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Linear ARCH (LARCH) processes were introduced by Robinson [J. Econometrics 47 (1991) 67–84] to
model long-range dependence in volatility and leverage. Basic theoretical properties of LARCH processes
have been investigated in the recent literature. However, there is a lack of estimation methods and cor-
responding asymptotic theory. In this paper, we consider estimation of the dependence parameters for
LARCH processes with non-summable hyperbolically decaying coefficients. Asymptotic limit theorems
are derived. A central limit theorem with

√
n-rate of convergence holds for an approximate conditional

pseudo-maximum likelihood estimator. To obtain a computable version that includes observed values only,
a further approximation is required. The computable estimator is again asymptotically normal, however
with a rate of convergence that is slower than

√
n.

Keywords: asymptotic distribution; LARCH process; long-range dependence; parametric estimation;
volatility

1. Introduction

Since the introduction of ARCH and GARCH processes in the seminal papers of Engle (1982)
and Bollerslev (1986), an abundance of models with conditional heteroskedasticity have been
proposed. More recently, modifications of these models have been introduced to include the
possibility of slowly decaying correlations (long memory) in volatility. This was motivated by
the observation that empirical autocorrelations in squared log-returns often persist over long
stretches of time. Long memory means that the sum of autocorrelations over all lags is infinite.
As it turns out, not all models proposed in this context have long memory in volatility, although
their correlations may decay hyperbolically. For instance, no second order stationary ARCH(∞)

process Xt with non-summable autocorrelations of X2
t exists (Giraitis et al. (2000a, 2000b)).

Models with genuine long memory in volatility include linear ARCH (LARCH) models intro-
duced by Robinson (1991) and stochastic volatility (SV) models such as the FIEGARCH process
(Harvey (1998), Robinson (2001), Surgailis and Viano (2002)). With respect to estimation, SV
models are somewhat complicated since they are based on unobservable latent processes. In
contrast, no latent process is included in the definition of LARCH processes. This allows for
direct estimation of unknown parameters, including maximum likelihood estimation and related
methods. For LARCH processes, the difficulty in studying asymptotics of parameter estimates is,
however, the rather complex structure of the stationary solution (Giraitis et al. (2000a, 2000b)).
The problem of location estimation is considered in Beran (2006). Related limit theorems can
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be found in Berkes and Horvath (2003) and Giraitis et al. (2000a, 2000b). Here, we will con-
sider estimation of dependence parameters for LARCH processes with hyperbolically decaying
non-summable weights.

A LARCH process (Xt , σt )t∈Z is defined by

Xt = εtσt , (1)

σt = a +
∞∑

j=1

bjXt−j , (2)

where the following assumptions hold:

(A1) εt are i.i.d. random variables defined on a probability space (�, A,P ), with continuous
distribution, E(εt ) = 0, and E(ε2

t ) = 1;
(A2) a �= 0 and b = ∑∞

j=1 b2
j < 1.

The stationary solution of the LARCH equations is given by

σt = a + a

∞∑
k=1

∞∑
j1,...,jk=1

bj1 · · ·bjk
εt−j1 · · · εt−j1−···−jk

(Giraitis et al. (2000a, 2000b)). Obviously, the process (Xt )t∈Z is uncorrelated. Giraitis et
al. (2003) showed that if bj ∼j→∞ cjd−1 for some d ∈ (0, 1

2 ) and E(X4
t ) < ∞, then there is

long memory in volatility characterized by

γσ (k) = cov(σ0, σk) ∼|k|→∞ c1|k|2d−1

and

γX2(k) = cov(X2
0,X

2
k) ∼|k|→∞ c2|k|2d−1,

and the same is true for the leverage covariance γL(k) = cov(σ 2
k ,X0).

The main purpose of our work is to provide statistical theory for the estimation of a parametric
version of (1) and (2). Thus, we assume a and (bj )j≥1 to depend on a finite-dimensional para-
meter vector θ . We will focus on conditional maximum likelihood estimation, a method often
used for models with conditional heteroskedasticity. Under the assumption of Gaussian εt , the
following approximate maximum likelihood estimator of θ can be defined:

θ∗
n := arg min

θ∈�
L∗

n(θ),

where

L∗
n(θ) =

n∑
t=1

X2
t

σ 2
t (θ)

+ lnσ 2
t (θ)
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and

σt (θ) = a(θ) +
∞∑

j=1

bj (θ)Xt−j .

Given a finite sample, σt (θ) has to be replaced by a proxy σ̄t (θ), depending on the finite past
only. Since, in general, εt is not assumed to be normal, θ∗

n is called a pseudo-maximum likelihood
estimator (PMLE). In the case where (Xt , σt ) is the original ARCH(1) or GARCH(1,1) process,
the asymptotic properties of θ∗

n have been investigated in Lee and Hanson (1994) and Lumsdaine
(1996), and were generalized to GARCH(p,q) and ARCH(∞) processes by Berkes et al. (2003)
and Robinson and Zaffaroni (2006), respectively. For long-memory LARCH processes, deriva-
tion of asymptotic results is more complicated because the coefficients bj are not summable.
Moreover, σ 2

t may become arbitrarily small and hence σ−2
t and its derivatives arbitrarily large.

The first problem leads to difficulties with respect to differentiability of σt (θ) as a function of θ .
Additional assumptions on the parametric model are therefore needed (see Section 2). The sec-
ond problem can be avoided by modifying the original maximum likelihood equations (see Sec-
tion 3). Also, note that parametric estimation for finite order LARCH processes, that is, where
the sum in (2) is finite and thus the autocorrelations of the squares are absolutely summable, is
considered in Francq and Zakoian (2008) and Truquet (2008).

The outline of the paper is as follows. Section 2 deals with ergodicity and differentiability
as necessary prerequisites. Estimation of θ is considered in Section 3. Asymptotic results are
derived for two versions of a modified MLE: (a) estimate with σt (θ) (t = 1, . . . , n) and (b) esti-
mate including only values of σt (θ) that can be approximated with sufficient accuracy. Lemmas
needed in the proofs of the main results can be found in the Appendix. A small simulation study
in Section 4 illustrates the theoretical results. Some general comments in Section 5 conclude the
paper.

