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The two-parameter Poisson–Dirichlet point
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The two-parameter Poisson–Dirichlet distribution is a probability distribution on the totality of positive
decreasing sequences with sum 1 and hence considered to govern masses of a random discrete distribution.
A characterization of the associated point process (that is, the random point process obtained by regarding
the masses as points in the positive real line) is given in terms of the correlation functions. Using this,
we apply the theory of point processes to reveal the mathematical structure of the two-parameter Poisson–
Dirichlet distribution. Also, developing the Laplace transform approach due to Pitman and Yor, we are
able to extend several results previously known for the one-parameter case. The Markov–Krein identity for
the generalized Dirichlet process is discussed from the point of view of functional analysis based on the
two-parameter Poisson–Dirichlet distribution.
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1. Introduction

This paper is concerned with a two-parameter family of probability distributions on the infinite-
dimensional simplex ∇∞ of non-negative decreasing sequences with sum 1,

∇∞ =
{
(vi) = (v1, v2, . . .) :v1 ≥ v2 ≥ · · · ≥ 0,

∑
vi = 1

}
.

It extends the one-parameter family of distributions known as Poisson–Dirichlet distributions,
which were introduced by Kingman [32]; see, for example, [1,44,50] for related topics and bib-
liographic information. Pitman and Yor [45] defined the two-parameter Poisson–Dirichlet dis-
tribution, denoted PD(α, θ), in the following manner. Given 0 ≤ α < 1 and θ > −α, define a
sequence (Ṽi) of random variables by

Ṽ1 = Y1, Ṽi = (1 − Y1) · · · (1 − Yi−1)Yi (i = 2,3, . . .), (1.1)

where Y1, Y2, . . . are independent and each Yi is Beta(1 − α, θ + iα)-distributed. Let (Vi) be
the decreasing order statistics of (Ṽi), namely V1 ≥ V2 ≥ · · · are the ranked values of (Ṽi), and
define PD(α, θ) to be the law of (Vi) on ∇∞. There is some background to the study of these
distributions, as explained in [45] and [44]. In particular, a number of results concerning PD(α, θ)

were obtained in [45]. The proofs there use auxiliary random variables and related processes
(such as stable subordinators and gamma processes) and require deep insight into them. As for the
original Poisson–Dirichlet distributions, which form a one-parameter family {PD(0, θ) : θ > 0}
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and correspond to the gamma processes, certain independence property often makes the analysis
relatively easier. See [50] and [51] for extensive discussions.

One purpose of this article is to provide another approach to study the two-parameter family
{PD(α, θ) : 0 ≤ α < 1, θ > −α}, based mainly on conventional arguments in the theory of point
processes; see, for example, [7] for general accounts of the theory. This means that a random ele-
ment (Vi) governed by PD(α, θ) is studied through the random point process ξ := ∑

δVi
, which

we call the (two-parameter) Poisson–Dirichlet point process with parameters (α, θ), or simply
the PD(α, θ) process. Note that although the above ξ is a ‘non-labeled’ object, it is sufficient
to recover the law of the ranked sequence (Vi). For example, we have ξ([t,∞)) = 0 precisely
when V1 < t . More generally, for each n = 2,3, . . . , quantitative information on V1, . . . , Vn can
be derived from ξ by the principle of inclusion-exclusion. Among the many ways of character-
izing a point process, we choose the one prescribed in terms of correlation functions. For each
positive integer n, the nth correlation function of a point process is informally defined as the
mean density of tuples of n distinct points in the process. As far as the one-parameter family
{PD(0, θ) : θ > 0} is concerned, the idea of such an approach is not new. The correlation func-
tions of the PD(0, θ) process were computed by Watterson [54], where these are referred to as
the multivariate frequency spectra. (See also [39].)

One advantage of this approach can be described as follows. As Kingman [33] mentioned, the
Poisson–Dirichlet distribution is “rather less than user-friendly”. In other words, PD(0, θ) is not
so easy to handle directly. In contrast, the correlation functions of the PD(0, θ) process obtained
in [54] are of a certain simple form. By using them, Griffiths [19] obtained several distributional
results for PD(0, θ). As a two-parameter generalization, we will find ((2.3) below) the correlation
functions of the PD(α, θ) process. This result will play a key role in revealing the mathematical
structure of the two-parameter Poisson–Dirichlet distribution via the associated point process.
Indeed, by exploiting some general tools from the theory of point processes, it will be possible to
deduce results which extend previously known results for the one-parameter case, for example,
the joint probability density obtained by Watterson [54] and the moment formula due to Griffiths
[18]. It should be noted that Pitman and Yor [45] essentially found the joint probability density
in the two-parameter setting. However, we emphasize that our expression (5.13) in Theorem 5.4
is quite consistent with Watterson’s formula and useful for the purpose of further analysis.

