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The study of properties of mean functionals of random probability measures is an important area of research
in the theory of Bayesian nonparametric statistics. Many results are now known for random Dirichlet means,
but little is known, especially in terms of posterior distributions, for classes of priors beyond the Dirichlet
process. In this paper, we consider normalized random measures with independent increments (NRMI’s)
and mixtures of NRMI. In both cases, we are able to provide exact expressions for the posterior distribution
of their means. These general results are then specialized, leading to distributional results for means of two
important particular cases of NRMI’s and also of the two-parameter Poisson–Dirichlet process.
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1. Introduction

Bayesian nonparametrics has recently undergone major development which has led to the pro-
posal of a variety of new classes of prior distributions, as well as allowing the concrete appli-
cation of nonparametric models to problems in, for example, biology, medicine, economics and
ecology. While there is a vast literature on computational issues related to Bayesian nonparamet-
ric procedures, there is a dearth of analytical results, mainly due to the difficulties of studying
distributions on infinite-dimensional spaces. Indeed, given a nonparametric prior, a natural sta-
tistical object to analyze is the mean functional: for instance, in the context of survival analysis,
the mean takes on the interpretation of (random) expected lifetime. However, such an analysis
seemed to be prohibitive until the pioneering contributions of Cifarelli and Regazzini [4,5] who
set up a general theory for the study of Dirichlet process means and also derived the remarkable
Markov–Krein or Cifarelli–Regazzini identity. Since then, much attention has been focused on
means of the Dirichlet process. Among other contributions, we mention [7,8,11,13,16,17,19,31,
39,43]. Recently the first results concerning nonlinear functionals of the Dirichlet process, such
as the variance functional, have appeared in the literature (see [6,34,39]). Another line of research
has dealt with mean functionals for priors different from the Dirichlet process (see [10,14,22,33,
40,42]). The study of means also highlights the interplay with other areas of mathematics, such
as special functions [31], excursion theory [22,42] and mathematical physics [38].
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While some results concerning the prior distribution of means for classes of priors more gen-
eral than the Dirichlet process are known, no exact result is known for their posterior distribution.
Indeed, in [40], normalized random measures with independent increments (NRMI’s), whose
construction is recalled in Definition 2.1, were considered: in addition to results for the existence
and the exact prior distribution of their means, an approximation for their posterior density were
achieved. These results were then extended in [33] to mixtures of NRMI, leading to an approx-
imation of the posterior mean of mixtures of NRMI and to the exact expression for the special
case of the mixture of Dirichlet process. These two papers [33,40] represent the starting point of
our work and we aim to develop and complete these results: indeed, we are able to provide exact
expressions for the posterior distributions of both means of NRMI’s and means of mixtures of
NRMI.

The outline of the paper is as follows. In Section 2, the basic concepts are introduced and
preliminary results recalled. In Section 3.1, we determine exact expressions for the posterior
distribution of means of NRMI’s, whereas in Section 3.2, general formulae for posterior means
of mixtures of NRMI are obtained. Section 4 is devoted to the study of means of particular
NRMI’s of statistical relevance, namely the extended gamma NRMI and the generalized gamma
NRMI, and the main result of [33] is recovered as a corollary. Moreover, our results for the
generalized gamma NRMI are exploited to derive a new expression for the distribution of a mean
of the two-parameter Poisson–Dirichlet process. Proofs are deferred to the Appendix.

2. Preliminaries and basic definitions

We first recall the concept of completely random measure, due to Kingman [26]. Let (X,X) be
a Polish space endowed with the Borel σ -field and (M,B(M)) be the space of boundedly finite
measures on X, with B(M) denoting the corresponding Borel σ -algebra. Let μ̃ be a random ele-
ment defined on (�,F ,P) and with values in (M,B(M)) such that for any collection of disjoint
sets in X, A1,A2, . . . , the random variables μ̃(A1), μ̃(A2), . . . are mutually independent. Then,
μ̃ is a completely random measure (CRM) on (X,X). A CRM can always be represented as a
linear functional of a Poisson random measure. In particular, define Hν to be the space of mea-
surable functions h : X → R

+ such that
∫

R+×X
[1 − e−vh(x)]ν(dv,dx) < ∞, where ν stands for

the intensity of the Poisson random measure underlying μ̃, which must satisfy the integrability
condition

∫
R+ min{v,1}ν(dv,dx) < +∞ for almost all x ∈ X. Then, μ̃ is uniquely characterized

by its Laplace functional which, for any h in Hν , is given by

E
[
e− ∫

X
h(x)μ̃(dx)

] = e− ∫
R+×X

[1−e−vh(x)]ν(dv,dx). (1)

Throughout the paper, we define, for any real- or complex-valued function g defined on X, the
functional ψ(g) := ∫

R+×X
[1 − e−vg(x)]ν(dv,dx). Moreover, let 1 : X → R be the function iden-

tically equal to 1, namely 1(x) = 1 for any x in X. See [28] for an exhaustive account on CRM’s.
The representation in (1) establishes that μ̃ is characterized by the corresponding intensity ν.
Letting α be a σ -finite measure on X, we can always write

ν(dv,dx) = ρ(dv|x)α(dx), (2)
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where ρ is a measurable kernel such that ρ(·|x) is a σ -finite measure on B(R+) for any x in X.
Such a disintegration is ensured by [25], Theorem 15.3.3. If (2) simplifies to

ν(dv,dx) = ρ(dv)α(dx), (3)

then we say that μ̃ is a homogeneous CRM, whereas if this is not the case, then μ̃ will be termed
a non-homogeneous CRM. In the following, we will assume α is non-atomic.

Since the aim is to define random probability measures by means of normalization of com-
pletely random measures, the total mass μ̃(X) needs to be finite and positive, almost surely. As
shown in [40], this happens if ν(R+ × X) = +∞ and the Laplace exponent ψ(λ) < +∞ for any
λ > 0, respectively.

Definition 2.1. Let μ̃ be a CRM on (X,X) such that ν(R+ × X) = +∞ and ψ(λ) < +∞ for
any λ > 0. The random probability measure

P̃ (·) = μ̃(·)
μ̃(X)

(4)

is then termed an NRMI.

Strictly speaking, the random probability measure in (4) is a normalized CRM and re-
duces to an NRMI when X = R. Nonetheless, we prefer to keep the acronym NRMI intro-
duced in [40]. According to the decomposition of the intensity ν described in (2) and (3), we
will distinguish between non-homogeneous and homogeneous NRMI’s. Several priors used in
Bayesian nonparametric inference can be defined as in (4). For instance, as already noted by
[12], the Dirichlet process can be recovered as an NRMI based on the gamma CRM for which
ν(dv,dx) = v−1e−v dv α(dx). Other examples include the normalized stable process [27] and
the normalized inverse Gaussian process [29].

Nowadays, the most common use of Bayesian nonparametric procedures is within hierarchical
mixtures: letting Y be a Polish space equipped with the Borel σ -algebra Y, one defines a random
density (absolutely continuous with respect to some σ -finite measure λ on Y) driven by a random
discrete distribution, that is,

f̃ (y) =
∫

X

k(y, x)P̃ (dx), (5)

where k is a density function on Y indexed by some parameter with values in X. A typical choice
for k is represented by the density function of the normal distribution: in such a case, P̃ controls
the means (and possibly also the variances) of the random mixture density. This approach is due
to Lo [32], who defined a random density as in (5) with P̃ being the Dirichlet process; this model
is now commonly referred to as mixture of Dirichlet process (MDP). Recently, various contribu-
tions have focused on replacing the Dirichlet process in (5) with alternative random probability
measures, which yield interesting behaviors, especially in terms of the induced clustering mech-
anism; see, for example, [18,20,29].
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The present paper is focused on linear functionals of NRMI’s, namely on random quantities
of the type P̃ (g) := ∫

X
g(x)P̃ (dx), where g : X → R is any measurable function such that

ψ(t |g|) =
∫

X×R+

(
1 − e−tv|g(x)|)ρ(dv|x)α(dx) < +∞ ∀t > 0. (6)

By [40], Proposition 1, condition (6) is necessary and sufficient for P̃ (|g|) to be a.s. finite. In the
sequel, we always assume that (6) holds true. An exact analytic expression for F, the distribution
function of P̃ (g), is given in [40], Proposition 2. We will also examine means of a mixture of
NRMI, that is

Q̃(g) :=
∫

Y

g(y)f̃ (y)λ(dy) =
∫

X

h(x)P̃ (dx) = P̃ (h), (7)

where Q̃ stands for the random probability measure associated with f̃ , defined as in (5), and
h(x) = ∫

Y
g(y)k(y, x)λ(dy). Hence, as shown in [33], the necessary and sufficient condition for

Q̃(g) being a.s. finite becomes

ψ(th∗) =
∫

X×R+

(
1 − e−tvh∗(x)

)
ρ(dv|x)α(dx) < +∞ ∀t > 0, (8)

with h∗(x) = ∫
Y

|g(y)|k(y, x)λ(dy). The evaluation of the prior distribution of the mean then
follows in a straightforward way [33], Proposition 2. In the following, when we consider means
of mixtures of NRMI, as in (7), we will tacitly suppose that g verifies condition (8).

