
Bernoulli 16(2), 2010, 493–513
DOI: 10.3150/09-BEJ219

Estimation of a probability with optimum
guaranteed confidence in inverse binomial
sampling
LUIS MENDO* and JOSÉ M. HERNANDO**

E.T.S. Ingenieros de Telecomunicación, Polytechnic University of Madrid, 28040 Madrid, Spain.
E-mails: *lmendo@grc.ssr.upm.es; **hernando@grc.ssr.upm.es

Sequential estimation of a probability p by means of inverse binomial sampling is considered. For μ1,μ2 >

1 given, the accuracy of an estimator p̂ is measured by the confidence level P [p/μ2 ≤ p̂ ≤ pμ1]. The
confidence levels c0 that can be guaranteed for p unknown, that is, such that P [p/μ2 ≤ p̂ ≤ pμ1] ≥
c0 for all p ∈ (0,1), are investigated. It is shown that within the general class of randomized or non-
randomized estimators based on inverse binomial sampling, there is a maximum c0 that can be guaranteed
for arbitrary p. A non-randomized estimator is given that achieves this maximum guaranteed confidence
under mild conditions on μ1, μ2.

Keywords: confidence level; interval estimation; inverse binomial sampling; sequential estimation

1. Introduction

In a sequence of Bernoulli trials with probability of success p at each trial, consider the estima-
tion of p by inverse binomial sampling. This sampling scheme, first discussed by Haldane (1945),
consists in observing the sequence until a given number r of successes is obtained. The resulting
number of trials N is a sufficient statistic for p (Lehmann and Casella (1998), page 101). The
uniformly minimum variance unbiased estimator of p is (Mikulski and Smith (1976))

p̂ = r − 1

N − 1
(1.1)

and for r ≥ 3, it has a normalized mean square error E[(p̂ − p)2]/p2 (or Var[p̂]/p2) lower than
1/(r −2), irrespective of p (Mikulski and Smith (1976); Sathe (1977); Prasad and Sahai (1982)).

This paper analyzes inverse binomial sampling from a different point of view, related to inter-
val estimation. Given μ1,μ2 > 1, the accuracy of an estimator p̂ is measured by the probability c

that p̂ lies in the interval [p/μ2,pμ1]. The motivation to use a relative interval [p/μ2,pμ1],
instead of an interval [x1, x2] with x1, x2 fixed, is the fact that P [p/μ2 ≤ p̂ ≤ pμ1], unlike
P [x1 ≤ p̂ ≤ x2], has a definite meaning independent of p. Moreover, using a relative interval
allows another interpretation of c: since p/μ2 ≤ p̂ ≤ pμ1 if and only if p̂/μ1 ≤ p ≤ p̂μ2, c

gives the probability that the true value p is covered by the random interval [p̂/μ1, p̂μ2]. In the
sequel, c will be referred to as the confidence (or confidence level) associated with μ1, μ2.
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Recently, Mendo and Hernando (2006, 2008a) have shown that the estimator

p̂ = r − 1

N
(1.2)

has the following properties for r ≥ 3. The confidence level c associated with μ1, μ2 has an
asymptotic value c̄ as p → 0, namely c̄ = γ (r, (r − 1)μ2) − γ (r, (r − 1)/μ1), where

γ (r, t) = 1

�(r)

∫ t

0
sr−1 exp(−s)ds

is the regularized incomplete gamma function. Furthermore, the confidence for any p ∈ (0,1)

exceeds this asymptotic value provided that μ1 and μ2 satisfy certain lower bounds. Similar re-
sults have been established (Mendo and Hernando (2008b)) for the uniformly minimum variance
unbiased estimator (1.1). Using a more general setting in which the Bernoulli random variables
are replaced by arbitrary bounded random variables, Chen (2007) has obtained comparable (al-
though somewhat less tight) results for (1.1), as well as for the maximum likelihood estimator

p̂ = r

N
. (1.3)

From the aforementioned results, the question naturally arises as to whether the attained con-
fidence could be improved using estimators other than (1.1)–(1.3). This motivates the study of
arbitrary estimators based on inverse binomial sampling. In this regard, it is noted that 1 − c can
be expressed as the risk E[L(p̂)] corresponding to the loss function L defined as

L(x) =
{

0, if x ∈ [p/μ2,pμ1],
1, otherwise.

(1.4)

Since N is a sufficient statistic, for any estimator defined in terms of the observed Bernoulli
random variables, there exists an estimator that depends on the observations through N only
and that has the same risk; this equivalent estimator is possibly a randomized one (Lehmann and
Casella (1998), page 33). (The fact that L is non-convex prevents application of a corollary of the
Rao–Blackwell theorem (Lehmann and Casella (1998), page 48) to discard randomized estima-
tors.) Thus, attention can be restricted to estimators that depend on the observed variables only
through N ; however, both randomized and non-randomized estimators have to be considered.

The purpose of the present paper is to investigate the limits on the confidence levels c0 that
can be guaranteed (in the sense that the actual confidence equals or exceeds c0, irrespective of p)
in inverse binomial sampling. More specifically, the objectives are:

• to determine the supremum of infp∈(0,1) c over all (randomized or non-randomized) estima-
tors based on inverse binomial sampling;

• to find an estimator, if it exists, that can achieve this supremum.

Consequently, the main focus of this paper is on non-asymptotic results, valid for p ∈ (0,1).
Nonetheless, asymptotic results for p → 0 will also be derived since, apart from their own theo-
retical importance, they provide an upper bound on (and an indication of) what can be achieved
for arbitrary p.
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Section 2 shows that lim infp→0 c has a maximum over all estimators based on inverse bino-
mial sampling and computes this maximum. This sets an upper bound on the confidence that
can be guaranteed by an arbitrary estimator. Section 3 establishes that this upper bound is also
a maximum, that is, estimators exist that can achieve this guaranteed confidence. Specifically,
estimators are given that guarantee the maximum confidence for sufficiently small p and that
guarantee the maximum confidence for any p, under certain conditions on the relative interval
being considered. Section 4 discusses the results, comparing them with those from other works.
Section 5 contains proofs of all results in the paper.