2. Ergodicity and differentiability

2.1. Ergodicity

To ensure consistency, ergodicity of σt is needed. The following proposition is an extension of
Theorem 2.1 in Giraitis et al. (2003).

Proposition 1. Under (A1) and (A2), there exists a unique strictly and second order stationary
solution of (1) and (2). This solution is ergodic.

Proof. σt is given by the Volterra decomposition (see Giraitis et al. (2000a, 2000b))

σt = a + a

∞∑
k=1

∞∑
j1,...,jk=1

bj1 · · ·bjk
εt−j1 · · · εt−j1−···−jk

.
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Since {εi1 · · · εir }1≤i1<···<ir ,r≥1 is an orthonormal system, convergence in the L2(�)-norm fol-
lows from (A2) since

∞∑
k=1

∞∑
j1,...,jk=1

b2
j1

· · ·b2
jk

=
∞∑

k=1

bk < ∞.

For the uniqueness of σt , we refer to Giraitis et al. (2003). For the proof of ergodicity, it is suf-
ficient to find a measurable function f : R∞ → R with σt = f (εt−1, εt−2, . . .), where equality
holds almost surely (see, for example, Theorem 3.5.8 in Stout (1974)). First, note that conver-
gence of the infinite sum defining the solution is independent of the order of summation since
the series of squared coefficients is absolutely summable. Hence, we make use of the following
alternative representation of σt . Define

fk(x1, x2, . . .) =
∑

ji≥1,l≤k

j1+···+jl=k

bj1 · · ·bjl
xj1 · · ·xj1+···+jl

and

Mt(k) = fk(εt−1, εt−2, . . .).

Then

σt = a + a

∞∑
k=1

Mt(k)

and for every fixed t ∈ Z, Mt(k), k = 1,2, . . . , is a martingale difference w.r.t. F t
k = σ {Mt(l), l ≤

k}. An application of the martingale convergence theorem yields that

St (m) =
m∑

k=1

Mt(k) →
∞∑

k=1

Mt(k)

as m → ∞ almost surely. Hence, the desired representation is given by

f =
∞∑

k=1

fk.

For the measurability of f, see Corollary 2.1.3 in Straumann (2004). �

2.2. Differentiability

For simplicity of notation, we will concentrate on coefficients (bj )j≥1 of the following type:

(B1)

bj (c, d) = cjd−1,
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where d ∈ [0, du], du < 1
2 , c ∈ [0, cu(d)] and

cu(d) = C

( ∞∑
j=1

j2d−2

)−1/2

,

with 0 < C < 1.
(B2) a ∈ [ad, au] with 0 < ad < au < ∞.

Assumption (B1) ensures the summability constraint in (A2). Extending the results to more
general weights, such as, for instance, those obtained from the FARIMA(p,d, q) operator (see
Grager and Joyeux (1980), Hosking (1981)) is straightforward. For instance, we may consider
FARIMA(0, d,0) weights bj defined by

∞∑
j=1

bjB
j = c(d)[(1 − B)−d − 1],

where 0 < d < 1
2 and c(d) is a constant such that

∑
b2
j < 1. Note, in particular, that here (1 −

B)−d instead of (1 − B)d induces long memory for d > 0.
In the following, we will use the notation � ⊂ [0, 1

2 ) × (R+)2 for the set of all θ = (d, c, a)T

such that (B1) and (B2) hold. Moreover, for a real matrix A, we define the matrix norm

‖A‖ = tr(AT A)1/2.

Convergence of matrices will be understood with respect to this norm. The LARCH process
(Xt , σt )t∈Z will be assumed to belong to the parametric family with θ0 in the interior of �.

From the given dynamical structure in equation (2), we can reconstruct the unobservable con-
ditional variance σ 2

t from the infinite past (Xs)s≤t , as follows. Define, for any θ ∈ � and t ∈ Z,

σt (θ) = a +
∞∑

j=1

bj (c, d)Xt−j .

For the process with true parameter θ0, we have, in particular,

σ 2
t (θ0) = var(Xt | Xs, s ≤ t − 1).

Given a finite sample (Xt )t=1,...,n, σt (θ) has to be approximated, for instance, by

σ̄t (θ) = a +
t−1∑
j=1

bj (c, d)Xt−j , t ≥ 1.

The extent to which this may be a good approximation of σt (θ) will be discussed in Section 3.
We now consider the properties of σt (θ) for fixed t ∈ Z as a stochastic process with index

θ ∈ �. The reason is that almost sure continuity and differentiability of σt (θ) as a function of θ

will be required in the next section. Moreover, we need to ensure measurability of infima involv-
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ing σt (θ) on the uncountable set �. In the case of absolutely summable coefficients (bj )j≥1, this
is not a problem since the infinite sum defining the stationary solution is uniformly absolutely
summable, on a set of probability one, and σt (θ) inherits the properties of bj (c, d). In contrast,
for non-summable bj , this is not automatically the case. We therefore impose the following as-
sumption.

(S) For every t ∈ Z, (σt (θ))θ∈� is a separable stochastic process on �, that is, for every open
A ⊂ � and closed interval B, the sets

{ω|σt (θ) ∈ B,∀θ ∈ A} and {ω|σt (θ) ∈ B,∀θ ∈ A ∩ Q3}
differ only on a set N ⊂ N0, where P(N0) = 0.

Remark 1. The process (σt (θ))θ∈� can always be replaced by a separable version (see Theo-
rem 2.4 in Doob (1953)).

The following result can now be obtained.

Proposition 2. Under assumptions (A1), (B1), (B2) and (S), σt (θ) is almost surely infinitely
often differentiable in θ and the kth partial derivative w.r.t. d is given by

∂k

∂dk
σt (θ) =

∞∑
j=1

∂k

∂dk
bj (c, d)Xt−j .