3. Posterior distribution of means

3.1. Means of NRMI’s

We first focus attention on posterior distributions of means of NRMI’s. Let (Xn)n≥1 be a se-
quence of exchangeable observations, defined on (�,F ,P) and with values in X, such that,
given an NRMI P̃ , the Xi ’s are i.i.d. with distribution P̃ , that is, for any Bi ∈ X, i = 1, . . . , n

and n ≥ 1,

P[X1 ∈ B1, . . . ,Xn ∈ Bn|P̃ ] =
n∏

i=1

P̃ (Bi). (9)

Moreover, let X = (X1, . . . ,Xn). It is clear that one can always represent X as (X∗,π),
where X∗ = (X∗

1, . . . ,X∗
n(π)) denotes the distinct observations within the sample and π =

{C1, . . . ,Cn(π)} stands for the corresponding partition of the integers {1, . . . , n} recording which
observations within the sample are equal, that is, Cj = {i :Xi = X∗

j }. The number of elements in
the j th set of the partition is indicated by nj , for j = 1, . . . , n(π), so that

∑n(π)
j=1 nj = n.

At this point, it is useful to recall the posterior characterization of NRMI’s given in [23].
For any pair of random elements Z and W defined on (�,F ,P), we use the symbol Z(W) to
denote a random element on (�,F ,P) whose distribution coincides with a regular conditional
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distribution of Z, given W . Now, introduce a latent variable, denoted by Un, whose conditional
distribution, given X, admits a density function (with respect to the Lebesgue measure on R)
coinciding with

f X
Un

(u) ∝ un−1
n(π)∏
i=1

τni
(u|X∗

i )e
−ψ(u), (10)

where

τni
(u|X∗

i ) =
∫

R+
sni e−usρ(ds|X∗

i ) (11)

for i = 1, . . . , n(π). Indeed, the posterior distribution, given X, of the CRM μ̃ defining an NRMI

(4) is a mixture with respect to the distribution of the latent variable Un. Specifically, μ̃(Un,X) d=
μ̃(Un) + ∑n(π)

i=1 J
(Un,X)
i δX∗

i
, where: μ̃(Un) is a CRM with intensity

ν(Un)(ds,dx) = e−Unsρ(ds|x)α(dx); (12)

the X∗
i ’s are the fixed points of discontinuity; the J

(Un,X)
i ’s are the corresponding jumps, which

are mutually independent and independent from μ̃(Un), and whose density is given by

f
(Un,X)
Ji

(s) ∝ sni e−Unsρ(ds|X∗
i ). (13)

See [23], Theorem 1, for details.
We are now in a position to provide the exact posterior distribution of means of an NRMI.

Note that the results hold for any function g and any NRMI (identified by means of its Poisson
intensity (2)) which lead to an a.s. finite mean (6). In what follows, we agree to denote by Im(z)

and Re(z) the imaginary and real parts, respectively, of the complex number z. Moreover, ψ(u)

and J
(u,X)
r are the Laplace exponent of the CRM defined by (12) and the jumps whose density is

given by (13), respectively, with Un = u.

Theorem 3.1. Let P̃ be an NRMI. The posterior distribution of P̃ (g), given X, is then absolutely
continuous with respect to the Lebesgue measure on R and a posterior density function is given
by

ρX(σ ;g) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫ ∞

0
Re{χg(t, σ )}dt, if n = 1,

(−1)p+1
∫ σ

−∞

∫ ∞

0
[(σ − z)t]n−1 Im{χg(t, z)}dt dz, if n = 2p,

(−1)p
∫ σ

−∞

∫ ∞

0
[(σ − z)t]n−1 Re{χg(t, z)}dt dz, if n = 2p + 1,

(14)

where p ≥ 1,

χg(t, z) = e−ψ(−it (g−z1))
∏n(π)

j=1 κnj
(it[g(X∗

j ) − z]|X∗
j )

π
∫ +∞

0 un−1[∏n(π)
j=1 τnj

(u|X∗
j )]e−ψ(u1) du

, (15)
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κnj
(it[g(X∗

j ) − z]|X∗
j ) = ∫ +∞

0 vnj eitv(g(X∗
j )−z)

ρ(dv|X∗
j ) and τnj

(u|X∗
j ) is as in (11), for j =

1, . . . , n(π). Moreover, the posterior cumulative distribution function of P̃ (g), given X, admits
the representation

F
X(σ ;g) = 1

2
− 1

π
lim

T →+∞

∫ T

0

1

t

∫ +∞

0
ζg(σ ;u, t)f X

Un
(u)dudt, (16)

where

ζg(σ ;u, t) := Im
{
e−ψ(u)(−it (g−σ1))

E
[
eit

∑n(π)
r=1 (g(X∗

r )−σ)J
(u,X)
r

]}
(17)

and f X
Un

is the density of the latent variable Un given in (10).

3.2. Means of mixtures of NRMI

Before dealing with the posterior distribution of means of mixtures of NRMI, it is worth recalling
that a popular way of representing (5) is as a hierarchical mixture:

Yi |Xi
i.n.d.∼ k(·,Xi), i = 1, . . . , n,

Xi |P̃ i.i.d.∼ P̃ , (18)

P̃ ∼ P ,

where (Xi)i≥1 is a sequence of latent variables with values in X and P is the law of the NRMI
P̃ . The notation adopted in the description of model (18) is standard in Bayesian statistics and
means that, given P̃ , the observations Yi are independent and identically distributed with random
density f̃ (y) = ∫

X
k(y, x)P̃ (dx). Now, since the background driving NRMI is a.s. discrete, it

will induce ties among the latent variables, which are denoted, as previously, by X∗
1, . . . ,X∗

n(π)

and π = {C1, . . . ,Cn(π)} indicates the corresponding partition of the integers {1, . . . , n} with
Cj = {i : Xi = X∗

j }. This notation allows us, given a partition, to keep a record of which latent
variable each of the observations Yi , for i = 1, . . . , n, is assigned to.

Here, we aim to derive the posterior distribution of Q̃(g), given Y. By virtue of (7), this can
also be seen as the distribution of

∫
X

h(x)P̃ (dx), given Y. The next theorem yields an exact
expression for a density of such a posterior distribution. It is worth noting that the results hold
for any function g, k and NRMI which lead to a finite mean (8): the expressions are given in
terms of h (which is in turn, defined as in (7)), k and the Poisson intensity (2) corresponding to
any NRMI.