2. Asymptotic analysis

It is assumed in the sequel that r ≥ 3. Let t (j) denote t (t − 1) · · · (t − j + 1). The probability
function of N , f (n) = P [N = n], is

f (n) = (n − 1)(r−1)

(r − 1)! pr(1 − p)n−r for n ≥ r. (2.1)

As justified in Section 1, it is sufficient to consider (possibly randomized) estimators defined in
terms of the sufficient statistic N . Let F denote the set of all functions from {r, r + 1, r + 2, . . .}
to R. A non-randomized estimator p̂ can be described as p̂ = g(N), with g ∈ F . Thus, a non-
randomized estimator is entirely specified by its function g. A randomized estimator is a random
variable p̂ whose distribution depends, in general, on the value taken by N . Let �n denote
the distribution function of p̂ conditioned on N = n. The randomized estimator is completely
specified by the functions �n, n ≥ r . Thus, denoting by F R the class of all functions from
{r, r + 1, r + 2, . . .} to the set of real functions of a real variable, a randomized estimator is
defined by a function G ∈ F R that assigns �n to each n.

Non-randomized estimators form a subset of the class of randomized estimators. Thus,
any statement that applies to randomized estimators will also be valid, in particular, for non-
randomized estimators. The reason that the specialized class of non-randomized estimators has
been explicitly defined is that, on one hand, their simplicity makes them more attractive for appli-
cations and, on the other hand, it will be seen that, under certain conditions, no loss of optimality
in guaranteed confidence is incurred by restricting to non-randomized estimators. Throughout
the paper, when referring to an arbitrary estimator without specifying its type, the general class
of randomized estimators (including the non-randomized ones) will be meant.

Given any estimator G ∈ F R, the confidence associated with μ1, μ2 will be expressed in the
sequel as a function c(p) (that is, the dependence on p will be explicitly indicated). Given r , μ1
and μ2, the latter function is determined by G. An estimator is said to guarantee a confidence
level c0 in the interval (p1,p2) if c(p) ≥ c0 for all p ∈ (p1,p2). If the interval is (0,1), then
the estimator is said to globally guarantee this confidence level. An estimator asymptotically
guarantees a certain c0 if there exists ε > 0 such that the estimator guarantees c0 in the interval
(0, ε).

The problem being addressed can be rephrased as that of optimizing the globally guaran-
teed confidence within the general class of estimators based on inverse binomial sampling, or
finding a minimax estimator with respect to the risk defined by the loss function (1.4). The
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following proposition, and its ensuing particularization, provides the motivation for studying
lim infp→0 c(p) as part of this optimization problem.

Proposition 1. If a given estimator, with confidence function c(p), guarantees a confidence level
c0 in an interval (p1,p2), then, necessarily, lim infp→p0 c(p) ≥ c0 for any p0 ∈ [p1,p2].

Particularizing Proposition 1 to p1 = p0 = 0, it is seen that lim infp→0 c(p) represents an
upper bound on the confidence levels that can be globally or asymptotically guaranteed.

An important subclass of non-randomized estimators is formed by those defined by functions
g ∈ F for which c(p) has an asymptotic value, that is, for which limp→0 P [p/μ2 ≤ g(N) ≤
pμ1] exists. The set of all such functions will be denoted Fp. As will be seen, another important
subclass is that corresponding to the set of functions g ∈ F for which limn→∞ ng(n) exists, is
finite and non-zero. This set will be denoted Fn. The following result establishes that Fn ⊂ Fp.

Proposition 2. For a non-randomized estimator defined by g ∈ Fn, limp→0 c(p) exists and
equals c̄, given by

c̄ = γ (r,�μ2) − γ (r,�/μ1), � = lim
n→∞ng(n). (2.2)

The converse of Proposition 2 is not true; that is, Fn �= Fp. A simple counterexample is given
by

g(n) =
{

ω′/n, if there exists k ∈ N such that n = 2k ,
ω/n, otherwise,

with ω′ �= ω. It is easily seen that this function is in Fp, with limp→0 c(p) = γ (r,ωμ2) −
γ (r,ω/μ1); however, limn→∞ ng(n) does not exist.

Given r , μ1 and μ2, the maximum of c̄ over all g ∈ Fn is attained when limn→∞ ng(n) equals
�∗, given by

�∗ = r
logμ2 − log(1/μ1)

μ2 − 1/μ1
, (2.3)

as is readily seen by differentiating c̄ in (2.2). Let c∗ denote the resulting maximum. Defining

M = μ1μ2, (2.4)

the terms �∗/μ1 and �∗μ2 can be expressed as

�∗/μ1 = r logM

M − 1
, �∗μ2 = rM logM

M − 1
(2.5)

and thus

c∗ = γ

(
r,

rM logM

M − 1

)
− γ

(
r,

r logM

M − 1

)
. (2.6)
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The following theorem establishes that c∗ is not only the maximum of limp→0 c(p) within the
subclass of non-randomized estimators defined by Fn, but also the maximum of lim infp→0 c(p)

within the general class of randomized estimators defined by F R.

Theorem 1. The maximum of lim infp→0 c(p) over all estimators defined by functions G ∈ FR
is c∗, given by (2.6).

As can be seen from (2.6), c∗ depends on μ1 and μ2 only through M . An explanation of this
result is as follows. Given μ1, μ2, let p̂ be an arbitrary estimator and consider a > 0. If μ1 and μ2
are replaced by μ′

1 = aμ1 and μ′
2 = μ2/a, respectively, defining a modified estimator p̂′ = ap̂,

it is clear that p/μ′
2 ≤ p̂′ ≤ pμ′

1 if and only if p/μ2 ≤ p̂ ≤ pμ1. This shows that any value of
lim infp→0 c(p) that can be achieved for μ1, μ2 can also be achieved for aμ1, μ2/a (using a
different estimator), and conversely. Thus, c∗ is the same for μ1, μ2 and for aμ1, μ2/a.

3. An optimum estimator for certain relative intervals

The asymptotic results in Section 2 impose a limit on the confidence levels that can be guaran-
teed, as established by the following corollary of Proposition 1 and Theorem 1.

Corollary 1. No estimator can guarantee a confidence level greater than c∗, given by (2.6), in
an interval (0,p2).

According to Corollary 1, c∗ is an upper bound on the confidence that can be guaranteed either
asymptotically or globally. It remains to be seen if there exists some estimator that can actually
guarantee the confidence level c∗. If it exists, that estimator will be optimum from the point
of view of guaranteed confidence. A related question is if one such optimum estimator can be
found within the restricted class of non-randomized estimators. As will be shown, the answer to
both questions turns out to be affirmative for all values of μ1 and μ2 in the case of asymptotic
guarantee and for certain values of μ1 and μ2 in the case of global guarantee.

Consider a non-randomized estimator p̂ = g(N) of the form

g(n) = �

n + d
, (3.1)

where � and d are parameters (with � = limn→∞ ng(n)). This is a generalization of the estima-
tors (1.1)–(1.3). Note that (3.1) has an asymptotic confidence c̄ given by (2.2) and, for � = �∗,
it achieves the maximum lim infp→0 c(p) that any estimator can have, according to Theorem 1.