Another aspect of results presented in this article is a development of the Laplace transform
method discussed in the last section of [45]. Roughly speaking, the main result ((3.8) in Theo-
rem 3.2) in this direction states that the (suitably modified) Laplace transform of a ‘probability
generating functional’ of the PD(α, θ) process is connected with that of a certain Poisson point
process on (0,∞) through some nonlinear function. This will provide a powerful tool, especially
for the study of certain asymptotic problems regarding PD(α, θ) as θ → ∞. Such problems have
been studied in the case α = 0, motivated by the study of population genetics; see [18] for back-
ground information. We will show that the presence of a fixed parameter α ∈ (0,1) does not affect
the validity of results of such type, generalizing a limit theorem of Griffiths [18] and the central
limit theorem obtained by Joyce, Krone and Kurtz [28]. In the proofs, Theorem 3.2 combined
with the Laplace method is seen to be very effective in demonstrating such results.

The aforementioned structure of PD(α, θ) will also be used to explain certain properties of the
generalized Dirichlet process η := ∑

ViδXi
, where Xi are i.i.d. random variables independent

of (Vi). The Dirichlet process was originally introduced by Ferguson [17] as a prior distribution
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for nonparametric problems and it corresponds to the case where (Vi) is governed by PD(0, θ).
In such a context, many attempts have been made to find the exact distribution of the (random)
mean M := ∑

XiVi of η. A key ingredient for this is the so-called Markov–Krein identity, which
relates the law of M to the common law ν of Xi . Its two-parameter generalization was obtained
by Tsilevich [49]; see also [31,50,53]. Our study of the generalized Dirichlet process will be
based on functional analysis of PD(α, θ): we regard this process as a ‘functional’ of PD(α, θ)

with underlying parameter ν. It will be seen that Theorem 3.2 explains the mathematical structure
behind the Markov–Krein identity, a complementary result of which is presented. We would
expect that such a point of view would help us to discuss further the generalized Dirichlet process.

The paper is organized as follows. In the next section, we describe the formula for the cor-
relation function of the PD(α, θ) process. Section 3 deals with the Laplace transform method,
which will turn out to be another basic tool in the subsequent argument. In Section 4, we dis-
cuss the Dickman function and its two-parameter version which describes the law of V1 with
respect to PD(α, θ). The main result here ((4.9) in Theorem 4.2) is an integral equation satisfied
by the generalized Dickman function. Section 5 shows how the correlation functions combined
with techniques from the theory of point processes yield distributional information on PD(α, θ).
In Section 6, we illustrate the utility of the Laplace transform method established in Section 3
by proving some asymptotic results on PD(α, θ) with θ large. Section 7 is concerned with the
generalized Dirichlet process, some of whose properties will reduce to the results obtained in
previous sections.

2. The correlation function of the PD(α, θ) process

The main subject of this section is the correlation function. We begin with some definitions and
concepts from the theory of point processes [7]. (See also Section 2 in [27] for a comprehensive
exposition of this material.) Let ξ be a point process taking values in R. For simplicity, suppose
that ξ is expressed as ξ = ∑

δXi
for some random variables X1,X2, . . . . Throughout what fol-

lows, we assume that ξ is simple, in the sense that Xi �= Xj(i �= j) a.s. For any positive integer
n, the nth correlation measure (also called the nth factorial moment measure) of ξ , if it exists, is
defined to be a σ -finite measure μn such that for non-negative measurable functions f on Rn,

E

[ ∑
i1,...,in(�=)

f (Xi1, . . . ,Xin)

]
=

∫
Rn

f (x1, . . . , xn)μn(dx1 · · · dxn), (2.1)

where the sum is taken over n-tuples of distinct indices. In particular, μ1 is the mean measure of
ξ and it follows that μn(dx1 · · · dxn) is necessarily symmetric in x1, . . . , xn. If μn has a density
with respect to the n-dimensional Lebesgue measure, the density is called the nth correlation
function of ξ .

