations are considered and a comparison in terms of the convex
order is proved in this case. Finally, monotone functions are examined. In the univariate case,
a convex order comparison holds. In the multivariate case, this is true under some additional
conditions on the stratification and on the dependence of the underlying random vector.

Numerical examples can be found in [8].

2. Notation and preliminaries

In this paper a probability space (�, F ,P) is assumed in the background. The stochastic order
≤st, the convex order ≤cx, the increasing convex order ≤icx, and the majorization order ≺ are
defined as follows (see, e.g., [16,17,24]). Given two random vectors X,Y, we say that Y ≤st X if

E[φ(Y)] ≤ E[φ(X)] (2.1)

for all non-decreasing functions φ. We say that Y ≤cx X if (2.1) holds for all convex functions
φ and Y ≤icx X if (2.1) holds for all non-decreasing convex functions φ. It is well known that
Y ≤st X iff P(Y ∈ A) ≤ P(X ∈ A) for all increasing sets A, where we call a set increasing if its
indicator function is non-decreasing. In the case of univariate random variables X,Y , the above
inequality becomes P(Y ≤ t) ≥ P(X ≤ t) for all t ∈ R. It is well known that X ≤cx Y implies
E[X] = E[Y ] and Var[X] ≤ Var[Y ].

The statement Y ≤st X depends only on the marginal laws L(Y) and L(X), so sometimes we
write L(Y) ≤st L(X), and analogously for ≤cx and ≤icx.

Given two vectors x = (x1, . . . , xn), y = (y1, . . . , yn), we write y ≺ x if

k∑
i=1

y
↓
i ≤

k∑
i=1

x
↓
i for k = 1, . . . , n − 1,

n∑
i=1

yi =
n∑

i=1

xi,

where y
↓
1 ≥ · · · ≥ y

↓
n is the decreasing rearrangement of y, and analogously for x. The relation

y ≺ x holds if and only if there exists an n × n doubly stochastic matrix D such that y = Dx.
A function ψ : Rn → R is called Schur convex or Schur concave if y ≺ x implies ψ(y) ≤ ψ(x)

or ψ(y) ≥ ψ(x), respectively. If ϕ : R → R is convex then ψ(x) = ∑n
i=1 ϕ(xi) is Schur convex.

A random vector X is associated if for all non-decreasing functions φ,ψ we have Cov[φ(X),

ψ(X)] ≥ 0.
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Recall that a subset A ⊂ R
d is a lattice if it is closed under componentwise maximum ∨

and minimum ∧. A random vector X is multivariate totally positive of order 2 (MTP2) if its
support is a lattice and its density fX with respect to some product measure on R

d satisfies
fX(s)fX(t) ≤ fX(s ∨ t)fX(s ∧ t) for all s, t ∈ R

d . MTP2 implies association. Also, any vector
having independent components is MTP2.

Let U be a random variable with values in some measurable space (U, U ) with non-atomic
law PU . A finite sequence B = (B1, . . . ,Bb) of subsets of U is called an ordered partition of U if
Bi ∩ Bj = ∅ for i, j ∈ {1, . . . , b}, i �= j , and

⋃b
i=1 Bi = U. For the sake of brevity in the sequel,

whenever we say “partition” we mean “ordered partition.”
Here we consider partitions B = (B1, . . . ,Bb) of U, where the sets Bi are measurable and such

that for i = 1, . . . , b we have P(U ∈ Bi) = ki/n for some ki ∈ {1, . . . , n} satisfying
∑

i ki = n.
We say that such a partition B of U and a partition B∗ = (B∗

1 , . . . ,B∗
b ) of N := {1, . . . , n} are

associated if the cardinalities |B∗
i | of the sets B∗

i satisfy |B∗
i | = ki for i = 1, . . . , b. We then have

P(U ∈ Bi) = |B∗
i |

n
. (2.2)

The notation B ∈ B means that B is one of the sets Bi that comprise B and, given B ∈ B, we let
B∗ denote the corresponding set B∗

i in B∗ such that (2.2) holds.
Given two partitions B∗ = (B∗

1 , . . . ,B∗
b ) and C∗ = (C∗

1 , . . . ,C∗
c ) of N , we write C∗ ≤ref. B∗;

that is, that B∗ is a refinement of C∗ when every set in C∗ is the union of sets in B∗. We will use
the same order ≤ref. for partitions of U. Clearly, if C and B are partitions of U, each of which can
be associated to some partition of N , then C ≤ref. B implies that there exist partitions C∗ and B∗
associated to C and B, respectively, satisfying C∗ ≤ref. B∗.