Under a mild condition on d , the estimator given by (3.1) with � = �∗ can be shown to
asymptotically guarantee the confidence c∗ for any μ1, μ2 > 0, as established by Theorem 2
below.

Theorem 2. The non-randomized estimator

p̂ = �∗

N + d
(3.2)
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asymptotically guarantees the optimum confidence c∗ given in (2.6) if

d >
1

2

(
−r + M + 1

M − 1

)
, (3.3)

where M is defined by (2.4).

An estimator of this form can also globally guarantee the confidence level c∗, provided that
μ1, μ2 are not too small, as discussed in the following.

For d ∈ Z, the estimator defined by (3.1) lends itself to an analysis similar to that carried out
by Mendo and Hernando (2006, 2008a) for the particular case (1.2). This allows the derivation
of sufficient conditions on μ1, μ2 which ensure that c(p) ≥ c̄ for all p ∈ (0,1). The least re-
strictive conditions are obtained for d = 1 and are given in the following proposition, which,
particularized to � = �∗, will yield the desired result on globally guaranteeing the optimum
confidence.

Proposition 3. The confidence of the non-randomized estimator

p̂ = �

N + 1
(3.4)

exceeds its asymptotic value c̄, given by (2.2), for all p ∈ (0,1) if

μ1 ≥ �

r − √
r
, μ2 ≥ r + √

r + 1

�
. (3.5)

Particularizing to � = �∗, Proposition 3 establishes that there exists a non-randomized es-
timator that can globally guarantee the optimum confidence c∗ for certain values of μ1, μ2. It
turns out that for � = �∗ and r given, one of the two inequalities in (3.5) implies the other. Thus,
for each r , only one of the inequalities needs to be considered in order to determine the allowed
range for μ1, μ2. The result is stated in the following theorem.

Theorem 3. The non-randomized estimator

p̂ = �∗

N + 1
, (3.6)

with �∗ as in (2.3), globally guarantees the optimum confidence c∗ given by (2.6) if either of the
following conditions is satisfied:

M − 1

logM
≥ r + √

r

r − 1
for r ∈ {3,4}; (3.7)

M logM

M − 1
≥ r + √

r + 1

r
for r ≥ 5, (3.8)

where M is defined by (2.4). These conditions can be jointly expressed as M ≥ h(r), where h is
an increasing function.
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Given r , consider the region of (μ1,μ2) values that satisfy the appropriate condition (3.7) or
(3.8), with μ1,μ2 > 1. From Theorem 3, the boundary of this region is a continuous, decreasing,
concave curve in (1,∞) × (1,∞), namely, the curve determined by the equation μ1μ2 = h(r).
The region in question is the union of this curve and the portion of the plane lying above and to
the right. Furthermore, the region for r ′ > r contains that for r .

According to the preceding results, the problem of optimum estimation of p, in the sense of
globally guaranteeing the maximum possible confidence, is solved by the non-randomized es-
timator (3.6) for μ1, μ2 satisfying (3.7) or (3.8). Equivalently, this estimator is minimax with
respect to the risk defined by the loss function given in (1.4) (maximin with respect to confi-
dence).

The fact that c∗ depends on μ1, μ2 only through M gives rise to another interpretation of the
result in Theorem 3. For r and M given, consider the problem of finding, among all interval
estimators of p with a ratio M between their end-points, that which maximizes the globally
guaranteed confidence. The solution, if M satisfies (3.7) or (3.8), is[

r logM

(M − 1)(N + 1)
,

rM logM

(M − 1)(N + 1)

]
(3.9)

and the resulting maximum is c∗, as expressed by (2.6). Equivalently, given r and a prescribed
confidence c0, if a value for M is computed such that (2.6) holds with c∗ = c0 and if it satisfies
(3.7) or (3.8), then the interval estimator (3.9) minimizes the ratio between interval end-points
subject to a globally guaranteed confidence level c0. Observe that it is meaningful to prescribe, or
minimize, the ratio of the interval end-points, rather than their difference, since a given value for
the latter might be either unacceptably high or unnecessarily small, depending on the unknown p,
whereas the ratio has a definite meaning, regardless of p.

According to Proposition 3, conditions (3.5) are sufficient; however, they may not be neces-
sary. The same applies to (3.7) and (3.8). Determining the most general conditions which assure
optimality of (3.6) is a difficult problem.1 Nevertheless, as will be illustrated, the sufficient con-
ditions (3.7) or (3.8) cover most cases of interest.

4. Discussion

Figure 1(a) depicts the relationship between c∗, M and r , for M satisfying (3.7) or (3.8). The
guaranteed confidence c∗ is represented, for convenience, as a function of

√
M − 1, each dashed

curve corresponding to a different r . The figure also represents, with solid line, the minimum c∗
that fulfills inequalities (3.7) or (3.8); this corresponds to the lowest r for which the applicable
inequality holds. Figure 1(b) shows this minimum r as a function of

√
M − 1, with c∗ as a

parameter. From Corollary 1, this figure also has a more general interpretation as the minimum r

that is required in order to guarantee (either globally or asymptotically) a desired confidence
level using any estimator based on inverse binomial sampling.

1Although c(p) (or a lower bound thereof) can be expressed in terms of the Gauss hypergeometric function 2F1(a, b; c; t)
(see the proof of Theorem 2), standard algorithms for evaluation of hypergeometric sums (Petkovšek et al. (1996)) are
not directly applicable because of the existing dependence between b and t .
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(a)

(b)

Figure 1. Behavior of optimum guaranteed confidence as a function of
√

M − 1: (a) c∗ (dashed) and
minimum c∗ (solid); (b) minimum r that guarantees a confidence level.
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Given μ1, μ2 and c, if the point (
√

M − 1, c) with M = μ1μ2 lies in the region above the
solid curve in Figure 1(a), then there exist values of r for which the estimator (3.6) globally
guarantees the confidence level c for the relative interval defined by μ1 and μ2; the minimum
such r is displayed in Figure 1(b). As mentioned earlier, the region referred to in Figure 1(a)
(or, equivalently, conditions (3.7) and (3.8)) covers most cases of interest. For example, any
confidence greater than 85% can be globally guaranteed for any relative interval with

√
M − 1 ≤

1.108, that is, such that μ1μ2 ≤ 4.443.
An important subclass of relative intervals is that for which μ1 = μ2 = 1 + m, m > 0. An

interval of this form corresponds to the requirement that p̂ and p do not deviate from each other
by a factor greater than 1 +m; the parameter m is thus interpreted as a relative error margin. The
guaranteed confidence and required r in this case can be read directly from Figures 1(a) and 1(b),
as

√
M − 1 = m. This particular case is analyzed by Mendo and Hernando (2006, 2008a) for

the estimator (1.2). Comparing Figure 1 of Mendo and Hernando (2008a) with Figure 1(a), the
individual (dashed) curves in the latter are seen to be above those in the former (this is most
noticeable for small r), in accordance with the fact that the estimator (3.6) is optimum. This
yields a reduction in the error margin m for a given r and a desired guaranteed confidence. For
example, taking r = 10, the estimator (1.2) guarantees a confidence level of 95% for m = 0.9074,
whereas (3.6) guarantees the same confidence for m = 0.8808. Furthermore, the latter value is
the smallest m for which a confidence level of 95% can be guaranteed by any estimator with
the r in question.