Theorem 3.2. Let f̃ be a mixture of NRMI, as in (5). The posterior distribution of Q̃(g), given Y,
is then absolutely continuous with respect to the Lebesgue measure on R and the corresponding
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posterior density function is given by

φY(σ ;g) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫ ∞

0
Re{ξh(t, σ )}dt, if n = 1,

(−1)p+1
∫ σ

−∞

∫ ∞

0
[(σ − z)t]n−1 Im{ξh(t, z)}dt dz, if n = 2p,

(−1)p
∫ σ

−∞

∫ σ

−∞

∫ ∞

0
[(σ − z)t]n−1 Re{ξh(t, z)}dt dz, if n = 2p + 1,

(19)

where

ξh(t, z) =
e−ψ(−it (h−z1))[∑π

∏n(π)
j=1

∫
X

κnj
(it[h(x) − z]|x)

∏
i∈Cj

k(Yi, x)α(dx)]
π

∫
R+ un−1e−ψ(u1)[∑π

∏n(π)
j=1

∫
X

∏
i∈Cj

k(Yi, x)τnj
(u|x)α(dx)]du

, (20)

having set h(x) = ∫
Y

g(y)k(y, x)λ(dy) and κnj
(it[h(x) − z]|x) = ∫ +∞

0 vnj eitv(h(x)−z)ρ(dv|x)

for j = 1, . . . , n(π). Moreover, the posterior cumulative distribution function of Q̃(g), given Y,
can be represented as

G
Y(σ ;g) = 1

2
− 1

π
lim

T →+∞

∫ T

0

1

t
Im{ζh(σ ; t)}dt, (21)

where p ≥ 1,

ζh(σ ; t) =
∫

R+
un−1e−ψ(−it (g−σ1)+u1)

×
[∑

π

n(π)∏
j=1

∫
X

E
(
eit (g(x)−σ1)J

(u,X)
j

) ∏
i∈Cj

k(Yi, x)τnj
(u|x)α(dx)

]
du (22)

×
(∫

R+
un−1e−ψ(u1)

[∑
π

n(π)∏
j=1

∫
X

∏
i∈Cj

k(Yi, x)τnj
(u|x)α(dx)

]
du

)−1

,

where the jumps J
(Un,X)
j ’s have density given by (13).

4. Applications

Let us now consider, in detail, two specific cases of statistical relevance, involving two important
CRM’s, namely, generalized gamma CRM [2] and extended gamma CRM [9]. Both have been
found to have many applications in survival analysis, spatial statistics, mixture models and spatio-
temporal models.
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4.1. Extended gamma NRMI

Here, we consider NRMI’s derived from extended CRM’s, which are characterized by the inten-
sity

ν(dv,dx) = e−β(x)v

v
dv α(dx),

where β is a positive real-valued function. The corresponding NRMI in (4), to be termed an
extended gamma NRMI with parameters (α(·), β(·)), is well defined if α and β are such that∫

X
log(1 + t[β(x)]−1)α(dx) < +∞ for every t > 0.
As for distributional properties of means of extended gamma NRMI’s, from (6), it follows

that P̃ (g) is finite if and only if
∫

X
log(1 + tg(x)[β(x)]−1)α(dx) < +∞ for every t > 0, which

coincides, except for the factor of non-homogeneity β , with the well-known condition given in
[11] for the Dirichlet process. Moreover, the prior distribution of a mean is given by

F(σ ;g) = 1

2
− 1

π

∫ +∞

0

1

t
Im

(
e− ∫

X
log(1−it[β(x)]−1(g(x)−σ))α(dx)

)
dt,

having applied Proposition 2 in [40] and shown that F is absolutely continuous with respect to
the Lebesgue measure on R. We now provide expressions for the posterior density function and
posterior distribution function of a mean of an extended gamma NRMI.

Proposition 4.1. Let P̃ be an extended gamma NRMI. The posterior density function of P̃ (g),
given X, is then of the form (14) with

χg(t, z) = e− ∫
X

log(β(x)−it (g(x)−z))αX
n (dx)

π
∫ +∞

0 un−1e− ∫
X

log(β(x)+u)αX
n (dx) du

,

where αX
n (·) := α(·) + ∑n(π)

i=1 niδX∗
i
(·). Moreover, the posterior cumulative distribution function

is given by

F
X(σ ;g) = 1

2
−

∫ ∞
0

∫ ∞
0 t−1un−1 Im{e− ∫

X
log(β(x)+u−it (g(x)−σ))αX

n (dx)}dudt

π
∫

R+ un−1e− ∫
X

log(β(x)+u)αX
n (dx) du

.

It is worth noting that the expressions in Proposition 4.1 are surprisingly simple, given the
fact that they are exact distributions of functionals of a non-conjugate prior. Indeed, in terms of
complexity, they are no more involved than the known expressions for Dirichlet means [4,5,39].
For illustrative purposes, suppose n = 1 and let β(x) = β11A(x)+β21Ac(x), where β1 > β2 > 0
and A ∈ X. In this case, it can be easily seen that the normalizing constant in χg(t, z) coincides
with

∫ +∞

0

1

[β1 + u]α1(A)[β2 + u]α1(A
c)

du = β
−α1(A)
1 β

1−α1(A
c)

2

α(X)
2F1

(
α1(A),1;α(X) + 1;1 − β2

β1

)
,
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where, for simplicity, we have set α1 := αX
1 and 2F1 is the Gauss hypergeometric function.

Hence, by resorting to (14), one has that a posterior density of P̃ (g), given X1, evaluated at
z ∈ [0,1] coincides with

α(X)

π

β
α1(A)
1 β

α1(A
c)−1

2

2F1(α1(A),1;α(X) + 1;1 − β2/β1)

×
∫ +∞

0
exp

{
−1

2

∫
X

log
[
β2(x) + t2(g(x) − z

)2]
α1(dx)

}
(23)

× cos

(∫
X

arctan
t (g(x) − z)

β(x)
α1(dx)

)
dt.

It is worth emphasizing that, since this is a density function, one obtains an integral representation
for the hypergeometric function 2F1(α1(A),1;α(X) + 1;1 − β2β

−1
1 ) in terms of g, that is,

2F1

(
α1(A),1;α(X) + 1;1 − β2

β1

)

= α(X)

π
β

α1(A)
1 β

α1(A
c)−1

2

∫ 1

0

∫ +∞

0
e−1/2

∫
X

log[β2(x)+t2(g(x)−z)2]α1(dx)

× cos

(∫
X

arctan
t (g(x) − z)

β(x)
α1(dx)

)
dt dz.

If we further suppose that g = 1A, then (23) provides a posterior density for P̃ (A), given X1. In
order to obtain a simplified expression, suppose that A and α are such that α(A) = α(Ac) = 1
and X1 ∈ A so that α1(A) = 2 = 1 + α1(A

c). The corresponding posterior density for P̃ (A) is
then of the form

2β2
1

2F1(2,1;3;1 − β2/β1)

z

[β1z + β2(1 − z)]2
1[0,1](z). (24)

Details of the determination of (24) are given in the Appendix. Also, note that 2F1(2,1;3;1 −
β2/β1) = 2β2

1

∫ 1
0 z[β1z+β2(1−z)]−2 dz = 2β2

1 log(β1/β2)(β1 −β2)
−2 −2β1(β1 −β2)

−1. Since
the (prior) probability distribution function of P̃ (A) is

F(σ ;1A) = β1σ

β1σ + β2(1 − σ)
1[0,1](σ ) + 1(1,∞)(σ )

and the corresponding density is β1β2[β1σ +β2(1−σ)]−21[0,1](σ ), one finds out that having ob-
served X1 ∈ A, the probability mass of P̃ (A) in a neighborhood of 0 decreases, while it increases
in a neighborhood of 1. The opposite phenomenon is observed when X1 is not in A.

We now move on to considering posterior distributions of means of mixtures of the extended
Gamma NRMI. Recall that, in such a case, the data Y are i.i.d., given Q̃, where Q̃ is the random
probability measure corresponding to the mixture density (5) driven by an extended gamma
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NRMI. As shown in [33], a mean functional Q̃(g) is finite if and only if for every t > 0, one
has

∫
X

log(1 + th∗(x)[β(x)]−1)α(dx) < +∞, where h∗(x) = ∫
Y

|g(y)|k(y, x)λ(dy). The prior
distribution function is then of the form

F(σ ;g) = 1

2
− 1

π

∫ +∞

0

1

t
Im

(
e− ∫

X
log(1−it (h(x)−σ)[β(x)]−1)α(dx)

)
dt,

with h(x) = ∫
Y

|g(y)|k(y, x)λ(dy). The next proposition provides the corresponding posterior
density and cumulative distribution function. For both, we provide two expressions: the first is in
line with Theorem 3.1, whereas the second exploits a sort of quasi-conjugacy peculiar to gamma-
like models (see also Remark 4.1 in Section 4.2).