Proof. Let

σt (d) := σt {(1,1, d)T }.
The covariance function of [σt (d)]0≤d≤du is given by

v(d, d ′) = Cov(σt (d), σt (d
′)) =

∞∑
j=1

jd+d ′−2,

which is infinitely often differentiable for all 0 ≤ d, d ′ < 1
2 . Since a and c are just additive and

multiplicative components, respectively, in σt (θ), existence of derivatives follows immediately
from Lemma 1 (see the Appendix). Indeed, iteration of the following calculation shows that the
partial derivatives w.r.t. d can be calculated as claimed: Taylor series expansion of bj (1, d) for
each j up to order 2 yields

E

∣∣∣∣∣ 1

h

(
σt (d + h) − σt (d)

) −
∞∑

j=1

∂

∂d
bj (1, d)Xt−j

∣∣∣∣∣
2

= h2E

∣∣∣∣∣
∞∑

j=1

∂2

∂d2
bj (1, d̃j )Xt−j

∣∣∣∣∣
2

= h2E(σ 2
t )

∞∑
j=1

(
∂2

∂d2
bj (1, d̃j )

)2

→ 0

as h → 0, where d ≤ d̃j ≤ du. �
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Lemma 1 in the Appendix also implies that, under (S), we are able to find bounds on
E(supθ∈� |σt (θ)|m) (m ≥ 1) in terms of supθ∈� E(|σt (θ)|m) and supθ∈� E(| ∂

∂θ
σt (θ)|m). This

is very useful for proving uniform convergence results.

3. Estimation

3.1. Estimation with exact conditional variances

Define

μp = E(ε
p
t ),

|μ|p = E(|εt |p)

and

‖b‖p
p =

∞∑
j=1

|bj |p.

The following assumptions ensure the existence of unconditional moments of σt and Xt . As-
sumptions (M3), (M4) and (M′′

p) are from Giraitis et al. (2003), while (M′
p) is from Giraitis et al.

(2000b).

(M3) |μ|3 < ∞ and |μ|1/3
3 ‖b(θ0)‖3 + 3ζ‖b(θ0)‖2 < 1, where ζ is the positive solution of the

equation 3ζ 2 − 3ζ − 1 = 0.

(M′
p) For p ≥ 2, |μ|p < ∞ and (2p − p − 1)1/2|μ|1/p

p ‖b(θ0)‖2 < 1.

(M′′
p) For even p ≥ 4, |μ|p < ∞ and

∑p

j=2

(
p
j

)‖b(θ0)‖j
j |μj | < 1.

Remark 2. For even p ≥ 4, (M′′
p) is weaker than (M′

p). For Gaussian (and similar) εt , (M3)
is weaker than (M′

3). We will therefore make use of assumption (M′
p) only if either p = 5 or

(M′
3) is weaker than (M3). The assumptions we will use are only sufficient; more general (but

complicated) conditions can be formulated in terms of the moments of σt (θ) and its derivatives.

First, we will assume that σt (θ) can be calculated exactly, that is, as if we knew the infinite
past (Xs)s≤n. To avoid the problem of unbounded σ−2

t (see Section 1), we modify the maximum
likelihood estimator as follows. Let

Ln(θ) = 1

n

n∑
t=1

lt (θ) = 1

n

n∑
t=1

X2
t + ε

σ 2
t (θ) + ε

+ ln
(
σ 2

t (θ) + ε
)
,

where ε > 0 is a small but positive constant, and define the estimator

θ(1)
n := arg min

θ∈�
Ln(θ).
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Furthermore, denote by L(θ) = E[lt (θ)] the expected value of the individual terms in Ln. Con-
sistency is given by the following result.

Theorem 1. Let ε > 0 and assume that (A1), (B1), (B2) and (S) hold. Then, under (M3) or
(M′

3), θ
(1)
n is a strongly consistent estimator of θ0, that is, as n → ∞,

θ(1)
n → θ0 a.s.

Proof. From Lemmas 3 and 4 (see the Appendix), we get uniform a.s. convergence of Ln(θ) to
the function L(θ). Moreover, L(θ) has a unique minimum at θ0. The proof then follows from
standard arguments (see, for example, Huber (1967)). �

The asymptotic distribution of θ
(1)
n is essentially determined by L′

n(θ0), where

L′
n(θ) = 1

n

n∑
t=1

∂

∂θ
lt (θ) = 1

n

n∑
t=1

(
1 − X2

t + ε

σ 2
t (θ) + ε

)
2σt (θ)

σ 2
t (θ) + ε

∂

∂θ
σt (θ).

Define the matrices

Gε = E

(
∂

∂θ
lt (θ0)

(
∂

∂θ
lt (θ0)

)T )
= E

(
σ 4

t (Eε4
t − 1)

(σ 2
t + ε)2

4σ 2
t

(σ 2
t + ε)2

σ̇t σ̇
T
t

)
,

Hε = E

(
∂2

∂θ ∂θ ′ lt (θ0)

)
= E

(
4σ 2

t

(σ 2
t + ε)2

σ̇t σ̇
T
t

)
,

where

σ̇t = ∂

∂θ
σt (θ0).

The Hessian matrix ∂2

∂θ ∂θ ′ lt (θ) is given explicitly in the proof of Lemma 3 in the Appendix. The

asymptotic distribution of θ
(1)
n can now be derived as follows.

Theorem 2. Let ε > 0 and θ0 be in the interior of �. Then, under assumptions (A1), (B1), (B2),
(S), (M′

5),

n1/2(θ(1)
n − θ0

) d→ N(0,H−1
ε GεH

−1
ε )

as n → ∞, where N(0,�) denotes the three-dimensional centered normal distribution with
covariance matrix �.