As another manifestation of the optimum character of the estimator (3.6), the curves in Fig-
ure 1(b) for

√
M −1 = m are farther to the left than those in Figure 5(a) of Mendo and Hernando

(2006). Since, from (2.1), E[N ] = r/p, for certain combinations of m and c, this provides a re-
duction in average observation time to achieve a globally guaranteed confidence c for an error
margin m. (The fact that the reduction is obtained only for certain combinations of m and c is
a consequence of the discrete character of r .) Thus, for m = 50%, the estimator (1.2) requires
r = 18 in order to globally guarantee a 90% confidence level, whereas r = 17 suffices for the
estimator (3.6); furthermore, this is the lowest required r that can be achieved by any estimator.

Comparing the attainable region shown in Figure 1(a), that is, the region above the solid curve,
with the corresponding region in Figure 1 of Mendo and Hernando (2008a), they are seen to
have similar shape and size, except that for small m, the boundary curve is slightly higher in Fig-
ure 1(a). Thus, the applicability of the estimator (3.6) is similar to that of (1.2) (while achieving
better performance).

Another interesting particularization is μ1 = 1 + m, μ2 = 1/(1 − m), 0 < m < 1, which cor-
responds to requiring that the absolute error |p̂ − p| does not exceed a fraction m of the true
value p. The results for this case can be compared with those of Mendo and Hernando (2008a)
and Chen (2007). For m = 40% with a globally guaranteed confidence level of 90%, the esti-
mator (1.2) requires r = 17 (Mendo and Hernando (2008a), Proposition 1). The results of Chen
(2007), Theorem 2, give a sufficient value of r = 46 for the estimator (1.3). On the other hand,
from Theorem 3, the estimator (3.6) only requires r = 16; moreover, it is assured that any other
estimator requires at least this r to guarantee (either globally or asymptotically) the same confi-
dence for the m under consideration.
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5. Proofs

The following notation is introduced for convenience:

φ(t) = t r−1 exp(−t)

(r − 1)! , (5.1)

n1 = ��/(pμ1) − d
, n2 = ��μ2/p − d�. (5.2)

Proof of Proposition 1. Let ci denote lim infp→p0 c(p) and assume that ci < c0. For ε = (c0 −
ci)/2, the definition of limit inferior implies that there exists pε ∈ (p1,p2) such that c(pε) <

ci + ε < c0 and thus the estimator does not guarantee the confidence level c0 in (p1,p2). This
establishes the result. �

Lemma 1. For all t > 0, the function φ defined in (5.1) satisfies

0 < φ(t) ≤ (r − 1)r−1 exp(−r + 1)

(r − 1)! < 1. (5.3)

Proof. The first inequality in (5.3) is obvious. Let Qr = (r − 1)r−1 exp(−r + 1)/(r − 1)!.
Maximizing φ(t) with respect to t , it is seen that φ(t) ≤ Qr . Since Qr+1/Qr = (1 + 1/(r −
1))r−1 exp(−1) < 1 and Q3 = 2 exp(−2) < 1, it follows that Qr < 1 for all r ≥ 3. �

Proof of Proposition 2. Consider g ∈ Fn and let � = limn→∞ ng(n). Given ε > 0, there exists
nε such that |ng(n) − �| < ε for all n ≥ nε , that is, (� − ε)/n < g(n) < (� + ε)/n. Using this,
the confidence c(p) = P [p/μ2 ≤ g(N) ≤ pμ1] can be bounded for p ≤ (� − ε)/(μ1nε) as

c(p) ≥ P [�(� + ε)/(pμ1)
 ≤ N ≤ �(� − ε)μ2/p�], (5.4)

c(p) ≤ P [�(� − ε)/(pμ1)
 ≤ N ≤ �(� + ε)μ2/p�]. (5.5)

Let b(n,p; i) denote the binomial probability function with parameters n and p evaluated at i.
From the relationship between binomial and negative binomial distributions, (5.4) is written as

c(p) ≥
r−1∑
i=0

b
(�(� + ε)/(pμ1)
 − 1,p; i) −

r−1∑
i=0

b
(�(� − ε)μ2/p�,p; i). (5.6)

According to the Poisson theorem (Papoulis and Pillai (2002), page 113), the right-hand side
of (5.6) converges to γ (r, (� − ε)μ2) − γ (r, (� + ε)/μ1) as p → 0. This implies that

lim inf
p→0

c(p) ≥ γ
(
r, (� − ε)μ2

) − γ
(
r, (� + ε)/μ1

)
. (5.7)

Since ∂γ (r, t)/∂t = φ(t), Lemma 1 establishes that 0 < ∂γ (r, t)/∂t < 1. Using this, (5.7) yields
lim infp→0 c(p) ≥ c̄ − (μ2 + 1/μ1)ε. Taking into account that this holds for all ε > 0, it follows
that lim infp→0 c(p) ≥ c̄. Applying similar arguments to (5.5) gives lim supp→0 c(p) ≤ c̄. Thus,
limp→0 c(p) exists and equals c̄. �
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Lemma 2 (Abramowitz and Stegun (1970), inequality (4.1.33)). t/(1 + t) ≤ log(1 + t) ≤ t

for t > −1, with equality if and only if t = 0.

Lemma 3. Let (pk) be a positive sequence which converges to 0. For any ν1, ν2 with ν2 > ν1 > 0,
the sequence of functions (φk) defined as

φk(ν) = (1 − pk)
ν/pk−r

(r − 1)!
r−1∏
i=1

(ν − ipk) (5.8)

converges uniformly to φ(ν), given by (5.1), in the interval [ν1, ν2].