Call A∗ = ({1}, . . . , {n}) the finest partition of N and D∗ = (N) the coarsest partition of N .
Then D∗ ≤ref. B∗ ≤ref. A∗ for all B∗, and for any partition A of U associated to A∗ we have
P(U ∈ Ai) = 1/n.

For a partition B and B ∈ B, let PU |B denote the conditional law of U given U ∈ B . Let
{V B

j , j ∈ B∗} be random variables with law PU |B with {V B
j , j ∈ B∗,B ∈ B} independent.

3. The supremum

Let f :U → R be measurable, and define

W B
S = max

B∈B
max
j∈B∗ f (V B

j ), (3.1)

where the subscript S indicates that W B
S will be used to estimate the (essential) supremum of the

function f .
Given a random variable U with values in (U, U ), let f ∗ := ess supf (U). It is clear that for

any choice of partition B, P(W B
S ≤ f ∗) = 1. The following result compares two estimators of

type W B
S . Since both estimators underestimate f ∗, the stochastically larger one is preferable.

This theorem, which goes back to [6] and [11], can also be found in [25], Theorem 3.4.

Theorem 3.1. If C ≤ref. B, then W C
S ≤st W B

S .



596 L. Goldstein, Y. Rinott and M. Scarsini

A short proof of Theorem 3.1, different from the one in the [25], can be found in the Appendix.
As mentioned in the Section 1, data are not always observed exactly in many practical situ-

ations, but may be censored for various reasons, including budget constraints. We extend now
the comparison result of Theorem 3.1 to the case of censored observations. Let f :U → R be
bounded; without loss of generality, we take 0 ≤ f (u) ≤ 1 for all u ∈ U. In this section we as-
sume that, for a sample of points of the type (u, t) ∈ U × [0,1], we are allowed to observe only
the value of t and whether t > f (u).

For any partition B with associated partition B∗, let {V B
j , j ∈ B∗}, B ∈ B and {Tj , j ∈ N} be

independent random variables with law PU |B and the uniform distribution on [0,1], respectively,
and let

SB =
⋃
B∈B

{j ∈ B∗ :Tj ≤ f (V B
j )} and W B

CS = max
j∈SB

Tj .

When SB = ∅ we set W B
CS = 0. The letter C in the subscript CS indicates censored data. It is

clear that P(W B
CS ≤ f ∗) = 1, so the estimator W B

CS underestimates f ∗.

Theorem 3.2. If C ≤ref. B, then W C
CS ≤st W B

CS.

Proof. Below, when we write V B
j without specifying B , we mean that B ∈ B corresponds in the

sense of (2.2) to the set B∗ ∈ B∗, which contains the index j . For any t ∈ [0,1], we may calculate
the distribution function of W B

CS at t by writing

{W B
CS ≤ t} =

⋃
R⊂N

{
max
j∈SB

Tj ≤ t, SB = R
}

=
⋃

R⊂N

{Tj ≤ t, Tj ≤ f (V B
j ) for all j ∈ R, and Tj > f (V B

j ) for all j /∈ R}

=
⋃

R⊂N

{Tj ≤ t ∧ f (V B
j ) for all j ∈ R, and Tj > f (V B

j ) for all j /∈ R}.