Proof. By Taylor series expansion,

0 = L′
n

(
θ(1)
n

) = L′
n(θ0) + L̃′′

n · (θ(1)
n − θ0

)
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with

L̃′′
n = 1

n

n∑
t=1

∂2

∂θ ∂θ ′ lt (θ),

evaluated in each row j = 1,2,3 at some point θ = θ̃
j
n with ‖θ̃ j

n − θ0‖ ≤ ‖θ(1)
n − θ0‖. Since

E

(
∂

∂θ
lt (θ0)

∣∣∣Ft−1

)
= 0,

where Ft = σ(εs, s ≤ t), ∂
∂θ

lt (θ0) is a vector of stationary, ergodic martingale differences with
finite variance. Hence, from Theorem 23.1 in Billingsley (1968) and the Cramér–Wold device,

n1/2L′
n(θ0)

d→ N(0,Gε)

as n → ∞. From Lemma 3 and Proposition 1, we get

L̃′′
n → Hε

almost surely as n → ∞. By Lemma 5, Hε is invertible. This, together with Slutsky’s theorem,
concludes the proof. �

Remark 3. Letting ε tend to zero, we get H−1
ε GεH

−1
ε → (Eε4

t − 1)H−1
0 , where H0 =

4E(
σ̇t σ̇ T

t

σ 2
t

). If E(σ−2
t ) = ∞, this means, for instance, that the asymptotic variance of â ap-

proaches zero.

Remark 4. Formally, we get the same rate of convergence and asymptotic variance as for short
memory models, such as GARCH(p,q) and ARCH(∞) (see Berkes et al. (2003) and Robinson
and Zaffaroni (2006)).

3.2. Estimation given the finite past

Given a finite sample X1, . . . ,Xn, the computable version of the estimator is defined by

θ(2)
n := arg min

θ∈�
L̄n(θ),

where

L̄n(θ) := 1

n

n∑
t=1

X2
t + ε

σ̄ 2
t (θ) + ε

+ ln
(
σ̄ 2

t (θ) + ε
)
.

This estimator is consistent in the following sense.
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Theorem 3. Let ε > 0 and assume that (A1), (B1), (B2) and (S) hold. Then, under (M3) or
(M′

3),

θ(2)
n → θ0

as n → ∞, where convergence holds in L1 and in probability.

Proof. The proof follows as for Theorem 1, with the additional application of Lemma 6. �

Obtaining the asymptotic distribution of θ
(2)
n is more complicated due to the slow convergence

of |σt (θ) − σ̄t (θ)| to zero. To be more specific, note that

E
[(

σt (θ) − σ̄t (θ)
)2] =

∞∑
j=t

b2
j (c, d) ∼ c1t

2d−1.

As in the proof of Theorem 2, Taylor series expansion yields

0 = L̄′
n

(
θ(2)
n

) = L̄′
n(θ0) + ˜̄L′′

n · (θ(2)
n − θ0

)
,

where L̄′
n(θ) and L̄′′

n(θ) are the same as L′
n(θ) and L′′

n(θ) with σt (θ) replaced by σ̄t (θ). Since

the law of large numbers still holds (see Lemma 6), the asymptotic distribution of θ
(2)
n follows

from the asymptotic distribution of L̄′
n(θ0). The latter is the same as for L′

n(θ0), provided that

dn := √
n
(
L′

n(θ0) − L̄′
n(θ0)

) p→ 0

as n → ∞. Since dn is asymptotically equivalent to

1√
n

n∑
t=1

˙̄σ t (θ)σ̄t (θ)(X2
t + ε)

σ̄ 2
t (θ) + ε

(
1

σ̄ 2
t (θ) + ε

− 1

σ 2
t (θ) + ε

)
,

applying the mean value theorem to (x2 + ε)−1 and taking into account the asymptotic behavior
of E[(σt (θ) − σ̄t (θ))2], a rough upper bound for E(|dn|) is given by

c1E

(
1√
n

n∑
t=1

∣∣∣∣ ˙̄σ t (θ)σ̄t (θ)(X2
t + ε)

σ̄ 2
t (θ) + ε

∣∣∣∣|σt (θ) − σ̄t (θ)|
)

≤ c2
1√
n
nnd−1/2.

In the long-memory case with d > 0, this bound does not converge to zero. We therefore propose
an alternative estimator, at the cost of a slower rate of convergence: for given 0 < β < 1, define
m(n) = �nβ� − 1, where �·� denotes the floor function,

L̃n(θ) := 1

m(n)

n∑
t=n−m(n)

X2
t + ε

σ̄ 2
t (θ) + ε

+ ln
(
σ̄ 2

t (θ) + ε
)
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and

θ(β)
n := arg min

θ∈�
L̃n(θ).

This estimator has the following properties.

Theorem 4. Let ε > 0, θ0 be in the interior of � and assume (A1), (B1), (B2) and (S). The
following then hold:

(a) if (M3) or (M′
3) holds and 0 < β < 1, then θ

(β)
n converges in L1 and in probability to θ0;

(b) if (M′
5) holds and 0 < β < 1 − 2d , then as n → ∞,

nβ/2(θ(β)
n − θ0

) d→ N(0,H−1
ε GεH

−1
ε );

(c) if (M3) or (M′
3) holds and β = 1 − 2d , then

E
[∣∣θ(β)

n − θ0
∣∣] ∼ c2n

−(1/2−d).

Proof. The proof is a combination of Theorem 2 and the arguments given above. �

Remark 5. The choice of ε is important for a good performance of the estimator θ
(β)
n . While

the above theorems indicate that ε should be chosen as small as possible, the optimization in
the definition of θ

(β)
n becomes numerically more demanding if ε → 0 since the function L̃n may

then exhibit many local minima. As an illustration, in Figure 1, L̃n is plotted as a function of the
single parameter d for different values of ε. How this effect can be handled statistically and how
it depends on the parameter θ0 are the subjects of current research.

Remark 6. Calculations analogous to those above imply that for short-memory LARCH
processes (that is, LARCH processes with absolutely summable autocorrelations of X2

t ), the

central limit theorem for θ
(2)
n holds with

√
n-rate of convergence. This also includes the case

where d < 0.