Proof. Since the sequence (pk) is positive and converges to 0, there exists k1 such that pk <

min{ν1/(r − 1),1} for k ≥ k1. Thus, φk(ν) > 0 for ν ∈ [ν1, ν2], k ≥ k1 and, therefore,

|φk(ν) − φ(ν)| = min{φk(ν),φ(ν)}
(

max

{
φk(ν)

φ(ν)
,

φ(ν)

φk(ν)

}
− 1

)
. (5.9)

Lemma 1 implies that min{φk(ν),φ(ν)} ≤ 1. On the other hand,

max

{
φk(ν)

φ(ν)
,

φ(ν)

φk(ν)

}
= exp

∣∣∣∣log
φk(ν)

φ(ν)

∣∣∣∣.
Substituting into (5.9), we have

|φk(ν) − φ(ν)| ≤ exp

∣∣∣∣log
φk(ν)

φ(ν)

∣∣∣∣ − 1. (5.10)

From (5.1) and (5.8), it follows that, assuming ν ∈ [ν1, ν2] and k ≥ k1,

∣∣∣∣log
φk(ν)

φ(ν)

∣∣∣∣ ≤
∣∣∣∣∣
r−1∑
i=1

log

(
1 − ipk

ν

)∣∣∣∣∣ +
∣∣∣∣
(

ν

pk

− r

)
log(1 − pk) + ν

∣∣∣∣. (5.11)

Using Lemma 2, the first term in the right-hand side of (5.11) is bounded as follows:∣∣∣∣∣
r−1∑
i=1

log

(
1 − ipk

ν

)∣∣∣∣∣ = −
r−1∑
i=1

log

(
1 − ipk

ν

)
<

r−1∑
i=1

ipk

ν − ipk

. (5.12)

As for the second term, since ν ∈ [ν1, ν2], there exists k2 ≥ k1 such that pk < min{ν1/r,1} for
k ≥ k2. Thus, (ν/pk − r) log(1 − pk) < 0, whereas ν > 0. From Lemma 2, −pk/(1 − pk) <

log(1 − pk) < −pk . It follows that∣∣∣∣
(

ν

pk

− r

)
log(1 − pk) + ν

∣∣∣∣ < max

{∣∣∣∣−
(

ν

pk

− r

)
pk + ν

∣∣∣∣,
∣∣∣∣−

(
ν

pk

− r

)
pk

1 − pk

+ ν

∣∣∣∣
}

(5.13)

= max

{
r,

|r − ν|
1 − pk

}
pk < max{r, ν2} pk

1 − pk

.
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Combining (5.10)–(5.13) yields the following bound, valid for all ν ∈ [ν1, ν2], k ≥ k2:

|φk(ν) − φ(ν)| < exp

[(
r−1∑
i=1

i

ν − ipk

+ max{r, ν2}
1 − pk

)
pk

]
− 1. (5.14)

The right-hand side of (5.14) tends to 0 as k → ∞. Therefore, supν∈[ν1,ν2] |φk(ν) − φ(ν)| also
tends to 0, which establishes the result. �

Proof of Theorem 1. For α ∈ (0,1], let the sequence (pk), k ∈ N be defined as pk = αM−k ,
with M given by (2.4), and let the sequence of intervals (Ik) be defined as Ik = (pk/μ2,pkμ1].
Consider also the sequence (fk), where fk is the probability function of N with parameters r

and pk . From (2.1) and (5.8),

fk(n) = pkφk(npk). (5.15)

To facilitate the development, it is convenient to first analyze non-randomized estimators, and
then generalize to randomized estimators. Given a non-randomized estimator specified by g ∈ F ,
let the sequence of sets (Sk) be defined such that n ∈ Sk if and only if g(n) ∈ Ik . Since the
intervals Ik are disjoint for different k, the sets Sk are also disjoint. Let the function σ be defined
such that σ(n) = k if and only if n ∈ Sk , with σ(n) = 0 (or an arbitrary negative value) if n /∈ Sk

for all k ∈ N. Thus, σ gives the index k of the interval Ik that g associates to each n, if any. The
function σ is determined by g; and, for a given n0, σ(n0) can be modified without affecting the
rest of values σ(n), n �= n0 by adequately choosing g(n0).

For the considered non-randomized estimator, let ck denote the probability that p̂ lies in Ik

when p = pk , i.e. ck = ∑
n∈Sk

fk(n). Further, let C(h,H) = ∑h+H−1
k=h ck for h, H ∈ N arbitrary.

Defining

s(n) =
{

fσ(n)(n), if n ∈ Sh ∪ · · · ∪ Sh+H−1,
0, otherwise,

the sum C(h,H) can be expressed as
∑∞

n=r s(n). It follows that

C(h,H) ≤
∞∑

n=r

max
k∈{h,...,h+H−1}

fk(n), (5.16)

which holds with equality if the estimator satisfies

σ(n) = arg max
k∈{h,...,h+H−1}

fk(n) for all n ∈ N, n ≥ r, (5.17)

where, if the maximum is reached at more than one index k, the arg max function is arbitrarily
defined to give the lowest such index.

As for randomized estimators, consider an arbitrary function G ∈ F R, that for each n spec-
ifies �n, the distribution function of p̂ conditioned on N = n. Let I c = (−∞,ph+H−1/μ2] ∪
(phμ1,∞). Conditioned on N = n, let πn,k and πc

n respectively denote the probabilities that p̂

is in Ik and in I c. Obviously,

πn,h + · · · + πn,h+H−1 + πc
n = 1. (5.18)
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For N = n, the numbers πn,h, . . . , πn,h+H−1,π
c
n indicate how the conditional probability asso-

ciated to all possible values of p̂ (that is, 1 in total) is divided among Ih, . . . , Ih+H−1, I c. For
a given n0, any combination of values πn0,h, . . . , πn0,h+H−1,π

c
n0

allowed by (5.18) can be real-
ized, without affecting other values πn,k , πc

n for n �= n0, by adequately choosing the distribution
function �n0 . Defining ck and C(h,H) as in the non-randomized case, the former is expressed
as

ck =
∞∑

n=r

πn,kfk(n). (5.19)

Since all terms in (5.19) are positive, the series converges absolutely, and thus C(h,H) can be
written as

C(h,H) =
h+H−1∑

k=h

ck =
∞∑

n=r

h+H−1∑
k=h

πn,kfk(n).