Hence, conditionally on {V B
j , j ∈ B∗, B ∈ B}, using the fact that the Tj ’s are uniform, we obtain:

P(W B
CS ≤ t |V B

j , j ∈ B∗,B ∈ B)

=
∑
R⊂N

∏
j∈R

P
(
Tj ≤ t ∧ f (V B

j )
) ∏

j /∈R

P
(
Tj > f (V B

j )
)

(3.2)
=

∑
R⊂N

∏
j∈R

(
t ∧ f (V B

j )
) ∏

j /∈R

(
1 − f (V B

j )
)

=
|B∗

1 |∑
h1=1

. . .

|B∗
b |∑

hb=1

∑
R⊂N

∀i,|R∩B∗
i |=hi

∏
j∈R

(
t ∧ f (V B

j )
) ∏

j /∈R

(
1 − f (V B

j )
)
.
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Taking expectation we obtain the unconditional distribution,

P(W B
CS ≤ t) =

|B∗
1 |∑

h1=1

· · ·
|B∗

b |∑
hb=1

b∏
i=1

( |B∗
i |

hi

)(∫
Bi

(
t ∧ f (u)

)
dPU |Bi

(u)

)hi

×
(∫

Bi

(
1 − f (u)

)
dPU |Bi

(u)

)|B∗
i |−hi

=
∏
B∈B

(∫
B

(
t ∧ f (u)

)
dPU |B(u) +

∫
B

(
1 − f (u)

)
dPU |B(u)

)|B∗|
.

Let

qB =
∫

B

(
t ∧ f (v)

)
dPU |B(v) +

∫
B

(
1 − f (v)

)
dPU |B(v)

=
∫

B

[(
t ∧ f (v)

) + (
1 − f (v)

)]
dPU |B(v).

If C is a union of disjoint sets Bi , then

qC =
∑

i

qBi
P(U ∈ Bi)

P(U ∈ C)
=

∑
i

qBi
|B∗

i |
|C∗| . (3.3)

If C ≤ref. B, then

(qC1, . . . , qC1︸ ︷︷ ︸
|C∗

1 |
, . . . , qCc , . . . , qCc︸ ︷︷ ︸

|C∗
c |

) ≺ (qB1 , . . . , qB1︸ ︷︷ ︸
|B∗

1 |
, . . . , qBb , . . . , qBb︸ ︷︷ ︸

|B∗
b |

).

To see this, observe that (3.3) implies that the vector on the left-hand side above is obtained from
the one on the right by multiplying it by the n × n doubly stochastic matrix D, which is block
diagonal where the ith block is the |C∗

i |× |C∗
i | matrix with all entries equal to 1/|C∗

i |. Therefore,
by the Schur concavity of the function (θ1, . . . , θn) �→ ∏n

i=1 θi , we have

P(W C
CS ≤ t) =

∏
C∈C

(qC)|C∗| ≥
∏
B∈B

(qB)|B∗| = P(W B
CS ≤ t).

�

For every n ∈ N and for every partition Bn associated to a partition B∗
n of {1, . . . , n}, we have

W
Bn

CS ≤st W
Bn

S . Therefore,

W
Dn

CS ≤st W
Bn

CS ≤st W
Bn

S ≤st f ∗.

Since W
Dn

CS is consistent for f ∗ as n → ∞, we have that W
Bn

CS and W
Bn

S are consistent, too.
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4. The integral

With the subscript I standing for integral, let

W B
I = 1

n

∑
B∈B

∑
j∈B∗

f (V B
j ), (4.1)

W B
IE = 1

n

∑
B∈B

∑
j∈B∗

(
f (V B

j ) + εj

)
, (4.2)

where the variables εj are independent copies of a random variable ε having mean 0 and finite
variance, independent of the variables V B

j . Clearly W B
I and W B

IE are both unbiased estimators of

f := E[f (U)] = ∫
f (U)dP when

∫ |f (U)|dP is finite, and W B
I is the special case of W B

IE when
the error has zero variance; that is, there is no measurement error.

The following result is well known when the error has zero variance (see, e.g., [7], Section 4.3).
We extend it to a more general case, relevant when the evaluation of f is the result of an experi-
ment.

Theorem 4.1. If C ≤ref. B, then Var[W B
IE] ≤ Var[W C

IE].