Proposition 4.2. Let Q̃ be the random probability measure associated with the random density
(5) driven by an extended gamma NRMI. The posterior density function of a mean Q̃(g), given
Y, is then of the form (19), with

ξh(t, z)

= e− ∫
X

log(β(s)−it (h(s)−z))α(ds)

×
∑
π

n(π)∏
j=1

(nj − 1)!
∫

X

e− log(β(x)−it (h(x)−z))nj
∏
i∈Cj

k(Yi, x)α(dx) (25)

×
(

π

∫
R+

un−1e− ∫
X

log(β(s)+u)α(ds)

×
∑
π

n(π)∏
j=1

(nj − 1)!
∫

X

e− log(β(x)+u)nj
∏
i∈Cj

k(Yi, x)α(dx)du

)−1

,

or, alternatively, as (19), with

ξh(t, z)
(26)

=
∑

π

∏n(π)
j=1 (nj − 1)! ∫

Xn(π) e− ∫
X

log(β(s)−it (h(s)−z))αX
n (ds)

∏
i∈Cj

k(Yi, xj )α(dxj )

π
∑

π

∏n(π)
j=1 (nj − 1)! ∫

Xn(π)

∫
R+ un−1e− ∫

X
log(β(s)+u)αX

n du
∏

i∈Cj
k(Yi, xj )α(dxj )

,

where αX
n (·) = α(·) + ∑n(π)

j=1 nj δxj
and, as previously, h(x) = ∫

Y
g(y)k(y, x)λ(dy). Moreover,

the posterior distribution function can be represented as (21), with

ζh(σ ; t)
=

∫
R+

un−1e− ∫
X

log(u+β(s)−it (h(s)−σ))α(ds) (27)
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×
∑
π

n(π)∏
j=1

(nj − 1)!
∫

X

e− log(u+β(x)−it (h(x)−σ))nj
∏
i∈Cj

k(Yi, x)α(dx)du

×
(

π

∫
R+

un−1e− ∫
X

log(β(s)+u)α(ds)

×
∑
π

n(π)∏
j=1

(nj − 1)!
∫

X

e− log(β(x)+u)nj
∏
i∈Cj

k(Yi, x)α(dx)du

)−1

,

or, alternatively, as (21) with

ζh(σ ; t)

=
∑
π

n(π)∏
j=1

(nj − 1)!
∫

Xn(π)

∫
R+

un−1e− ∫
X

log(u+β(s)−it (h(s)−σ))αX
n du

×
∏
i∈Cj

k(Yi, xj )α(dxj ) (28)

×
(

π
∑
π

n(π)∏
j=1

(nj − 1)!
∫

Xn(π)

∫
R+

un−1e− ∫
X

log(β(s)+u)αX
n (ds) du

×
∏
i∈Cj

k(Yi, xj )α(dxj )

)−1

.

As a corollary of Proposition 4.2, we obtain the main result of ([33], Theorem 1), namely the
posterior density of means of the mixture of Dirichlet process model introduced in [32]. Note
that there is a slight inaccuracy in the expression for this density in Corollary 1 of [33], which
should coincide with the one below. Moreover, we also obtain a representation for its posterior
cumulative distribution function, which is new.

Corollary 4.1. Let Q̃ be the random probability measure associated with the mixture of Dirichlet
process. The posterior density function of a mean Q̃(g), given Y, is then given by

φY(σ ;g) =
∑

π

∏n(π)
j=1 (nj − 1)! ∫

Xn(π) ρ
n(σ,h)

∏
i∈Cj

k(Yi, xj )α(dxj )∑
π

∏n(π)
j=1 (nj − 1)! ∫

X

∏
i∈Cj

k(Yi, x)α(dx)
, (29)

where

ρn(σ ;h) = a + n − 1

π

∫
R+

Re
{
e− ∫

X
log(1−it (h(s)−σ))αX

n (ds)
}

dt (30)
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is the posterior density of P̃ (h), with P̃ being the Dirichlet process and, as before, αX
n (·) =

α(·) + ∑n(π)
j=1 nj δxj

. Moreover, the posterior cumulative distribution function of Q̃(g), given Y,
can be represented as

G
Y(σ ;g) = 1

2
−

∑
π

∏n(π)
j=1 (nj − 1)! ∫

Xn(π) ζ
n(σ ;h)

∏
i∈Cj

k(Yi, xj )α(dxj )

π
∑

π

∏n(π)
j=1 (nj − 1)! ∫

X

∏
i∈Cj

k(Yi, x)α(dx)
, (31)

with ζ n(σ ;h) = ∫ ∞
0

1
t

Im{e− ∫
X

log(1−it (h(s)−σ))αX
n (ds)}dt being the posterior cumulative distribu-

tion function of a Dirichlet mean P̃ (h).

4.2. Generalized gamma NRMI’s

Let us now consider the generalized gamma NRMI, which is based on the CRM with intensity

ν(dv,dx) = γ

�(1 − γ )

e−τv

v1+γ
dv α(dx), (32)

where γ ∈ (0,1) and τ ≥ 0. This class can be characterized as the exponential family generated
by the positive stable laws (see [2,36]). It includes the stable CRM for τ = 0, the inverse Gaussian
CRM for γ = 1/2 and the gamma CRM as γ → 0. Note that the resulting NRMI, termed a
generalized gamma NRMI, is well defined if and only if α is a finite measure. Before proceeding,
recall that E[P̃ (·)] = α(·)

a
= P0(·), where a := α(X), and P0 is usually referred to as the prior

guess at the shape of P̃ .
Now, from (6), and by noting that ψ(g) = ∫

X
(τ + g(x))γ α(dx)− τγ a, it follows immediately

that P̃ (g) is finite if and only if∫
X

(
τ + t |g(x)|)γ

α(dx) < ∞ for any t > 0. (33)

Henceforth, we consider functions g such that (33) holds true. In the following proposition, we
provide expressions for the prior distribution of P̃ (g).

Proposition 4.3. Let P̃ be a generalized gamma NRMI. The cumulative distribution function
can then be expressed as

F(σ ;g) = 1

2
− eβ

π

∫ +∞

0

1

t
Im

(
e−β

∫
X
(1−it (g(x)−σ))γ P0(dx)

)
dt, (34)

where β = aτγ > 0, or, also, as

F(σ ;g) = 1

2
− eβ

π

∫ ∞

0

1

t
e−βAy(t) sin(βBy(t))dt, (35)
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where

Aσ (t) =
∫

X

[
1 + t2(g(x) − σ

)2]γ /2 cos
{
γ arctan

[
t
(
g(x) − σ

)]}
P0(dx), (36)

Bσ (t) =
∫

X

[
1 + t2(g(x) − σ

)2]γ /2 sin
{
γ arctan

[
t
(
g(x) − σ

)]}
P0(dx). (37)

Let us now turn our attention to posterior quantities. The next result provides both the posterior
density and the posterior cumulative distribution function of the mean of a generalized gamma
NRMI.

Proposition 4.4. Let P̃ be a generalized gamma NRMI. The posterior density function of P̃ (g),
given X, is then of the form (14), with

χg(t, z) = γβn(π)e−β
∫
X
(1−it (g(x)−z))γ P0(dx)

∏n(π)
j=1 [1 − it (g(X∗

j ) − z)]γ−nj

π
∑n−1

j=0

(
n−1
j

)
(−1)jβj/γ �(n(π) − j/γ ;β)

, (38)

where �(·; ·) stands for the incomplete gamma function. Moreover, the posterior cumulative dis-
tribution function can be written as

F
X(σ ;g)

= 1

2
−

∫ ∞

0

∫ ∞

0
t−1un−1 Im

{
e−β

∫
X
(1+u−it (g(x)−σ))γ P0(dx)

×
n(π)∏
j=1

[
1 + u − it

(
g(X∗

j ) − σ
)]γ−nj

}
dudt

×
(

π
(
γβn(π)

)−1
n−1∑
j=0

(
n − 1

j

)
(−1)jβj/γ �

(
n(π) − j/γ,β

))−1

.