Remark 7. If d > 0 is close to zero, then the best rate of convergence nβ/2 is close to n1/2.
However, for strong long memory with d close to 1/2, the upper bound for β , given by 1 − 2d ,
is very small. Thus, the number of σt ’s used for estimation is very small compared to n and the
rate of convergence of θ

(β)
n is very slow.

Remark 8. Though consistency holds for all β ∈ (0,1], the asymptotic distribution of θ
(β)
n for

β ≥ 1 − 2d remains an open problem. The reason for the bound 1 − 2d is that, defining

dn := √
n
(
L̃′

n(θ) − ¯̃
L

′
n(θ0)

)
,

we have

E[|dn|] = O(nβ/2+d−1/2),
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Figure 1. For ε = 0.01,0.001,0.0001 and 0, the function L̃n is plotted as a function of d with fixed a = 1
and c = 0.1. In each plot, the same path of Xt is used, where the true parameter value is θ0 = (1,0.4,0.1)T

and n = 2000. The vertical line indicates the true value of d .

which is o(1) for β < 1−2d . For β = 1−2d , the difference is bounded, but it is unclear whether
or not it converges to zero.

Remark 9. Alternative estimates of θ0 could be defined via moment estimation. For instance,
empirical estimates of the first three autocovariances of X2

t , γX2(0), γX2(1) and γX2(2), could
be used to estimate θ0 by the method of moments. Limit theorems in Berkes and Horvath (2003)
can then be used to show that the resulting estimate is asymptotically normal and the rate of
convergence is n1/2−d . This is exactly the rate obtained for θ

(β)
n at the border β = 1 − 2d .

4. Simulations

We illustrate Theorem 4 by calculating θ
(β)
n for simulated LARCH processes with standard nor-

mal εt and a parametrization such that (B1) and (B2) hold. The model parameter vector θ and
the constants ε and β are chosen as follows:

• Case 1: d = 0.1, a = 1, c = 0.2; ε = 0.01, β = 0.799;
• Case 2: d = 0.2, a = 1, c = 0.2; ε = 0.01, β = 0.599.
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Figure 2. Two simulated sample paths of a long-memory LARCH process Xt and the corresponding sam-
ple autocorrelation functions of X2

t . The long-memory parameter d is equal to 0.1 in Figures 2a and c, and
to 0.2 in Figures 2b and d, respectively.

To simulate the process Xt via (1) and (2), a pre-sample of length 10 000 is used for initiation.
Moreover, the infinite series in (2) is truncated at order 2000. Figures 2a and b show typical
sample paths of Xt for the two cases. The corresponding sample autocorrelation functions of X2

t

are given in Figures 2c and d, respectively.
For simplicity, we focus on the estimation of d only. The asymptotic standard deviation given

in Theorem 4b (calculated by simulation) is equal to 1.68 in Case 1 and to 1.14 in Case 2.
To compare asymptotic with finite-sample results, a small simulation study is carried out as
follows. For sample sizes n = 1000, 2500, 5000 and 10 000, N = 1000 independent samples
of the LARCH process are drawn and the estimator θ

(β)
n is calculated. Summary statistics of the

results are given in Tables 1 (Case 1) and 2 (Case 2). Normal probability plots based on all 1000
simulations are given in Figures 3a–h and 4a–h.

Comparing the results, one can see a strong discrepancy between robust and non-robust esti-
mates of the expected value, standard deviation and skewness of θ

(β)
n . The robust estimates are

close to the asymptotic values obtained from Theorem 4b, already for n = 1000. This is not the
case for the non-robust estimates. Most extreme are the values of the (non-robust) skewness mea-
sure which should converge to zero, but instead seem to be increasing in absolute value. This can
be explained as follows. Out of N = 1000 simulations, there are a few cases where the algorithm
terminated at a solution equal, or very close to, the lower end of the parameter range used in the
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Table 1. Mean, standard deviation and skewness of θ
(β)
n with β = 0.599, based on N = 1000 simulated

LARCH processes with long-memory parameter d = 0.2 (Case 2). The asymptotic standard deviation from
Theorem 4(b) is equal to 1.681. Here, s is the empirical standard deviation, s̃ is the MAD divided by the
75%-percentile of the standard normal distribution and q-skewness is the empirical quartile skewness. In

the upper table, all N = 1000 simulated values are used; in the lower table, the ten smallest values of θ
(β)
n

are excluded

n 1000 2500 5000 10000

d = 0.1: all 1000 simulations

Mean 0.047 0.069 0.085 0.088
Median 0.094 0.099 0.104 0.101
s 0.353 0.290 0.216 0.198
s̃ 0.121 0.082 0.054 0.041
nβ/2s 5.570 6.605 6.490 7.864
nβ/2s̃ 1.909 1.859 1.621 1.629
Skewness −10.620 −13.161 −16.320 −20.464
q-skewness −0.118 −0.038 −0.093 −0.089

d = 0.1: 10 smallest values of d̂ excluded

Mean 0.072 0.091 0.098 0.098
Median 0.094 0.101 0.104 0.101
s 0.150 0.090 0.057 0.043
s̃ 0.119 0.080 0.053 0.040
nβ/2s 2.384 2.063 1.720 1.722
nβ/2s̃ 1.882 1.822 1.595 1.604
Skewness −1.199 −0.747 −0.684 −0.422
q-skewness −0.103 −0.042 −0.075 −0.079

numerical minimization (see also Remark 5 and Figure 1). As expected from Theorem 4a (and
b), the number of cases where this happens decreases with increasing n. However, since the vari-
ance of estimates in the interior of � tends to zero with increasing n, those few estimates that are
equal to the fixed lower limit of the parameter space become increasingly extreme outliers, com-
pared to the bulk of the simulated data. Indeed, even if N tends to infinity and only one out of N

simulations is equal to the lower bound, the empirical skewness will not converge to zero. For
this reason, the (non-robust) empirical standard deviation, skewness and normal probability plot
are grossly contaminated by the small (and asymptotically negligible) number of simulations
where the algorithm did not converge properly. Apart from the robust estimates, we therefore
also computed the same empirical non-robust quantities leaving out the ten (out of N = 1000)
smallest values of θ

(β)
n . The non-robust estimates are then indeed much closer to the theoretical

values, and the normal probability plots indicate convergence (albeit rather slow for d = 0.2) to
the normal distribution.