The proof of Theorem 4.1 can be found in the Appendix.
It follows immediately from Theorem 4.1 that Var[W A

IE ] ≤ Var[W D
IE ], hence, in particular,

Var[W A
I ] ≤ Var[W D

I ]. The following counterexample shows, nevertheless, that, even when the
function is observed without error, W A

I �≤cx W D
I ; that is, domination in the convex order does

not hold. In the counterexample we consider the absolute error, that is, (L1), rather than mean
square error, (L2).

Example 4.2. Let U = [0,1] and U have a uniform distribution on [0,1]. Furthermore, let n = 2,
A1 = [0,1/2],A2 = (1/2,1]. Define

f (u) = 4I[0,1/2](u) + 2I(1/2,3/4](u) + 6I(3/4,1](u).

Then W D
I takes the values 2,3,4,5,6 with probabilities (1,4,6,4,1)/16, respectively. The

variable W A
I , based on one random observation from each of the above intervals Ai , takes the

values 3 and 5 each with probability 1/2. Therefore, E[W A
I ] = 4 = E[W D

I ].
We have Var[W D

I ] = Var[W A
I ] = 1, but for the convex function ψ(u) = |u − 4| we have

E[ψ(W D
I )] = E|W D

I − 4| = 2
2

16
+ 2

4

16
= 12

16
< 1 = E|W A

I − 4| = E[ψ(W A
I )].

A more general example can be constructed as follows. Consider a partition A associated to
the finest partition A∗ of N . Split A1 into two measurable subsets A1a,A1b such that P(U ∈
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A1a) = P(U ∈ A1b) = 1/(2n). Consider now a function f defined as follows:

f (u) =
{1, if u ∈ A1a ,

−1, if u ∈ A1b,
0, elsewhere.

(4.3)

For all i ∈ N we have E[f (U) | U ∈ Ai] = 0 and

Var[f (U) | U ∈ Ai] =
{

1, for i = 1,
0, for i �= 1.

Hence

Var[W A
I ] = E[(W A

I )2] = 1

n2
.

Moreover, if V1, . . . , Vn are i.i.d. copies of U ,

Var[W D
I ] = Var

[
1

n

n∑
j=1

f (Vj )

]
= 1

n2

n∑
j=1

Var[f (Vj )] = 1

n2
= Var[W A

I ].

Analogously

E[|f (U)| | U ∈ Ai] =
{

1, for i = 1,
0, for i �= 1.

Therefore

E|W A
I | =

√
E[(W A

I )2] = 1

n
.

For any square integrable random variable Y we have E|Y | ≤
√

E[Y 2] and the inequality is strict
if Y is not almost surely constant. Hence

E|W D
I | <

√
E[(W D

I )2] =
√

E[(W A
I )2] = E|W A

I | = 1

n
.

Example 4.2 proves that the convex order does not hold in general between estimators W B
I and

W C
I when C ≤ref. B. Nevertheless, in the following subsections we show that under some natural

conditions comparisons in the convex order are possible.

4.1. Censored observations

Keeping the notation and spirit of Section 3, consider a function f such that 0 ≤ f (u) ≤ 1 for
all u ∈ U. Assume that for a sample of points of the type (u, t) ∈ U × [0,1] we are allowed to
observe only the value of t and whether t ≤ f (u). Let

W B
CI = 1

n

∑
B∈B

∑
j∈B∗

I{Tj ≤f (V B
j )}.
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Note that W B
CI is an unbiased estimator of f = E[f (U)], as

E[W B
CI] = 1

n

∑
B∈B

∑
j∈B∗

P
(
Tj ≤ f (V B

j )
) = 1

n

∑
B∈B

∑
j∈B∗

∫
U

∫ 1

0
I{t≤f (u)} dt dPU |B(u)

=
∑
B∈B

|B∗|
n

∫
U

f (u)dPU |B(u) =
∑
B∈B

P(B)E[f (U) | U ∈ B]

= E[f (U)].

Theorem 4.3. If C ≤ref. B, then W B
CI ≤cx W C

CI.