It is evident from this expression that C(h,H) is maximized if, for each n, the values πn,k , πc
n are

chosen as πn,l = 1 for l = arg maxk fk(n), πn,k = 0 for k �= l, πc
n = 0; and the resulting maximum

coincides with the right-hand side of (5.16). Thus the inequality (5.16), initially derived for non-
randomized estimators, also holds for the general class of randomized estimators. This implies
that for any randomized estimator there exists a non-randomized estimator that attains the same
or greater C(h,H).

Let the function ḡ ∈ F be defined as ḡ(n) = �∗/n, and consider the non-randomized estimator
specified by this function. The sets Sk and function σ associated to this estimator will be denoted
as S̄k and σ̄ respectively. It is seen that

S̄k = [
�∗/(μ1pk),�

∗μ2/pk

) ∩ {r, r + 1, r + 2, . . .}. (5.20)

Let the sequence of functions (f̄k) be defined as f̄k(n) = pkφ(npk). It is readily seen that the
equation f̄k(t) = f̄k+1(t) has only one solution, given as t = �∗μ2/pk . Similarly, f̄k−1(t) =
f̄k(t) has the solution t = �∗/(μ1pk). Taking into account that the functions f̄k are unimodal,
this implies that f̄k(n) ≥ f̄k−1(n) and f̄k(n) ≥ f̄k+1(n) for n ∈ S̄k . An analogous argument shows
that f̄k(n) > f̄k−i (n) and f̄k(n) > f̄k+i (n) for n ∈ S̄k and i ≥ 2. Therefore, the function σ̄ as-
sociated to ḡ satisfies a modified version of (5.17) in which fk is replaced by f̄k , that is, φk in
(5.15) is replaced by its limit φ. In the following, using the fact that the difference between φk

and φ is small for large k, the estimator defined by ḡ will be used to derive from (5.16) a more
explicit upper bound on C(h,H). Since the sum C(h,H) attained by any estimator is equalled
or exceeded by some non-randomized estimator, it will be sufficient to restrict to the class of
non-randomized estimators.

Consider an arbitrary non-randomized estimator defined by g ∈ F with its corresponding func-
tion σ . Differentiating (2.1) with respect to p, it is seen that ∂f (n)/∂p is positive for p < r/n

and negative for p > r/n. According to (5.20),

�∗/(μ1n) ≤ pk < �∗μ2/n for n ∈ S̄k. (5.21)
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Using Lemma 2, it stems from (2.5) that

�∗/μ1 < r < �∗μ2. (5.22)

The first inequality in (5.21) and the second in (5.22) imply that pk−1 = Mpk ≥ �∗μ2/n > r/n

for n ∈ S̄k . Thus ∂f (n)/∂p < 0 for p ≥ pk−1. This implies that fk+i (n) < fk−1(n) for n ∈ S̄k

and i ≤ −2. It follows that if σ(n0) < σ̄ (n0) − 1 for a given n0, the sum C(h,H) could be made
larger by modifying the value g(n0) so as to attain σ(n0) = σ̄ (n0)−1; unless σ(n0) = h+H −1,
in which case modifying g(n0) cannot make C(h,H) larger. Analogously, the second inequality
in (5.21) and the first in (5.22) yield fk+i (n) < fk+1(n) for n ∈ S̄k and i ≥ 2. Therefore, if
σ(n0) > σ̄ (n0) + 1 for some n0, C(h,H) could be made larger by modifying g(n0), unless
σ(n0) = h.

According to the above, in order to obtain an upper bound on C(h,H), it suffices to con-
sider non-randomized estimators such that σ(n) ∈ {σ̄ (n) − 1, σ̄ (n), σ̄ (n) + 1} for n ∈ S̄h ∪ · · · ∪
S̄h+H−1, σ(n) = h for n < ��∗/(μ1ph)
 and σ(n) = h+H −1 for n ≥ ��∗μ2/ph+H−1
. Thus,
from (5.16),

C(h,H) ≤
h+H−1∑

k=h

∑
n∈S̄k

max
i∈{−1,0,1}

fk+i (n) +
��∗/(μ1ph)
−1∑

n=r

fh(n)

+
∞∑

n=��∗μ2/ph+H−1

fh+H−1(n) (5.23)

≤
h+H−1∑

k=h

∑
n∈S̄k

max
i∈{−1,0,1}

fk+i (n) + 2.

Let ν1 = �∗/μ1, ν2 = �∗μ2, and consider ε > 0. From Lemma 3, there exists k1 such that
|φk(ν) − φ(ν)| < ε for ν ∈ [ν1, ν2], k ≥ k1. In addition, (5.20) implies that npk ∈ [ν1, ν2] for
n ∈ S̄k . From these facts and (5.15) it stems that |fk(n)/pk − φ(npk)| < ε for n ∈ S̄k , k ≥ k1.
Thus, for k ≥ k1 + 1

max
i∈{−1,0,1}

fk+i (n) < max
i∈{−1,0,1}

[
pk+i

(
φ(npk+i ) + ε

)]
(5.24)

≤ max
i∈{−1,0,1}

(pk+iφ(npk+i )) + εpk−1.

As previously shown, f̄k(n) = pkφ(npk) equals or exceeds f̄k−1(n) and f̄k+1(n) for n ∈ S̄k .
Therefore, from (5.24)

max
i∈{−1,0,1}

fk+i (n) < pkφ(npk) + εpk−1. (5.25)

Substituting (5.25) into (5.23),

C(h,H) ≤
h+H−1∑

k=h

∑
n∈S̄k

(
pkφ(npk) + εpk−1

) + 2. (5.26)
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The number of elements in the set S̄k is less than �∗(μ2 − 1/μ1)/pk + 1, according to (5.20).
From (2.5), this upper bound equals r logM/pk +1. Using this in (5.26), and taking into account
that pk−1 < 1,

C(h,H) <

h+H−1∑
k=h

∑
n∈S̄k

pkφ(npk) + εH(rM logM + 1) + 2. (5.27)

The term
∑

n∈S̄k
pkφ(npk) in (5.27) converges to

∫ �∗μ2
�∗/μ1

φ(ν)dν = c∗ as k → ∞. Thus, for the
considered ε, there exists k2 such that for all k ≥ k2∣∣∣∣∑

n∈S̄k

pkφ(npk) − c∗
∣∣∣∣ < ε. (5.28)

Consequently, defining k0 = max{k1 + 1, k2}, inequalities (5.27) and (5.28) imply that for all
h ≥ k0, for all H , and for α ∈ (0,1],

C(h,H) < H(c∗ + ε) + εH(rM logM + 1) + 2
(5.29)