Remark 4.1. At this point, it is useful to compare the expressions arising for extended gamma
NRMI’s and for generalized gamma NRMI’s. As for the latter, by looking at (38) and at the
imaginary part of the distribution function of the posterior mean in Proposition 4.4, one can
easily identify the characteristic functional of the generalized gamma CRM times a product of
n(π) terms, each of these being the characteristic function of a gamma random variable. Now,
each term is clearly associated with a distinct observation X∗

j and the number of times nj it has
been recorded. Moreover, the precise expression arises by taking the derivative of the charac-
teristic functional (which corresponds to observing a certain value for the first time) and then
by taking the (nj − 1)th derivative of the resulting expression (which corresponds to observing
repetitions of this observation). This structure is apparent in the expressions in Proposition 4.4
and, indeed, it is the idea of seeing the observations as derivatives which inspires the proof of
Theorem 3.1. Turning our attention to the extended gamma NRMI which is an extension to the
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Dirichlet process, one still derives the posterior as derivatives, but, then, due to the important
relation

τni
(u|yi)e

−ψ(u) = �(ni)e− ∫
X

log(1+u(β(x))−1)α(dx)

(u + β(yi))−ni

(39)
= �(ni)β(yi)

ni e− ∫
X

log(1+u(β(x))−1)α∗(dx),

one can adjoin the derivatives (observations) to the characteristic functional, getting a sort of
quasi-conjugacy, which is a proper conjugacy property if and only if the NRMI is the Dirichlet
process. By conjugacy, one usually refers to the fact that the posterior distribution is of the same
form as the prior with updated parameters. Here, by quasi-conjugacy, we refer to the fact that,
although conjugacy itself does not hold, it does hold conditionally on some latent variable.

We are now in a position to provide the posterior distribution of means of a random mixture
density (5) driven by a generalized gamma NRMI. Before stating the result, we introduce the
notation (a)b = �(a + b)/�(a) for the Pochhammer symbol.

Proposition 4.5. Let Q̃ be the random probability measure associated with the random density
(5) driven by a generalized gamma NRMI. The posterior density function of a mean Q̃(g), given
Y, is then of the form (19), with

ξh(t, z) = γ

π
e−β

∫
X
(1−it (h(x)−z))γ P0(dx)

×
∑
π

n(π)∏
j=1

(1 − γ )nj −1

∫
X

[
1 − it

(
h(x) − z

)]γ−nj
∏
i∈Cj

k(Yi, x)α(dx)

(40)

×
(∑

π

n−1∑
i=0

(
n − 1

i

)
(−1)iβi/γ−n(π)�

(
n(π) − i/γ,β

)

×
n(π)∏
j=1

(1 − γ )nj −1

∫
X

∏
i∈Cj

k(Yi, x)α(dx)

)−1

,

where h(x) = ∫
Y

|g(y)|k(y, x)λ(dy). Moreover, the posterior distribution function can be repre-
sented as (21), with

ζh(σ ; t)

= γβn(π)

π

∫
R+

tn−1e−β
∫
X
(1−it (h(x)−z)+u)γ P0(dx) (41)

×
∑

π

∏n(π)
j=1 (1 − γ )nj −1

∫
X
[1 − it (h(x) − z) + u]γ−nj

∏
i∈Cj

k(Yi, x)α(dx)du∑
π

∑n−1
i=0

(
n−1

i

)
(−1)iβi/γ �(n(π) − i/γ,β)

∏n(π)
j=1 (1 − γ )nj −1

∫
X

∏
i∈Cj k(Yi ,x)α(dx)

.
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4.2.1. Connections with the two-parameter Poisson–Dirichlet process

In this section, we point out a connection between a generalized gamma NRMI and the celebrated
two-parameter Poisson–Dirichlet process due to Pitman [35]. The latter random probability mea-
sure has found interesting applications in a variety of fields such as population genetics, statis-
tical physics, excursion theory and combinatorics; for details and references, see [37]. A recent
systematic study of functionals of the two-parameter Poisson–Dirichlet process is provided in
[22]. However, some interesting new results follow from the treatment of the generalized gamma
NRMI given above.

Let us first recall the definition of a two-parameter Poisson–Dirichlet random probability mea-
sure. Suppose that μ̃γ is the γ -stable CRM arising from (32) when τ = 0. Let Qγ denote its prob-
ability distribution on (M,B(M)) and Qγ,θ be another probability distribution on (M,B(M))

such that Qγ,θ 
 Qγ and (dQγ,θ /dQγ )(μ) = (μ(X))−θ , where θ > −γ . If μ̃γ,θ is the random
measure whose distribution coincides with Qγ,θ , one then defines the two-parameter Poisson–
Dirichlet process as P̃γ,θ = μ̃γ,θ /μ̃γ,θ (X). We will now show how to exploit the fact that P̃γ,θ (g)

can be obtained as a suitable mixture of means of generalized gamma NRMI’s in order to obtain
a new representation for the distribution function of P̃γ,θ (g).

Denote by Z a gamma random variable with shape parameter θ/γ > 0 and scale parameter
β > 0, that is,

fZ(z) = βθ/γ

�(θ/γ )
z(θ/γ )−1e−βz. (42)

Let μ̃Z be a CRM, independent of Z, with intensity measure obtained by multiplying the Lévy
measure corresponding to the generalized gamma CRM in (32) by Z, that is,

νZ(dv,dx) = Zγ

�(1 − γ )

e−τv

v1+γ
dv α(dx),

and define P̃Z = μ̃Z/μ̃Z(X). By (34), we can set τ = 1 without loss of generality. See also [36],
Section 4. It can then be shown that for any function g : X → R

+ satisfying the integrability
condition (33), one has ∫ +∞

0
P[P̃z(g) ≤ x]fZ(z)dz = P[P̃γ,θ (g) ≤ x]. (43)

The above equality in distribution follows by noting that

E
[(

ω + P̃Z(g)
)−1] = θ

∫ +∞

0

∫
X
[1 + uω + ug(x)]γ−1α(dx)

{∫
X
[1 + uω + ug(x)]γ α(dx)}(θ/α)+1

du = E
[(

ω + P̃γ,θ (g)
)−1]

for any ω ∈ C such that | arg(ω)| < π, where the first expected value is computed with respect to
the product measure of the vector (P̃Z,Z). Using this connection, one can exploit the representa-
tion for the distribution of P̃Z(g) given in Proposition 4.3 in order to deduce a new, surprisingly
simple, expression for the probability distribution of P̃γ,θ (g), which can be compared with alter-
native representations given in [22].
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Proposition 4.6. Let g be a function for which (33) holds true. The cumulative distribution func-
tion of the mean of a two-parameter Poisson–Dirichlet process P̃γ,θ (g) can then be represented
as

F(σ ;g) = 1

2
− 1

π

∫ ∞

0

sin(θ/γ arctanBσ (t)/Aσ (t))

t[A2
σ (t) + B2

σ (t)]θ/(2γ )
dt, (44)

where Aσ and Bσ are defined in (36) and (37), respectively.

As an interesting consequence of the representation in (43), we obtain the finite-dimensional
distributions of the two-parameter Poisson–Dirichlet process with γ = 1/2 and θ > 0, which
were first obtained in [3], Theorem 3.1. Before stating the result, it is worth noting that if γ = 1/2,
the generalized gamma CRM reduces to an inverse Gaussian CRM and that, consequently, the
finite-dimensional distributions of the two-parameter Poisson–Dirichlet process are obtained as
mixtures with respect to those of the inverse Gaussian NRMI.