Proof. By a result in [9] (see also [16], Sections 12.F and 15.E) if

Xp = 1

n

n∑
i=1

ξi,

where ξ1, . . . , ξn are independent Bernoulli variables with parameters p1, . . . , pn, and p =
(p1, . . . , pn), then

p ≺ q implies Xq ≤cx Xp. (4.4)

Define

pC = P
(
Tj ≤ f (V C

j )
)
, pB = P

(
Tj ≤ f (V B

j )
)
,

and

p = (pC1 , . . . , pC1︸ ︷︷ ︸
|C∗

1 |
, . . . , pCc , . . . , pCc︸ ︷︷ ︸

|C∗
c |

), q = (pB1 , . . . , pB1︸ ︷︷ ︸
|B∗

1 |
, . . . , pBb , . . . , pBb︸ ︷︷ ︸

|B∗
b |

).

If C = ⋃
i Bi , then

pC =
∑

i

pBi
|Bi |
|C| ,

so p ≺ q and invoking (4.4) completes the proof. �

Notice that in the case of censored observations, the comparison holds in the convex order,
whereas in the case of perfect observation, a variance comparison holds, but Example 4.2 shows
that comparisons in the convex order do not.

4.2. Univariate monotone functions

In the rest of this subsection the space U is totally ordered and, without loss of generality, we
choose U = [0,1]. For subsets G and H of the real line, we write G ≤ H if g ≤ h for every g ∈ G

and h ∈ H . We call a partition B = (B1, . . . ,Bb) of U monotone if B1 ≤ · · · ≤ Bb .
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Theorem 4.4. Let B and C be monotone partitions of U and let C ≤ref. B. If f is non-decreasing,
then

W B
IE ≤cx W C

IE. (4.5)

To prove Theorem 4.4 we will apply the following lemma.

Lemma 4.5. Let ξ and η be random variables such that ξ ≤st η, and let ξi and ηj be independent
copies of ξ and η, respectively. Let K be an integer-valued random variable, independent of
all ξj and ηj , satisfying K ≤ m for some integer m and having an integer-valued expectation,
E[K] = k. Then

k∑
j=1

ξj +
m∑

j=k+1

ηj ≤cx

K∑
j=1

ξj +
m∑

j=K+1

ηj . (4.6)

Proof. Since ξ ≤st η we may construct i.i.d. pairs (ξi, ηi) with P(ξi ≤ ηi) = 1 for all i =
1, . . . ,m. We adopt the usual convention that if k = 0, then

∑k
j=1 ξj = 0. First note that, by

Wald’s lemma,

E

[
k∑

j=1

ξj +
m∑

j=k+1

ηj

]
= E

[
K∑

j=1

ξj +
m∑

j=K+1

ηj

]
.

Therefore (see, e.g., [17], Theorem 1.5.3) it suffices to show that

k∑
j=1

ξj +
m∑

j=k+1

ηj ≤icx

K∑
j=1

ξj +
m∑

j=K+1

ηj .

Let φ be an increasing convex function and set

g(k) := E

[
φ

(
k∑

j=1

ξj +
m∑

j=k+1

ηj

)]
.

Note that

g(k) = E

[
φ

(
K∑

j=1

ξj +
m∑

j=K+1

ηj

)∣∣∣K = k

]

and

E[g(K)] = E

[
φ

(
K∑

j=1

ξj +
m∑

j=K+1

ηj

)]
.

Thus we have to show that g(k) ≤ E[g(K)]. Since E[K] = k, this follows readily by Jensen’s
inequality, once we prove that g(k) is a convex function.
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The following part of the proof follows ideas of Ross and Schechner [22]. Setting

Sk =
k∑

j=1

ξj +
m∑

j=k+2

ηj ,

we have

g(k + 1) − g(k) = E[φ(ξk+1 + Sk)] − E[φ(ηk+1 + Sk)].
Since φ is convex, and ξk+1 ≤ ηk+1, the function

h(s) := E[φ(ξk+1 + Sk) | Sk = s] − E[φ(ηk+1 + Sk) | Sk = s]

is decreasing in s. Now note that

Sk+1 =
k+1∑
i=1

ξi +
m∑

i=k+3

ηi ≤st Sk =
k∑

i=1

ξi +
m∑

i=k+2

ηi,

because ξk+1 ≤st ηk+2. Hence g(k + 1) − g(k) = E[h(Sk)] is increasing in k, thus proving that g

is convex, as required. �

Proof of Theorem 4.4. Since B = (B1, . . . ,Bb) and C = (C1, . . . ,Cc) are monotone partitions
satisfying C ≤ref. B, there exist 1 = i1 < i2 < · · · < ic < ic+1 = b + 1 such that

Cq =
iq+1−1⋃
j=iq

Bj for q = 1, . . . , c.