An additional observation we can make is that convergence to the asymptotic distribution
is slower for stronger long memory (d = 0.2). The reason is that for d = 0.2, the number of
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Table 2. Mean, standard deviation and skewness of θ
(β)
n with β = 0.599, based on N = 1000 simulated

LARCH processes with long-memory parameter d = 0.2 (Case 2). The asymptotic standard deviation from
Theorem 4(b) is equal to 1.14. Here, s is the empirical standard deviation, s̃ is the MAD divided by the
75%-percentile of the standard normal distribution and q-skewness is the empirical quartile skewness. In

the upper table, all N = 1000 simulated values are used; in the lower table, the ten smallest values of θ
(β)
n

are excluded

n 1000 2500 5000 10000

d = 0.2: all 1000 simulations

Mean −0.292 0.059 0.110 0.168
Median 0.181 0.201 0.198 0.199
s 1.395 0.719 0.552 0.255
s̃ 0.215 0.133 0.102 0.082
nβ/2s 11.041 7.489 7.079 4.030
nβ/2s̃ 1.703 1.385 1.310 1.291
Skewness −2.761 −5.800 −7.899 −11.752
q-skewness −0.292 −0.134 −0.117 −0.093

d = 0.2: 10 smallest values of d̂ excluded

Mean −0.245 0.110 0.161 0.186
Median 0.184 0.202 0.199 0.200
s 1.319 0.511 0.219 0.114
s̃ 0.213 0.131 0.101 0.080
nβ/2s 10.437 5.319 2.810 1.800
nβ/2s̃ 1.688 1.362 1.290 1.262
Skewness −2.949 −6.831 −4.829 −1.336
q-skewness −0.285 −0.112 −0.098 −0.081

terms used in L̃n(θ) is much smaller, namely O(n0.599), as compared to O(n0.799) for d = 0.1.
More specifically, for n = 1000, 2500, 5000 and 10 000, we have m(n) = 62, 108, 164
and 248 for d = 0.2, whereas for d = 0.1, we have m(n) = 249, 518, 902 and 1570 for
d = 0.1.

5. Final remarks

We considered parametric estimation for LARCH processes using a modified conditional pseudo-
likelihood function. The rate of convergence of the computable version discussed in Section 3.2
depends on the strength of long memory. For short-memory processes (d ≤ 0), the usual central
limit theorem with

√
n-convergence holds. If, on the other hand, d is close to 1

2 , convergence
is very slow, so long time series are needed to obtain reliable estimates. In view of the typical
range of applications of volatility models, this may not necessarily be a problem. For instance,
for high-frequency data in finance, the sample size n is often close to 100 000 or more so that the
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Figure 3. Normal probability plots of N = 1000 simulated estimates θ
(β)
n for Case 1 (Figures 3a–d) and

Case 2 (Figures 3e–h).
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Figure 4. Normal probability plots of simulated estimates θ
(β)
n for Case 1 (Figures 4a–d) and Case 2

(Figures 4e–h), with ten (out of N = 1000) of the lowest points excluded.
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application of θ
(β)
n is feasible. How far the best rate n1/2−d may be improved is an open problem.

Alternative methods, including Whittle estimation and improved approximations of σt , are the
subjects of current research.

Appendix

Lemma 1. Let (ξ(d,ω))d∈[a,b] be a real-valued separable stochastic process with mean 0 and
E(ξ2(d)) < ∞ for all d ∈ [a, b].

(a) Denote the covariance function of ξ by v(d, d ′) = E(ξ(d)ξ(d ′)). The following then hold:
(i) If v(d, d ′) is continuous in (d, d ′), then (ξ(d))d∈[a,b] is measurable.

(ii) If v(d, d ′) is continuously differentiable, then (ξ(d))d∈[a,b] is mean square differen-
tiable, that is, there is a process (ξ ′(d))d∈[a,b] with

E

∣∣∣∣ 1

h

(
ξ(d + h) − ξ(d)

) − ξ ′(d)

∣∣∣∣2
h→0−→ 0

for all d ∈ [a, b]. Moreover, for almost all ω, ξ ′(·,ω) coincides with the distributional
derivative ∂ξ(·,ω)/∂d .

(iii) If v(d, d ′) is m times continuously differentiable, then, for almost all ω, ξ(·,ω) is
m − 1 times continuously differentiable.

(b) If (ξ(d))d∈[a,b] is mean square differentiable with E(|ξ(d)|m) < ∞ and E(|ξ ′(d)|m) < ∞
for m ≥ 1, then

E
(

sup
d∈[a,b]

|ξ(d)|m
)

≤ E(|ξ(a)|m) + E(|ξ(b)|m)

+ m(b − a) sup
d∈[a,b]

{E(|ξ(d)|m)}(m−1)/m{E(|ξ ′(d)|m)}1/m.

Proof. (a) is from Kunita (1990), page 40, whereas (iii) is essentially an application of Sobolev’s
embedding theorem (see, for example, Adams and Fournier (2003)). (b) is an extension of The-
orem 3B in Parzen (1965), page 85. �

Throughout this appendix, Ki will denote generic finite constants.

Lemma 2. Let θ = (θ1, θ2, θ3)
T and suppose that (A1), (B1), (B2) and (S) hold. Then:

(a) under (M3), (M′
p) or (M′′

p), we have for k ≤ 3

E

(
sup
θ∈�

∣∣∣∣ ∂kσt (θ)

∂θi1 · · ·∂θik

∣∣∣∣p)
< ∞,

where p = 3 if (M3) holds;
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(b) under (M3), (M′
p) or (M′′

p), we have

E
(

sup
θ∈�

|σt (θ) − σ̄t (θ)|p
)

→ 0 as t → ∞,

where p = 3 if (M3) holds.