Proposition 4.7. For any partition of X into sets A1, . . . ,An ∈ X such that P0(Ai) = pi > 0
for any i, a density function of the random vector (P̃1/2,θ (A1), . . . , P̃1/2,θ (An−1)) on the simplex
�n−1 = {(w1, . . . ,wn−1) ∈ [0,1]n−1 :

∑n−1
i=1 wi ≤ 1} is given by

f (w1, . . . ,wn−1) = (
∏n

i=1 pi)

π(n−1)/2

�(θ + n/2)

�(θ + 1/2)

w
−3/2
1 · · ·w−3/2

n−1 (1 − ∑n−1
i=1 wi)

−3/2

[An(w1, . . . ,wn−1)]θ+n/2
,

where An(w1, . . . ,wn−1) = ∑n−1
i=1 p2

i w
−1
i + p2

n(1 − ∑n−1
i=1 wi)

−1.

Remark 4.2. Two interesting distributional properties of Dirichlet means can be readily ex-
tended to means of species sampling models, which include homogeneous NRMI’s and the two-
parameter Poisson–Dirichlet process as special cases [36]. Recall that a species sampling model
is defined as an a.s. discrete random probability measure P̃ (·) = ∑

i≥1 p̃iδXi
(·) such that the

p̃i ’s (weights) are independent from the Xi ’s (locations), which are i.i.d. from some non-atomic
distribution P0. The first property we consider is related to the symmetry of the distribution of
P̃ (g). If P̃ is a Dirichlet process, conditions for symmetry have been investigated, for example,
in [13,39]. If P̃ is a species sampling model, it can be shown that, analogously to the Dirichlet
case, P̃ (g) is symmetric if the distribution of g(X), where X is a random variable with distri-
bution P0, is symmetric. Another distributional property of a mean of a Dirichlet process was
considered in [43], where the author proves that P0 ◦ g−1 has the same distribution as P̃ (g) if
P0 ◦ g−1 is Cauchy distributed. By mimicking the proof of [43], one can easily show that such a
property holds true when P̃ is any species sampling model.

5. Concluding remarks

In this final section, we briefly discuss two further issues, namely the concrete implementation
of the results provided in the paper (also in relation to simulation schemes) and frequentist as-
ymptotics. As for the former, we note that in the numerical computation of the integrals involved
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in the distributional formulae for means of NRMI’s, the integrands are typically well behaved,
which, in some sense, is quite natural, given the “mean-operation” has a smoothing effect: hence,
for specific cases, exact expressions are computable with numerical double-integration packages;
see, for example, [39,40]. For mixtures of NRMI, numerical computation becomes problematic
since sums over partitions are involved, which increase the computing time at an exponential
rate. As an alternative, one could also resort to simulation schemes to obtain an approximation
of the distribution of interest. However, the simulation of realizations of an NRMI is a delicate
task, since it is based on CRM’s which jump infinitely often on any bounded interval. Conse-
quently, a simulation algorithm is necessarily based on some truncation, which, in some cases,
may compromise posterior inferences; see, for example, [10]. This implies that the availability of
exactly computable expressions for distributions of means is also useful for practical purposes as
a benchmark for testing the accuracy of a simulation algorithm: one simulates trajectories of the
process (by tuning the number of jumps and the number of trajectories) until a suitable distance
between the exact and the simulated distribution of the mean is less than a prescribed error. If
this is the case, the numerical output can then be exploited to compute any quantity of interest
(not just means).

In order to evaluate frequentist asymptotic properties of Bayesian procedures, the data are
assumed to be independently generated by a “true” distribution Ptr. As far as consistency is
concerned, one essentially has that NRMI’s are consistent if Ptr is discrete and inconsistent if Ptr
is non-atomic (with the exception of the Dirichlet process). This can be informally illustrated by
looking at, for instance, the γ -stable NRMI: the predictive distributions associated with such an
NRMI are of the form

P
(
Xn+1 ∈ ·|X∗

1, . . . ,X∗
n(π)

) = γ n(π)

n
P0(·) + 1

n

n(π)∑
i=1

(ni − γ )δX∗
i
(·). (45)

If the data are generated independently from a non-atomic Ptr, all observations are distinct,
which implies that n(π) = n almost surely. Hence, as the sample size diverges, the predictive
distribution converges weakly, almost surely, to γP0 + (1 − γ )Ptr and E[P̃ (g)|X] converges to
γP0(g) + (1 − γ )Ptr(g). Consequently, the posterior distribution of P̃ (g) is inconsistent unless
P0 = Ptr. On the other hand, if Ptr is discrete, then limn(π)/n = 0 almost surely and E[P̃ (g)|X]
converges to the “true” value Ptr(g); see [21,24] for general results in this direction. Inconsis-
tency with respect to a continuous Ptr is not really problematic since, for modelling continuous
data, one would naturally use an NRMI mixture rather than an NRMI itself and, in such a case,
we have consistency under mild assumptions [30]. A related issue of interest is the validity of
Bernstein–von Mises theorems, which provide information about asymptotic normality of the
posterior distribution and asymptotic equivalence with respect to MLE estimation. For the non-
parametric case, only a few results, both positive and negative, are currently known; see [16]
for a stimulating account of the topic. The derivation of such results can be a formidable task
since the posterior representation of the random probability measure is explicitly involved. This
implies that no result is known, even for the mixture of Dirichlet process. Recently, in [21],
a Bernstein–von Mises-type theorem has been obtained for the two-parameter Poisson–Dirichlet
process in the case of continuous Ptr. Under the same assumptions as in Theorem 3.1 of [21], we
can then deduce the asymptotic behavior for the posterior distribution of a mean functional of
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the two-parameter Poisson–Dirichlet process, denoted by P̃ X
γ,θ (g). Indeed, we obtain that as the

number of observations generated by an absolutely continuous Ptr diverges,

n1/2{P̃ X
γ,θ (g) − E[P̃ X

γ,θ (g)]}
d−→ N

(
0, (1 − γ )

[
Ptr(g

2) − [Ptr(g)]2] + γ (1 − γ )
[
P0(g

2) − [P0(g)]2]
+ γ

(
Ptr(g) − P0(g)

)2) a.s.,

where N(μ,σ 2) stands for a Gaussian random variable with mean μ and variance σ 2. In par-
ticular, if g = 1A, then the asymptotic behavior of P̃ X

γ,θ (A) is obtained, that is, the centered
and rescaled distribution of P̃ X

γ,θ (A) converges to a mean zero Gaussian random variable with
variance (1 − γ )[p(1 − p)] + γ (1 − γ )[q(1 − q)] + γ (p − q)2, having set p := Ptr(A) and
q := P0(A). In order to derive such results for general NRMI’s, an approach similar to [21]
seems advisable, although the technicalities may become overwhelming. This may well repre-
sent a topic for future research.

Appendix

Proof of Theorem 3.1. In order to derive a representation of the posterior density, we start by
discretizing P̃ according to the procedure of Regazzini and Sazonov [41]. It essentially consists
of discretizing the random probability measure and the sample along a tree of nested partitions
of X which, at level m, is made up of sets Bm,1, . . . ,Bm,km+1 with Bm,km+1 = X \ (

⋃km

i=1 Bm,i)

such that Bm,km+1 ↓ ∅ and max1≤i≤km diam(Bm,i) → 0 as m tends +∞, where diam(B) is
the diameter of B . The discretized random mean, at level m of the tree, will be of the form
P̃m(g) = ∑km+1

j=1 g(bm,j )P̃ (Bm,j ), where bm,j is any point in Bm,j for j = 1, . . . , km + 1. More-

over, denote by Mm the marginal distribution of X with respect to P̃m. Whenever the j th distinct
element, x∗

j , lies in Bm,i , it is as if we had observed bm,i ; see [41] for details. Note that whatever
tree of partitions has been chosen, there always exists an m∗ such that for every m > m∗, the n(π)

distinct observations within the sample fall in n(π) distinct sets of the partition. Given such a dis-
cretization, Propositions 3 and 4 in [40] easily extend to the case of NRMI’s over Polish spaces.
Thus, the discretized posterior mean converges, in the sense of almost sure weak convergence,
to the actual posterior mean. If the observations X are such that nsj of them lie in Bm,sj , for

j = 1, . . . , n(π), an expression of the posterior density function of the discretized mean P̃m(g)

is given by

(−1)n+1

Mm(X)