= H(c∗ + εP ) + 2,

where P = rM logM + 2 > 0.
Since the minimum of a set cannot be larger than the average of the set, from (5.29) it follows

that there is some k3 ∈ {h, . . . , h + H − 1} such that ck3 ≤ C(h,H)/H < c∗ + εP + 2/H .
Using the foregoing results, the bound lim infp→0 c(p) ≤ c∗ for an arbitrary estimator can be

established by contradiction. Assume that there is some estimator, defined by G ∈ F R, such that
lim infp→0 c(p) = c∗ + d with d > 0. This means that for any ε′ > 0 there exists p0 such that
c(p) ≥ c∗ + d − ε′ for all p ≤ p0. Thus taking ε′ = d/3, there is p0 such that

c(p) ≥ c∗ + 2d/3 for all p ≤ p0. (5.30)

On the other hand, taking ε = d/(6P), H = �12/d
, and with α ∈ (0,1] arbitrary, the result in
the preceding paragraph assures that for any h not smaller than a certain k0 (which depends on
the considered ε) there exists k3 ∈ {h, . . . , h + H − 1} with

ck3 < c∗ + εP + 2/H ≤ c∗ + d/3. (5.31)

Let h be selected such that h ≥ max{k0,− logp0/ logM}. For each k = h, . . . , h + H − 1, let
Xk denote the (possibly empty) set of all points x ∈ R such that, for the considered estimator and
for p = pk , the probability that p̂ equals x is at least d/3. The number of points in Xk cannot
exceed �3/d�, for otherwise the sum of their probabilities would be greater than 1. The set Xk is
determined by fk and G (or by fk and g, in the case of a non-randomized estimator defined as
p̂ = g(N)).
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Let α ∈ (0,1] be chosen such that

pk/μ2 /∈ Xk for all k = h, . . . , h + H − 1. (5.32)

Such α necessarily exists because (5.32) excludes only a finite number of possible values from
(0,1]. This choice of α assures that for p = pk , k = h, . . . , h + H − 1, the probability that p̂

equals pk/μ2 is smaller than d/3. Thus c(pk) < ck + d/3 for k = h, . . . , h + H − 1, which,
together with (5.31), gives

c(pk3) < c∗ + 2d/3. (5.33)

On the other hand, since k3 ≥ h, from the choice of h it follows that

pk3 = αM−k3 ≤ αM−h ≤ αM logp0/ logM = αp0 ≤ p0.

This implies, according to (5.30), that c(pk3) ≥ c∗+2d/3, in contradiction with (5.33). Therefore
lim infp→0 c(p) ≤ c∗.

It has been shown that, for any estimator, lim infp→0 c(p) cannot exceed c∗. In addition, any
non-randomized estimator defined by a function g ∈ Fn with limn→∞ ng(n) = �∗ achieves
lim infp→0 c(p) = limp→0 c(p) = c∗. Therefore, c∗ is the maximum of lim infp→0 c(p) over
all randomized or non-randomized estimators. �

Proof of Theorem 2. Let Ip(z,w) denote the regularized incomplete beta function:

Ip(z,w) = 1

B(z,w)

∫ p

0
tz−1(1 − t)w−1 dt,

B(z,w) =
∫ 1

0
tz−1(1 − t)w−1 dt

= �(z)�(w)

�(z + w)
.

From Abramowitz and Stegun (1970), equation (6.6.4), P [N ≤ n] = Ip(r, n − r + 1) for n ∈ N,
n ≥ r . The confidence for the estimator (3.2) can thus be written as

c(p) = P [n1 ≤ N ≤ n2] = Ip(r, n2 − r + 1) − Ip(r, n1 − r), (5.34)

where n1 and n2 are given by (5.2) with � = �∗. It is easy to show that Ip(z,w) is an increasing
function of w for w ∈ R. Since n1 < �∗/(pμ1) − d + 1 and n2 > �∗μ2/p − d − 1, it follows
from (5.34) that

c(p) > c̃2(p) − c̃1(p) (5.35)

with c̃1(p) = Ip(r,�∗/(pμ1) − r − d + 1) and c̃2(p) = Ip(r,�∗μ2/p − r − d).
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Expressing Ip(z,w) as (Abramowitz and Stegun (1970), equation (26.5.23))

Ip(z,w) = 2F1(z,1 − w; z + 1;p)pz

B(z,w)z
,

2F1(a, b; c; t) =
∞∑

j=0

(a + j − 1)(j)(b + j − 1)(j)tj

(c + j − 1)(j)j ! ,

the term c̃2(p) can be written as

c̃2(p) = 1

B(r,�∗μ2/p − r − d)

pr

r
2F1(r, r + d + 1 − �∗μ2/p; r + 1;p) (5.36)

= (�∗μ2/p − d − 1)(r)

(r − 1)!
∞∑

j=0

(−1)j (�∗μ2/p − r − d − 1)(j)

(r + j)j ! pr+j

= 1

(r − 1)!
∞∑

j=0

(−1)j (�∗μ2 − (d + 1)p) · · · (�∗μ2 − (d + r + j)p)

(r + j)j ! . (5.37)

Similarly,

c̃1(p) = 1

(r − 1)!
∞∑

j=0

(−1)j (�∗/μ1 − dp) · · · (�∗/μ1 − (d + r + j − 1)p)

(r + j)j ! . (5.38)

According to (5.37) and (5.38), both c̃1(p) and c̃2(p) can be expressed as power series in p:
c̃1(p) = ∑∞

i=0 uip
i , c̃2(p) = ∑∞

i=0 vip
i . Thus, the right-hand side of (5.35) is also a power

series,
∑∞

i=0 wip
i , with wi = vi − ui . The zero-order coefficient is

w0 = 1

(r − 1)!

( ∞∑
j=0

(−1)j (�∗μ2)
r+j

(r + j)j ! −
∞∑

j=0

(−1)j (�∗/μ1)
r+j

(r + j)j !

)
.

From the Taylor expansion of γ (r, t) (Abramowitz and Stegun (1970), equation (6.5.29)),

γ (r, t) = 1

�(r)

∞∑
j=0

(−1)j tr+j

(r + j)j ! ,

the coefficient w0 is recognized to be c∗, reflecting the fact that the difference between the two
sides of (5.35) is vanishingly small as p → 0. In addition, the first order coefficient w1 coincides
with the derivative of the right-hand side of (5.35) evaluated at p = 0. It follows that w1 > 0 is
a sufficient condition for the estimator (3.2) to asymptotically guarantee the confidence level c∗.