Proof. We only give the proof under (M3). The proof is a combination of Lemma 1b and the
combinatorial arguments of Lemmas B.1–B.3 from Giraitis et al. (2003). The other cases follow
by similar arguments and by using, under (M′

p), Lemma 3.1 of Giraitis et al. (2000b) and, under
(M′′

p), Proposition 2.2 of Giraitis et al. (2003), respectively. First, note that

σ̇
(i1,...,ik)
t (θ) = ∂kσt (θ)

∂θi1 · · · ∂θik

.

Moreover, σt (θ) − σ̄t (θ) can be expanded as a Volterra series of the type

�t :=
∞∑

k=1

�
(k)
t

with

�
(k)
t =

∑
sk<···<s1<t

ft,1(t − s1)ft,2(s1 − s2) · · ·ft,2(sk−1 − sk)εs1 · · · εsk ,

ft,1, ft,2 ∈ L2(Z0+), ‖ft,1‖2 < ∞ and ‖ft,2‖2 < 1. For (a), we set

σ̇
(i1,...,ik)
t (θ) = a�t + 1{k=1,θ1=a}

with

(ft,1(j))j≥1 =
(

∂k

∂θi1 · · ·∂θik

bj (θ)

)
j≥1

and

(ft,2(j))j≥1 = (bj (θ))j≥1,

while for (b),

σt (θ) − σ̄t (θ) = a�1

with

(ft,1(j))j≥1 = (bj+t (θ))j≥1

and

(ft,2(j))j≥1 = (bj (θ))j≥1.
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The proof then follows from the application of Lemma 1b and the following result. A small
modification of Lemmas B.1 and B.3 in Giraitis et al. (2003) shows that

E|�t |3 ≤
∞∑

k1,k2,k3=1

E
[∣∣�(k1)

t �
(k2)
t �

(k3)
t

∣∣]
and

E
[∣∣�(k1)

t �
(k2)
t �

(k3)
t

∣∣] ≤ D3
t,1D

k1+k2+k3−3
t,2 ,

where

Dt,i = |μ|1/3
3 ‖ft,i‖3 + 3ζ‖ft,i‖2

and ζ is defined as in assumption (M3). Hence,

E|�t |3 ≤ D3
t,1

(1 − Dt,2)3
.

Since � is compact, we get in (a) that Dt,1 < C1 and Dt,2 < 1−C2, where the constants C1 < ∞
and 0 < C2 < 1 are independent of θ . Furthermore, in (b), Dt,1 → 0 as t → ∞, uniformly for all
θ ∈ �. Note that ‖ft,1‖2 may be greater than 1 and only ‖ft,2‖2 < 1 is used. �

Lemma 3. Let assumptions (A1), (B1), (B2) and (S) hold. Then, under (M3) or (M′
3),

sup
θ∈�

|Ln(θ) − L(θ)| → 0 a.s. as n → ∞. (3)

If (M′′
4) holds, then

sup
θ∈�

‖L′
n(θ) − L′(θ)‖ → 0 a.s. as n → ∞, (4)

where L′(θ) = E( ∂
∂θ

lt (θ)). If (M′
5) holds, then

sup
θ∈�

‖L′′
n(θ) − L′′(θ)‖ → 0 a.s. as n → ∞, (5)

where L′′(θ) = E( ∂2

∂θ ∂θ ′ lt (θ)). In the three respective cases, L(θ) (resp. L′(θ),L′′(θ)) is contin-
uous in θ .

Proof. We first prove (3). From (B1), we have

sup
θ∈�

E|lt (θ)| ≤ K
(
E(X2

t ) + ε
) + K sup

θ∈�

E(σ 2
t (θ)) < ∞.

Thus Ln(θ)
a.s.→ L(θ) by ergodicity of X2

t and σt (θ) for each individual θ ∈ �. Uniform conver-
gence follows from a.s. equicontinuity of (Ln(θ))θ∈�. From the mean value theorem, and the
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stationarity and ergodicity of ∂
∂θ

lt (θ), it suffices to show that

E

(
sup
θ∈�

∥∥∥∥ ∂

∂θ
lt (θ)

∥∥∥∥)
< ∞

(see, for example, Andrews (1992)). Since∥∥∥∥ ∂

∂θ
lt (θ)

∥∥∥∥ ≤ K1|∂dσt (θ)|X2
t + K2,

we get from Hölder’s inequality and Lemma 2 that

E

(
sup
θ∈�

∥∥∥∥ ∂

∂θ
lt (θ)

∥∥∥∥)
≤ K1{E(|Xt |3)}2/3

{
E

(
sup

0≤d≤du

|∂dσt (d)|3
)}1/3 + K2 < ∞.

In (4) and (5), pointwise convergence again follows from ergodicity and the particular moment
assumption. Uniform convergence is also proved as above. Note that the Hessian matrix of Ln(θ)

is given by

L′′
n(θ) = 1

n

n∑
t=1

∂2

∂θ ∂θ ′ lt (θ),

where

l′′t (θ) = ∂2

∂θ ∂θ ′ lt (θ)

= 4σ 2
t (θ)

(σ 2
t (θ) + ε)2

(
2

X2
t + ε

σ 2
t (θ) + ε

− 1

)
∂

∂θ
σt (θ)

(
∂

∂θ
σt (θ)

)T

(6)

+ 2

σ 2
t (θ) + ε

(
1 − X2

t + ε

σ 2
t (θ) + ε

)[
∂

∂θ
σt (θ)

(
∂

∂θ
σt (θ)

)T

+ σt (θ)
∂2

∂θ ∂θ ′ σt (θ)

]
.