As the union above may be formed by taking the union of two consecutive sets at a time,
it suffices to prove (4.5) for the case where c = b − 1, Cm = Bm ∪ Bm+1, Ck = Bk for
k ∈ {1, . . . ,m − 1}, and Ck = Bk+1 for k ∈ {m + 1, . . . , c}.

In this case we have

W B
IE = 1

n

[ ∑
C �=Cm

∑
j∈C∗

f (V C
j ) +

∑
j∈B∗

m

f (V
Bm

j ) +
∑

j∈B∗
m+1

f (V
Bm+1
j ) +

∑
j∈N

εj

]
,

W C
IE = 1

n

[ ∑
C �=Cm

∑
j∈C∗

f (V C
j ) +

∑
j∈C∗

m

f (V
Cm

j ) +
∑
j∈N

εj

]
.

Note that

L
( ∑

j∈C∗
m

f (V
Cm

j )

)
= L

(
K∑

j=1

f (V
Bm

j ) +
|C∗

m|∑
j=K+1

f (V
Bm+1
j )

)
,
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where K is binomially distributed with parameters(
|C∗

m|, |B∗
m|

|C∗
m|

)
.

It is easy to see that if two variables are ordered by the convex order (see (2.1)) and we add the
same independent variable to each one, to wit,

∑
j∈N εj , then the convex order is preserved. This

fact and Lemma 4.5 now yield (4.5). �

4.3. Multivariate monotone functions

In this section we extend the results in Section 4.2 to the multivariate case. When we consider
multivariate monotone functions, stratifying can still yield improvement in the convex order, but
some restrictions are needed, both on the distribution of the random vector used for sampling and
on the stratifying partitions. More specifically, we consider estimation of an integral with respect
to a random vector whose components are independent and under a stratification that preserves
independence on each set of the partition. The result we prove below actually only requires that
the random vector have an MTP2 distribution (independence being a particular case of it) and
that the stratification preserves MTP2.

Let f : [0,1]d → [0,1] be non-decreasing in each variable and let U be a random vector taking
values in [0,1]d with a non-atomic distribution. Our goal is to show that the estimate of E[f (U)]
improves by refining stratifications as follows. Recalling the definitions in Section 2, start with
a partition C = (C1, . . . ,Cb) of [0,1]d such that for some i the distribution L(U | U ∈ Ci) is
associated. Then split Ci into Ci ∩G and Ci ∩Gc , where G is an increasing set. Lemma 4.8 below
shows that the new partition obtained by this splitting achieves a better estimator of the integral
in terms of the convex order and Theorem 4.6 provides some conditions for its application.

Theorem 4.6. Consider a partition C = (C1, . . . ,Cc) of [0,1]d where each Ci is a lattice. Let B
be a partition obtained by a sequence of refinements C = C1 ≤ref. · · · ≤ref. Cm = B, such that for
k = 1, . . . ,m − 1 the partition Ck+1 is obtained from Ck by splitting one set of Ck , say Cik,k , into
Cik,k ∩Gk and Cik,k ∩Gc

k , where Gk = {x = (x1, . . . , xd) ∈ [0,1]d :ak ≤ xj } for some ak ∈ [0,1]
and some j ∈ {1, . . . , d}.

If U is MTP2 on [0,1]d and f : [0,1]d → [0,1] is non-decreasing, then W B
IE ≤cx W C

IE.

As mentioned earlier, independence is a particular (and in our framework the most important)
case of MTP2. Independence makes simulation of a multivariate random vector easy, even when
conditioned on an interval, since the strata can be constructed by knowing only the quantiles of
the marginal distributions. If the cost of simulation is negligible relative to the cost of evaluating
f , then even rejective sampling can be used, once the strata are defined.