In what follows, α and θ are such that 0 ≤ α < 1 and θ > −α, unless otherwise mentioned.
Notice that the PD(α, θ) process ξ = ∑

δṼi
= ∑

δVi
, with (Ṽi) and (Vi) defined as in the Intro-

duction, is simple. Denote by cn,α,θ the product

n∏
i=1

	(θ + 1 + (i − 1)α)

	(1 − α)	(θ + iα)
=

⎧⎨⎩
θn, α = 0,

	(θ + 1)	(θ/α + n)αn−1

	(θ + αn)	(θ/α + 1)	(1 − α)n
, 0 < α < 1.
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In view of the left-hand side, it is clear that

cm+n,α,θ = cm,α,θ cn,α,θ+αm (m,n ∈ {0,1,2, . . .}) (2.2)

with the convention that c0,α,θ = 1. We also need the following notation for the n-dimensional
unit simplex:


n = {(v1, . . . , vn) :v1 ≥ 0, . . . , vn ≥ 0, v1 + · · · + vn ≤ 1}.
In general, the indicator function of a set (or an event) E is denoted by 1E . The main result of
this section generalizes Watterson’s formula [54] ((18), page 644) for the correlation functions
of the PD(0, θ) process to the PD(α, θ) process.

Theorem 2.1. For each n = 1,2, . . . , the nth correlation function of the PD(α, θ) process is
given by

qn,α,θ (v1, . . . , vn) := cn,α,θ

n∏
i=1

v
−(α+1)
i

(
1 −

n∑
j=1

vj

)θ+αn−1

1
n(v1, . . . , vn). (2.3)

We will give a proof based on a known property of the size-biased permutation for PD(α, θ).
For the one-parameter family {PD(0, θ) : θ > 0}, such an idea to derive (2.3) is suggested in [39],
Corollary 7.4. From the definition of size-biased permutation (see [45] or Section 4 of [3]), we
can make the following observation. If a sequence (Vi) of random variables such that Vi > 0
(i = 1,2, . . .) and

∑
Vi = 1 is given, then, for each n = 1,2, . . . , the nth correlation measure μn

of
∑

δVi
exists and

μn(dv1 · · · dvn) =
n∏

i=1

{
v−1
i

(
1 −

i−1∑
j=1

vj

)}
1
n(v1, . . . , vn)μ

�
n(dv1 · · · dvn), (2.4)

where μ
�
n is the joint law of (V

�
1 , . . . , V

�
n ), the first n components of the size-biased permutation

(V
�
i ) of (Vi). In (2.4) and throughout, we adopt the convention that

∑0
j=1 · · · = 0.

Proof of Theorem 2.1. Let (Vi) have PD(α, θ) distribution. A remarkable result obtained in
[37,41,43] then tells us that the law of (V

�
i ) coincides with the law of (Ṽi) in (1.1). Hence for

any non-negative measurable function f on Rn, the expectation E[f (V
�
1 , . . . , V

�
n )] is given by∫

[0,1]n
dy1 · · · dyn f (v1, . . . , vn)cn,α,θ

n∏
i=1

{y−α
i (1 − yi)

θ+iα−1}, (2.5)

where vi = vi(y1, . . . , yn) = yi

∏i−1
j=1(1 − yj ), with the convention that

∏0
j=1 · · · = 1. Note that

the mapping (y1, . . . , yn) =: y 	→ (v1, . . . , vn) =: v from [0,1]n to 
n has the inverse

yi = yi(v) = vi

(
1 −

i−1∑
j=1

vj

)−1

(i = 1, . . . , n). (2.6)
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Therefore, (2.5) becomes

cn,α,θ

∫

n

dv1 · · · dvn

∣∣∣∣∂y
∂v

∣∣∣∣f (v)

n∏
i=1

{y−α
i (1 − yi)

θ+iα−1}. (2.7)

Observing from (2.6) that

n∏
i=1

{y−α
i (1 − yi)

θ+iα−1} =
n∏

i=1

v−α
i

(
1 −

n∑
j=1

vj

)θ+αn−1

, (2.8)

we have, by (2.5) and (2.7),

E[f (V
�
1 , . . . , V �

n )] =
∫

Rn

dv1 · · · dvn f (v)qn,α,θ (v)

n∏
i=1

{
vi

(
1 −

i−1∑
j=1

vj

)−1}
, (2.9)

where qn,α,θ is defined by (2.3). With the help of (2.4), this proves Theorem 2.1. �

It is known that correlation functions appear in the expansion of the ‘probability generating
function’ of a random point process

∑
δXi

; see Section 5 in [7] for general accounts. This func-
tional is defined to be the expectation of an infinite product of the form

∏
g(Xi). For the sake of

clarity, we provide the following definition of infinite products. Given a sequence {ti} of complex
numbers, define

∞∏
i=1

(1 + ti ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
lim

n→∞

n∏
i=1

(1 + ti ) ∈ [1,∞], if ti ≥ 0 (i = 1,2, . . .),

lim
n→∞

n∏
i=1

(1 + ti ) ∈ C, if the limit exists.