Hence, the matrix norm of l
′′
t (θ) is dominated by a linear combination of the terms

sup
θ∈�

∣∣∣∣ ∂

∂θi

σt (θ)
∂

∂θi

σt (θ)X2
t

∣∣∣∣
and

sup
θ∈�

∣∣∣∣ ∂2

∂θi ∂θj

σt (θ)X2
t

∣∣∣∣
for i, j ∈ {1,2,3}. Under (M′′

4) and Lemma 2, these are bounded in L1 so that (4) follows. Anal-
ogously, under (M′

5), (5) follows by the L1-boundedness of a similar linear combination also
involving the terms

sup
θ∈�

∣∣∣∣ ∂3

∂θi ∂θj ∂ θk

σt (θ)X2
t

∣∣∣∣, sup
θ∈�

∣∣∣∣ ∂

∂θi

σt (θ)
∂2

∂θj ∂θk

σt (θ)X2
t

∣∣∣∣
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and

sup
θ∈�

∣∣∣∣ ∂

∂θi

σt (θ)
∂

∂θj

σt (θ)
∂

∂θk

σt (θ)X2
t

∣∣∣∣,
where i, j, k ∈ {1,2,3}, for which Lemma 2 can again be applied. �

Lemma 4. Under (A1), (B1), (B2) and (S), for every θ ∈ �\{θ0},
L(θ) > L(θ0).

Proof. From E(ε2
t ) = 1, we get

L(θ) − L(θ0) = E

(
σ 2

t + ε

σ 2
t (θ) + ε

− ln

(
σ 2

t + ε

σ 2
t (θ) + ε

)
− 1

)
.

Since x − ln(x) − 1 > 0 for 1 �= x > 0, we have

L(θ) ≥ L(θ0)

for all θ and L(θ) = L(θ0) if and only if σ 2
t (θ) = σ 2

t (θ0) almost surely. Given θ and θ0 with
σ 2

t (θ) = σ 2
t (θ0) a.s., we show θ = θ0. Thus we define the sets

A = {ω ∈ �|σt (θ) = σt (θ0)},

Nt = {ω ∈ �|σt �= 0}
and

Ā = AC ∩ {ω ∈ �|σ 2
t (θ) = σ 2

t (θ0)}.
Note that

Ā = {ω ∈ �|σt (θ) = −σt (θ0)}.
On Ā ∩ Nt−1, we have

a +
∞∑

j=1

cjd−1Xt−j = −a0 −
∞∑

j=1

c0j
d0−1Xt−j

and hence

εt−1 = − 1

(c0 + c)σt−1

{
a + a0 +

∞∑
j=2

(cjd−1 + c0j
d0−1)Xt−j

}
.

The right-hand side is measurable w.r.t. Ft−2 and hence independent of the left-hand side. Since
εt−1 has a continuous distribution, this is only possible if

P(Ā ∩ Nt−1) = 0.
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On the sets

Āk = Ā

k−1⋂
i=1

NC
t−i ∩ Nt−k

for k ≥ 2, repeat the same arguments for εt−k to conclude that P(Ā) = 0. Note that the set
{ω ∈ �|∃t0 :σt = 0 for all t ≤ t0} has probability zero, otherwise equation (2) would not hold.
Consequently, with probability one, σt (θ) = σt (θ0), that is,

a − a0 =
∞∑

j=1

(c0j
d0−1 − cjd−1)Xt−j .

Expectation yields a = a0. Finally, considering the variance yields c0j
d0−1 = cjd−1 for all

j ≥ 1. �

Lemma 5. Under (A1), (B1), (B2), (S) and (M5), the matrices Gε and Hε are positive definite
for all θ ∈ �.

Proof. We only prove that Hε is positive definite. The proof for Gε follows by the same argu-
ments. Given λ ∈ R3, we have to show that

λT Hελ = E

(
4σ 2

t

(σ 2
t + ε)2

λT σ̇t σ̇
T
t λ

)
= E

(
4σ 2

t

(σ 2
t + ε)2

(λT σ̇t )
2
)

> 0.

Assume that there is a λ = (λ1, λ2, λ3)
T ∈ R3 such that

4σ 2
t

(σ 2
t + ε)2

(λT σ̇ )2 = 0

almost surely. Then, on the set {ω ∈ �|σt �= 0}, we have

λ1 +
∞∑

j=2

(
λ2j

d−1 + λ3 log(j)jd−1)Xt−j = −λ2εt−1σt−1.

By arguments similar to those used in the proof of Lemma 4, we then get λ = 0. �

Lemma 6. Let assumptions (A1), (B1), (B2) and (S) hold. Then, under (M3) or (M′
3),

sup
θ∈�

|Ln(θ) − L̄n(θ)| L1→ 0 as n → ∞. (7)

If (M′′
4) holds, then

sup
θ∈�

‖L′
n(θ) − L̄′

n(θ)‖ L1→ 0 as n → ∞. (8)
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If (M′
5) holds, then

sup
θ∈�

‖L′′
n(θ) − L̄′′

n(θ)‖ L1→ 0 as n → ∞. (9)

Proof. From the mean value theorem applied to (x2 + ε)−1 and ln(x + ε), and since the deriva-
tives of these functions are bounded, we get

sup
θ∈�

|L̄n(θ) − Ln(θ)| ≤ 1

n

n∑
t=1

|X2
t + ε| sup

θ∈�

∣∣∣∣ 1

σ̄ 2
t (θ) + ε

− 1

σ 2
t (θ) + ε

∣∣∣∣
+ 1

n

n∑
t=1

sup
θ∈�

∣∣ln(
σ̄ 2

t (θ) + ε
) − ln

(
σ 2

t (θ) + ε
)∣∣

≤ K

(
1

n

n∑
t=1

|X2
t + ε| sup

θ∈�

|σ̄t (θ) − σt (θ)| + 1

n

n∑
t=1

sup
θ∈�

|σ̄t (θ) − σt (θ)|
)

.

Then, by Lemma 2b, (M3) or (M′
3) implies that

E
(

sup
θ∈�

|σ̄t (θ) − σt (θ)|3
)

→ 0.

Together with the Cauchy–Schwarz inequality and Cesaro summability, this proves (7). The other
limits, (8) and (9), are proved by means of analogous arguments. �
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