The proof of Theorem 4.6 is preceded by the following lemmas.

Lemma 4.7. If U is an associated random vector, and G is an increasing set, then

L(U | U ∈ Gc) ≤st L(U | U ∈ G). (4.7)
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Conversely, if (4.7) holds for every increasing set G, then U is associated.

Proof. First note that (4.7) is equivalent to

P(U ∈ A|U ∈ G) ≥ P(U ∈ A|U ∈ Gc)

holding for all increasing sets A. The latter inequality is easily seen to be equivalent to

P(U ∈ A ∩ G)[1 − P(U ∈ G)] ≥ [P(U ∈ A) − P(U ∈ A ∩ G)]P(U ∈ G).

By simple cancelation this inequality is equivalent to

P(U ∈ A ∩ G) ≥ P(U ∈ A)P(U ∈ G),

which is equivalent to association of the random vector U by, e.g., Shaked [23]. �

Lemma 4.8. Consider a partition C = (C1, . . . ,Cc) of [0,1]d such that for some Ci the distri-
bution L(U | U ∈ Ci) is associated. Let G be an increasing set and let B = (C1, . . . ,Ci−1,Ci ∩
G,Ci ∩ Gc,Ci+1, . . . ,Cc). If f : [0,1]d → [0,1] is non-decreasing, then W B

IE ≤cx W C
IE.

Proof. With L(V1) = L(U | U ∈ Ci ∩ Gc) and L(V2) = L(U | U ∈ Ci ∩ G), Lemma 4.7 yields
V1 ≤st V2. The monotonicity of f implies f (V1) ≤st f (V2), and Lemma 4.5 now proves the
claim, applying arguments as in the proof of Theorem 4.4. �

The following result can be found in [10].

Lemma 4.9. If an MTP2 vector U takes values in a lattice of which C is a sublattice, then
L(U | U ∈ C) is MTP2 and hence associated.

The following corollary is obvious, and only requires the fact that the intersection of sublattices
is a lattice.

Corollary 4.10. If an MTP2 vector U takes values in some lattice, and C, G and Gc, are all
sublattices, then both L(U | U ∈ C ∩ G) and L(U | U ∈ C ∩ Gc) are MTP2, and hence also
associated.

Proof of Theorem 4.6. We first prove by induction that L(U | U ∈ Ci,k) are MTP2 for all Ci,k ∈
Ck and k = 1, . . . ,m. For k = 1 this follows from Lemma 4.9 and the assumptions that U is MTP2
and that Ci = Ci,1 are sublattices of [0,1]d . Assuming the statement true for 1 ≤ k < m, to verify
that it is true for k + 1 we need only show that L(U | U ∈ Cik,k ∩ Gk) and L(U | U ∈ Cik,k ∩ Gc

k)

are MTP2, which follows from Lemma 4.9, thus completing the induction.
Hence, again using Lemma 4.9, L(U | U ∈ Cik,k) is associated. Since Gk is increasing,

Lemma 4.8 now yields W
Ck+1
IE ≤cx W

Ck

IE for all k = 1, . . . ,m − 1, and, therefore, the theorem. �

A sequence of partitions as in Theorem 4.6 can be generated as follows: start with the whole
space [0,1]d , then split it into boxes by repeatedly subdividing one element of the partition by
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Figure 1. Non-attainable tiling.

an intersection with some G and Gc . In [0,1]2, the resulting partition forms a tiling of the square
by rectangles. Note that from the first step, a sequence of partitions created using G as above has
at least one line that crosses the whole square from side to side. Therefore the tiling of Figure 1
is not attainable by such a sequence.

Finally, recall that the hypothesis of MTP2 includes as a particular case the uniform distribu-
tion on [0,1]d , so Theorem 4.6 applies to the estimation of the integral

∫
f (u)du on [0,1]d , or

any lattice.

Appendix

Lemma A.1. Given a partition B∗ of N , consider a collection of independent random variables
{ξB∗

j }, B∗ ∈ B∗, j ∈ B∗, with those indexed by the same element B∗ of the partition being iden-
tically distributed.