The coefficient w1 = v1 − u1 is computed as follows. The term v1 is obtained from (5.37) as

v1 = 1

(r − 1)!
∞∑

j=0

(−1)j+1(�∗μ2)
r+j−1[(d + 1) + · · · + (d + r + j)]

(r + j)j ! . (5.39)
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Substituting (d + 1) + · · · + (d + r + j) = (r + j)(r + j + 1 + 2d)/2 into (5.39) and taking into
account that exp(t) = ∑∞

j=0 tj /j !, we have

v1 = r + 1 + 2d

2(r − 1)!
∞∑

j=0

(−1)j+1(�∗μ2)
r+j−1

j ! + 1

2(r − 1)!
∞∑

j=0

(−1)j (�∗μ2)
r+j

j !

(5.40)

= (�∗μ2)
r−1 exp(−�∗μ2)

2(r − 1)! (�∗μ2 − r − 1 − 2d).

Similarly,

u1 = (�∗/μ1)
r−1 exp(−�∗/μ1)

2(r − 1)! (�∗/μ1 − r + 1 − 2d). (5.41)

From (5.40) and (5.41), and making use of (2.5),

w1 = (�∗/μ1)
r−1

2(r − 1)! [Mr−1 exp(−�∗μ2)(�
∗μ2 − r − 1 − 2d)

− exp(−�∗/μ1)(�
∗/μ1 − r + 1 − 2d)]

= 1

2(r − 1)!
(

r logM

M − 1

)r−1

M−r/(M−1)[−(r + 1 + 2d)/M + r − 1 + 2d],

which is positive if (3.3) holds. Thus, (3.2) asymptotically guarantees the confidence c∗ for d as
in (3.3). �

Lemma 4. For r , n0 ∈ N with r ≥ 3 and n0 ≤ (r − √
r)/p,

∫ n0

r

t r−1 exp(−pt)dt ≥
n0−1∑
n=r

(n − 1)(r−1)(1 − p)n−r . (5.42)

Proof. For n0 as given, the sub-integral function in (5.42) is increasing within the integration
range. Consequently, for (5.42) to hold, it is sufficient that nr−1 exp(−np) ≥ (n − 1)(r−1)(1 −
p)n−r for n = r, . . . , �(r − √

r)/p� − 1. This condition can be shown to be satisfied by means of
reasoning analogous to that in the proof of Lemma 1 of Mendo and Hernando (2008a), part (i).

�

Proof of Proposition 3. The confidence for the estimator (3.4) is expressed as c2(p) − c1(p),
c1(p) = P [N ≤ n1 − 1], c2(p) = P [N ≤ n2], where n1 and n2 are given by (5.2) with d = 1.
Let c′

2 = 1 − c2. A similar argument as in the proof of Proposition 2, based on the Poisson
theorem, shows that limp→0 c1(p) = c̄1 and limp→0 c′

2(p) = c̄′
2, with c̄1 = γ (r,�/μ1), c̄′

2 =
1 − γ (r,�μ2). Thus, to establish the desired result, it suffices to prove that c1(p) < c̄1 and
c′

2(p) < c̄′
2 for μ1, μ2 as in (3.5).



Optimum guaranteed confidence in inverse binomial sampling 511

Regarding c′
2(p), it is shown in Appendix C of Mendo and Hernando (2006) that P [N ≤

�a/p�] > limp→0 P [N ≤ �a/p�] for a > r + √
r . Equivalently, for any θ > 1,

P
[
N ≥ ⌊

θ
(
r + √

r
)
/p

⌋ + 1
]
< lim

p→0
P

[
N ≥ ⌊

θ
(
r + √

r
)
/p

⌋ + 1
]
.

This can be made to correspond to c′
2(p) < c̄′

2 by taking ��μ2/p − 1� = �θ(r +√
r)/p�, that is,

μ2 = θ(r + √
r) + p

�
. (5.43)

Thus, the inequality c′
2(p) < c̄′

2 holds if μ2 is given by (5.43) for some θ > 1 or, equivalently, if
μ2 > (r + √

r + p)/�. Therefore, it holds for arbitrary p if μ2 satisfies the second inequality
in (3.5).

As for c1(p), from (2.1), it can be expressed as

c1(p) =
n1−1∑
n=r

f (n) = pr

(r − 1)!
n1−1∑
n=r

(n − 1)(r−1)(1 − p)n−r . (5.44)

According to (5.2) with d = 1,

n1 <
�

pμ1
(5.45)

and thus

c̄1 = γ (r,�/μ1) = pr

(r − 1)!
∫ �/(pμ1)

0
t r−1 exp(−pt)dt

(5.46)

>
pr

(r − 1)!
∫ n1

r

t r−1 exp(−pt)dt.

From (5.44), (5.46) and Lemma 4, it follows that the inequality c1(p) < c̄1 is satisfied if

n1 ≤ r − √
r

p
. (5.47)

Using (5.45), it is seen that (5.47) is fulfilled if μ1 satisfies the first inequality in (3.5). �

Proof of Theorem 3. For � = �∗, using (2.4) and (2.5), the conditions in (3.5) are written as
(3.7) and (3.8). The left-hand sides of (3.7) and (3.8) are increasing functions of M , whereas
the right-hand sides decrease with r . These inequalities can thus be written as M ≥ h1(r), M ≥
h2(r), where h1, h2 are decreasing functions. This proves that for each r , one of the inequalities
implies the other. Furthermore, defining h(r) = min{h1(r), h2(r)}, the allowed range for M is
expressed as M ≥ h(r) and h is a decreasing function. It only remains to prove that the limiting
condition is (3.7) for r = {3,4} and (3.8) for r ≥ 5.

The left-hand sides of (3.7) and (3.8) are continuous functions of M > 1. Considering r as if it
were a continuous variable, the right-hand sides are also continuous functions. Assume that (3.7)
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implies (3.8) for a given r1, that is, that the latter is satisfied when the former holds with equality.
Likewise, assume that (3.8) implies (3.7) for a given r2. The continuity of the involved functions
then implies that there exists t ∈ [min{r1, r2},max{r1, r2}] such that both (3.7) and (3.8) hold
with equality for r = t , that is,

M − 1

logM
= t + √

t

t − 1
,

M logM

M − 1
= t + √

t + 1

t
. (5.48)

Multiplying both equalities in (5.48) and substituting into the first yields

log
t + √

t + 1

t − √
t

− 2
√

t + 1

t
= 0. (5.49)

It is easily shown that (5.49) has only one solution, which lies in the interval (4,5). Thus, one
of the two conditions (3.7) and (3.8) is the limiting one for r ∈ {3,4}, whereas the other is for
r = {5,6,7, . . .}. Taking any value from each set, the limiting condition is seen to be (3.7) in the
former case and (3.8) in the latter. �
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