∂n

∂r
ns1
m,s1 · · · ∂r

nsn(π)
m,sn(π)

(46)

× In−1
a+ F(σ ; rm,0, . . . , rm,km+1)

∣∣∣∣
(rm,1,...,rm,km+1)=(f (bm,1),...,f (bm,km+1))

,
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where F stands for the prior distribution of the discretized mean and In
a+h(σ ) = ∫ σ

a
(σ−u)n−1

(n−1)! ×
h(u)du is the Liouville–Weyl fractional integral, for n ≥ 1, whereas I 0

a+ represents the identity
operator. We now move on to the identification of the limiting density. To this end, set αm,j =
α(Bm,j ), for j = 1, . . . , km+1, and rewrite (46) as

(−1)n+1

πMm(X)
In−1
a+ Im

∫ +∞

0

1

t
e−∑km+1

j=0

∫ +∞
0 (1−eitv(rm,j −σ)

)ρ(dv|bm,j )αm,j

n(π)∏
l=1

�
nsl
αm,sl

(t)dt, (47)

where � is defined as

�
nsl
αm,sl

(t) := e
∫ +∞

0 (1−eitv(rm,j −σ)
)ρ(dv|bm,sl

)αm,sl

{
∂nsl

∂r
nsl
m,sl

e− ∫ +∞
0 (1−eitv(rm,j −σ)

)ρ(dv|bm,sl
)αm,sl

}
.

By virtue of the diffuseness of α, one has

�
nsl
αm,sl

(t) = (it)nsl αm,sl

∫ +∞

0
vnsl eitv(rm,sl

−σ)ρ(dv|bm,sl ) + o(αm,sl )

as m → ∞. In order to complete the proof, one needs to resort to the expression of the marginal
distribution of the observations provided in Proposition 4 of [23]. Hence, if we let m tend to
+∞ and apply Theorem 35.7 in Billingsley [1] and dominated convergence, the desired result
follows. Note that, as a by-product, we have also proven that the posterior distribution of the
means is absolutely continuous with respect to the Lebesgue measure on R.

The proof of the representation of the posterior cumulative distribution function in (16) con-
sists of the following steps. First, we use the idea suggested by [13], that is,

F
X(σ ;g) = P{μ̃(g − σ1) ≤ 0|X}. (48)

As in [40], we now resort to Gurland’s inversion formula, which, combined with Proposition 2
in [40], yields

F
X(σ ;g) = 1

2
− 1

π
lim

T ↑+∞

∫ T

0

1

t
Im

{
E

[
eitμ̃(g−σ1)|X]}

dt.

The conclusion can now be easily deduced from [23], Theorem 1, according to which

E
[
eitμ̃(g−σ1)

∣∣X] =
∫ +∞

0
E

[
eitμ̃(u)(g−σ1)+it

∑n(π)
r=1 (g(x∗

r )−σ)J
(u,X)
r

]
f X

Un
(u)du. �

Proof of Theorem 3.2. The first thing to note is that by (7), determining the distribu-
tion of (Q̃(g)|Y) is equivalent to determining the distribution of (P̃ (h)|Y) with h(x) =∫

Y
g(y)k(y, x)λ(dy). Moreover, by linearity of the mean, one has (P̃ (h)|Y) = ∫

X
h(x) ×

(P̃ (dx)|Y). Thus, we need a posterior representation of the NRMI, given the data Y which come
from the mixture of NRMI in (5). To this end, one can adapt Theorem 2 in [18] to obtain the
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disintegration

(P̃ |Y)
d=

∫
Xn

(P̃ |X)M(dX|Y), (49)

where M(X|Y) stands for the marginal distribution of the latent variables X, given the ob-
servables Y. From (49) combined with Theorem 3.1, a first description of the distribution of
(Q̃(g)|Y) follows. Indeed, the posterior density can be represented as

φY(σ ;g) =
∫

Xn

ρX(σ ;h)M(dX|Y), (50)

where ρX(σ ;h) coincides with the density function given in Theorem 3.1 with h(x) =∫
Y

g(y)k(y, x)λ(dy). Moreover, the posterior distribution function is of the form

G
Y(σ ;g) =

∫
Xn

F
X(σ ;h)M(dX|Y), (51)

where F
X(σ ;h) is given in Theorem 3.1, with h defined as above. Note that the previous expres-

sions could also have been obtained by combining the discretization of the observation space
employed in [33] with the limiting arguments used in the proof of Theorem 3.1.

In order to get explicit descriptions of the posterior distributions in (50) and (51), we need to
find expressions for the marginal distribution of X given Y. From Bayes’ theorem, it follows that

M(dX|Y) =
∏n

i=1 k(Yi,Xi)M(dX)∫
Xn

∏n
i=1 k(Yi,Xi)M(dX)

. (52)

It is clear that the marginal distribution of X can be described by the joint distribution of the
distinct variables X∗ and the induced random partition π . In Proposition 4 of [23], an expression
for the joint distribution of (X∗,π) is provided. By inserting this formula into (52), suitably
rearranging the terms and making use of the partition notation introduced at the beginning of
Section 2, one obtains

M(dX|Y) =
∏n(π)

j=1

∏
i∈Cj

k(Yi,X
∗
j )α(dX∗

j )[
∫

R+ un−1e−ψ(u)
∏n(π)

j=1 τnj
(u|X∗

j )du]∫
R+ un−1e−ψ(u)[∑π

∏n(π)
j=1

∫
X

∏
i∈Cj

k(Yi, x)τnj
(u|x)α(dx)]du

, (53)

where
∑

π stands for the sum over partitions and the τnj
’s are defined in (11). Inserting (53) into

(50) and carrying out suitable simplifications, one obtains the desired expression for the posterior
density. As for the posterior distribution function, insert (53) into (51) and, after some algebra,
the result follows. �

Proof of Proposition 4.1. The proofs of both representations are based on Theorem 3.1 and
on the key relation (39) discussed in Remark 4.1 of Section 4.2. As for the posterior den-
sity function, note that τnj

(u|X∗
j ) = �(nj )[β(X∗

j ) + u]−nj and that κnj
(it[g(X∗

j ) − z]|X∗
j ) =

�(nj )[β(X∗
j ) − it (g(X∗

j ) − z)]−nj for j = 1, . . . , n(π). Inserting these expression into the gen-
eral one of Theorem 3.1 and carrying out the appropriate simplifications using (39) allows
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the posterior density function of P̃ (g) to be written as desired. With reference to the poste-
rior cumulative distribution function, one has that, given X and Un, the j th jump J

(Un,X)
j is

gamma distributed with parameters (β(X∗
j ) + Un,nj ), for j = 1, . . . , n(π). Hence, we have

ζg(σ ;u, t) = exp[− ∫
X

log(1 − it (g(x) − σ)[β(x) + u]−1)α∗(dx)] for (17). Finally, it is easy to
verify that t−1ζg(σ ;u, t) is absolutely integrable in (M,+∞) for any M > 0 and u > 0. Thus,
appropriate simplifications between denominator and numerator lead to the result. �

Details for the determination of (24). Given g = 1A and α(A) = α(Ac) = 1, the integral in
(23) can be written as

∫ ∞

0

cos(2 arctan t (1 − z)/β1 − arctan tz/β2)

[β2
1 + t2(1 − z)2][β2

2 + t2z2]1/2
dt

=
∫ ∞

0

1

[β2
1 + t2(1 − z)2][β2

2 + t2z2]1/2

×
{

cos2
(

arctan
t (1 − z)

β1

)
cos

(
arctan

tz

β2

)
− sin2

(
arctan

t (1 − z)

β1

)
cos

(
arctan

tz

β2

)

+ 2 sin

(
arctan

t (1 − z)

β1

)
cos

(
arctan

t (1 − z)