For C∗ ≤ref. B∗, let {ξC∗
j } with C∗ ∈ C∗ and j ∈ C∗ be a collection of independent random

variables with the mixture distribution

L(ξC∗
j ) =

∑
B∗⊂C∗

|B∗|
|C∗| L(ξB∗

j ). (A.1)

Then

max
C∗∈C∗ max

j∈C∗ ξC∗
j ≤st max

B∗∈B∗ max
j∈B∗ ξB∗

j . (A.2)

Proof. Let pB∗ = P(ξB∗
1 ≤ t) for B∗ ∈ B∗ and pC∗ = P(ξC∗

1 ≤ t) for C∗ ∈ C∗.
We claim that

(pC∗
1 , . . . , pC∗

1︸ ︷︷ ︸
|C∗

1 |
, . . . , pC∗

c , . . . , pC∗
c︸ ︷︷ ︸

|C∗
c |

) ≺ (pB∗
1 , . . . , pB∗

1︸ ︷︷ ︸
|B∗

1 |
, . . . , pB∗

b , . . . , pB∗
b︸ ︷︷ ︸

|B∗
b |

).
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To see this, observe that (A.1) implies that the vector on the left-hand side above is obtained from
the one on the right by multiplying it by the n × n doubly stochastic matrix D, which is block
diagonal where the ith block is the |C∗

i | × |C∗
i | matrix with all entries equal to 1/|C∗

i |.
Hence, by the Schur concavity of the function (θ1, . . . , θn) �→ ∏n

i=1 θi , we have

P

(
max

C∗∈C∗ max
j∈C∗ ξC∗

j ≤ t
)

=
∏

C∗∈C∗
(pC∗

)|C∗| ≥
∏

B∗∈B∗
(pB∗

)|B∗| = P

(
max

B∗∈B∗ max
j∈B∗ ξB∗

j ≤ t
)
,

which is equivalent to (A.2). �

Proof of Theorem 3.1. Let B∗ and C∗ be partitions associated with B and C , respectively, sat-
isfying C∗ ≤ref. B∗, and let {ξB∗

j ,B∗ ∈ B∗, j ∈ B∗} and {ξC∗
j ,C∗ ∈ C∗, j ∈ C∗} be collections of

independent random variables with distributions

P(ξB∗
j ≤ t) = P

(
f (U) ≤ t | U ∈ B

)
,

P(ξC∗
j ≤ t) = P

(
f (U) ≤ t | U ∈ C

)
.

Then (A.1) holds (law of total probability), and the result follows by Lemma A.1. �

Proof of Theorem 4.1. In what follows we consider conditional expectation with respect to a
partition. Though the notion is standard, specifically, by E[f (U) + ε|B], we mean the random
variable that takes values f B := E[f (U) | U ∈ B] with probability |B∗|/n. Then

Var[f (U) + ε|B] = E
[{f (U) + ε − E[f (U) + ε|B]}2|B

]
= E

[{f (U) + ε − E[f (U)|B]}2|B
]

is a random variable taking values E[(f (U) + ε − f B)2 | U ∈ B] with probability |B∗|/n, and

E
[
Var[f (U) + ε|B]] =

∑
B∈B

|B∗|
n

E
[(

f (U) + ε − f B

)2 | U ∈ B
]

= 1

n

∑
B∈B

|B∗|E[(
f (V B

1 ) + ε − f B

)2]

= 1

n
Var

[∑
B∈B

∑
j∈B∗

i

f (V B
j ) + εB

j

]

= nVar[W B
IE].

If C ≤ref. B, then for any random variable Y , say, Var[E[Y |B]] ≥ Var[E[Y |C]] by Jensen’s
inequality, and now the usual variance decomposition of Y (see, e.g., [21], Theorem 13.3.1)
implies E[Var[Y |B]] ≤ E[Var[Y |C]]. Therefore

E
[
Var[f (U) + ε|B]] ≤ E

[
Var[f (U) + ε|C]],
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and hence

Var[W B
IE] = 1

n
E

[
Var[f (U) + ε|B]] ≤ 1

n
E

[
Var[f (U) + ε|C]] = Var[W C

IE]. �
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