β1

)
sin

(
arctan

tz

β2

)}
dt

and it can be easily seen that it reduces to

∫ ∞

0

1

[β2
1 + t2(1 − z)2][β2

2 + t2z2]1/2

×
{

β2
1

β2
1 + t2(1 − z)2

β2√
β2

2 + t2z2

− t2(1 − z)2

β2
1 + t2(1 − z)2

β2√
β2

2 + t2z2
+ 2

t (1 − z)β1

β2
1 + t2(1 − z)2

tz√
β2

2 + t2z2

}
dt

=
∫ ∞

0

t2(1 − z)(2β1z − β2(1 − z)) + β2
1β2

[β2
1 + t2(1 − z)2]2[β2

2 + t2z2] dt

= (1 − z)
(
2β1z − β2(1 − z)

) 1

(1 − z)4z2

π

4β1/(1 − z)(β1/(1 − z) + β2/z)2

+ πβ2
1β2

2(1 − z)4z2

{
z

β2(β
2
1/(1 − z)2 − β2

2/z2)2

− 1

2(β2
1/(1 − z)2 − β2

2/z2)β3
1/(1 − z)3

− 1 − z

(β2
1/(1 − z)2 − β2

2/z2)2β1

}
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= π[2β1z + β2(1 − z)]
4β1[β1z + β2(1 − z)]2

+ π[2β3
1z3 − 3β2

1β2z
2(1 − z) + β3

2 (1 − z)3]
4β1[β2

1z2 − β2
2 (1 − z)2]2

= πz

[β1z + β2(1 − z)]2
,

from which (24) follows. �

Proof of Proposition 4.2. The representations in (25) and (27) are obtained by a direct appli-
cation of Theorem 3.2: one only needs to compute the quantities already exploited in the proof
of Proposition 4.1 and insert them into the relevant expressions of Theorem 3.2. In order to ob-
tain the posterior representations in (26) and (28) which make use of the quasi-conjugacy of the
extended gamma process, it is enough to apply Fubini’s theorem and use (39). �

Proof of Corollary 4.1. Recall that the Dirichlet case corresponds to the extended gamma case
with β(x) = c > 0, which, without loss of generality, we can set equal to 1. We first derive
the posterior density function. To this end, consider (26) and note that in this case, within the
denominator, one has ∫

R+
un−1e− log(1+u)(a+n) du = �(a)�(n)

�(a + n)
, (54)

having set α(X) := a. This allows (26) to be rewritten as

ξh(t, z) =
∑
π

∫
Xn(π)

�(a + n)e− ∫
X

log(β(s)−it (h(s)−z))αX
n (ds)

π�(a)�(n)

(55)

×
∏n(π)

j=1 (nj − 1)!∏i∈Cj
k(Yi, xj )α(dxj )∑

π

∏n(π)
j=1 (nj − 1)! ∫

X

∏
i∈Cj

k(Yi, x)α(dx)
,

which, combined with (20) and an application of Fubini’s theorem, leads to a posterior density
of the form

φY(σ ;g) =
∑

π

∏n(π)
j=1 (nj − 1)! ∫

Xn(π) �
n(σ,h)

∏
i∈Cj

k(Yi, xj )α(dxj )∑
π

∏n(π)
j=1 (nj − 1)! ∫

X

∏
i∈Cj

k(Yi, x)α(dx)
, (56)

where �n is the posterior density of P̃ (h), given X, as given in [23], Theorem 1. But, since the
posterior mean of a Dirichlet process is again a Dirichlet process mean with updated parameter
measure αX

n , one can choose the simplest possible expression for such a density, which, to date,
is (30) obtained in [40]. Hence, �n can be replaced by (30) in (56), and (29) follows. Note that
(30) can also be derived from the posterior density in Proposition 4.1 by considering the case
n = 1, for which (54) yields a−1. To obtain (31), one proceeds in a similar fashion, starting from
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(28), and then simplifies the resulting expression using the representation for the cumulative
distribution function of Dirichlet process mean provided in [39]. �

Proof of Proposition 4.3. We start by noting that

P
(
P̃ (g) ≤ σ

) = P
(
μ̃(τ [g − σ1]) ≤ 0

)
(57)

and then apply Gurland’s inversion formula to the right-hand side of (57). Showing that F is
absolutely continuous (with respect to the Lebesgue measure on R), one has that the prior distri-
bution of P̃ (g) is of the form (34), with β = aτγ > 0. Note that, thanks to the reparameterization
induced by (57), the generalized gamma NRMI is completely specified by the parameters P0,
γ and β . In order to make (34) completely explicit, introduce the quantities (36) and (37) and
observe that

exp

{
−β

∫
X

[
1 − it

(
g(x) − σ

)]γ
P0(dx)

}
= exp{−[βAσ (t) − iβBσ (t)]}.

This implies that (34) can be represented, by working out the imaginary part, as (35). �

Proof of Proposition 4.4. In order to obtain the expressions for the posterior distribution, we
resort to Theorem 3.1, but we have to take into account the reparametrization in (57): hence,
we set, without loss of generality, τ = 1 and α(dx) = βP0(dx) in (32). Consequently, we
get τnj

(u|X∗
j ) = γ [1 + u]γ−nj (1 − γ )nj −1 and κnj

(it (g(X∗
j ) − z)|X∗

j ) = γ [1 − it (g(X∗
j ) −

z)]γ−nj (1 − γ )nj −1, for j = 1, . . . , n(π), where, as before, (a)b stands for the Pochhammer
symbol. The explicit form of the denominator is obtained by a suitable change of variable com-
bined with the binomial theorem. Some algebra leads to an analytic representation of the pos-
terior density of P̃ (g) as in (14) with the function Xg as in (38). This proves that first part of
the proposition. In order to derive the posterior cumulative distribution function given in (16),
first note that the jumps J

(Un,X)
i are gamma distributed with scale parameter Un + γ and shape

parameter ni − γ . Then, write the explicit form of the other quantities involved and carry out
some simplifications. It is then easy to see that ζ(σ ;u, t) is absolutely integrable in (M,+∞)

for any M > 0 and u > 0, thus, the result follows. �

Proof of Proposition 4.5. The result is obtained by exploiting the quantities computed for de-
riving Proposition 4.4 and inserting them into the expression of Theorem 3.2. This, combined
with some algebra, leads to the formulae in (40) and (41). �

Proof of Proposition 4.6. Let F
Z(·;g) denote the cumulative distribution function of the mean

P̃Z(g), given Z. By Proposition 4.3, F
Z(·;g) coincides with (34), with zβ in place of β . Reason-

ing as in the proof of Proposition 4.3, we obtain

F
Z(σ ;g) = 1

2
− ezβ

π

∫ ∞

0

1

t
e−zβAσ (t) sin(zβBσ (t))dt,

where Aσ and Bσ are defined as in (36) and (37), respectively. We now integrate with respect
to Z in order to obtain the unconditional cumulative distribution function of the two-parameter
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Poisson–Dirichlet process, that is,

F(σ ;g) = 1

2
− βθ/γ

π�(θ/γ )

∫ ∞

0
dt

1

t

∫ ∞

0
zθ/γ−1e−zβAσ (t) sin(zβBσ (t))dz

= 1

2
− βθ/γ

π

∫ ∞

0

sin(θ/γ arctanBσ (t)/Aσ (t))

t[β2A2
σ (t) + β2B2

σ (t)]θ/(2γ )
dt,

where the last equality follows from 3.944.5 in [15]. Simplifying with respect to β leads to the
desired result. �

Proof or Proposition 4.7. From Proposition 1 in [29], the density function of the random vector
(P̃Z(A1), . . . , P̃Z(An−1)) with γ = 1/2 is given by

f Z(w1, . . . ,wn−1) = eZβ(Zβ)n
∏n

i=1 pi

2n/2−1πn/2
K−n/2

(
Zβ

√
An(w1, . . . ,wn−1)

)

× w
−3/2
1 · · ·w−3/2

n−1

(
1 −

n−1∑
i=1

wi

)−3/2

{(Zβ)2 An(w1, . . . ,wn−1)}−n/4.

If one integrates the above density with respect to fZ in (42) and makes use of 6.561.16 in [15],
the result easily follows. �
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