In general, it holds that

∞∏
i=1

(1 + |ti |) = 1 +
∞∑

n=1

∑
i1<···<in

|ti1 | · · · |tin | = 1 +
∞∑

n=1

1

n!
∑

i1,...,in(�=)

|ti1 | · · · |tin |. (2.10)

Also,
∏∞

i=1(1 + ti ) admits the corresponding expansion whenever
∏∞

i=1(1 + |ti |) is finite. In
what follows, Eα,θ [· · ·] denotes the expectation with respect to PD(α, θ).

Corollary 2.2. For any measurable function φ : (0,1] → C,

Eα,θ

[ ∞∏
i=1

(
1 + |φ(Vi)|

)]
(2.11)

= 1 +
∞∑

n=1

cn,α,θ

n!
∫


n

n∏
i=1

|φ(vi)|
vα+1
i

(
1 −

n∑
j=1

vj

)θ+αn−1

dv1 · · · dvn.
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If the above series converges, then

Eα,θ

[ ∞∏
i=1

(
1 + φ(Vi)

)]
(2.12)

= 1 +
∞∑

n=1

cn,α,θ

n!
∫


n

n∏
i=1

φ(vi)

vα+1
i

(
1 −

n∑
j=1

vj

)θ+αn−1

dv1 · · · dvn.

Proof. (2.11) is immediate from (2.10), (2.1) and (2.3) together. Convergence of the series in
(2.11) allows us to show (2.12) by the dominated convergence theorem. �

For instance, if φ : (0,1] → C is a measurable function with support contained in [ε,1] for
some 0 < ε < 1, the series in (2.11) is easily verified to converge. Roughly speaking, the assertion
of Corollary 2.2 is equivalent to that of Theorem 2.1 (cf. Propositions 2.2 and 2.3 in [27]).

3. The use of Laplace transforms

This section is intended to provide a general tool (Lemma 3.1) and to exploit it in the study of
PD(α, θ) processes. It contains a certain inversion formula for Laplace transforms. Interestingly,
in spite of the generality of the formulation, the formula involves Dirichlet measures. This seems
to show an aspect of the analytic importance of such measures.

Lemma 3.1. Let β ≥ 0 and δ ≥ −β . Let R be a function defined at least on a neighborhood of 0
in which R is expressed as an absolutely convergent series of the form R(u) = r1u+ r2u

2 +· · · .
(i) Suppose that F and G are complex-valued measurable functions on (0,∞) such that∫ ∞

0 ds sδ−1e−λ0s |F(s)| < ∞ and
∫ ∞

0 dz z−(β+1)e−λ0z|G(z)| < ∞ for some λ0 > 0. If F and G

are connected with each other in such a way that

λδ

∫ ∞

0
ds sδ−1e−λsF (s) = R

(
λ−β

∫ ∞

0
dz

e−λz

zβ+1
G(z)

)
(3.1)

for sufficiently large λ > 0, then F(s) coincides with

∞∑
n=1

rn

	(δ + βn)

∫

n

n∏
i=1

G(svi)

v
β+1
i

(
1 −

n∑
j=1

vj

)δ+βn−1

dv1 · · · dvn (β + δ > 0) (3.2)

or

r1G(s) +
∞∑

n=2

rn

∫

n−1

n−1∏
i=1

G(svi)

vi

· G(s(1 −∑n−1
j=1 vj ))

1 −∑n−1
j=1 vj

dv1 · · · dvn−1

(3.3)
(β = 0 = δ)
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for a.e. s > 0, where the series and integrals converge absolutely for a.e. s > 0.
(ii) Suppose that G is a complex-valued measurable function on (0,∞) such that∫ ∞

0 dz z−(β+1)e−λ0z|G(z)| < ∞ for some λ0 > 0. Then the series (3.2) or (3.3) with |G(·)|
and |rn| in place of G(·) and rn, respectively, converges for a.e. s > 0 and F(s) defined by the
expression (3.2) or (3.3) satisfies

∫ ∞
0 ds sδ−1e−λ0s |F(s)| < ∞. Moreover, the relation (3.1) holds

for sufficiently large λ > 0.

Proof. We consider only the case where β + δ > 0 since the other case can be handled quite
similarly. To prove assertion (i), we first show that

G0(s) :=
∞∑

n=1

|rn|
	(δ + βn)

∫

n

n∏
i=1

|G(svi)|
v

β+1
i

(
1 −

n∑
j=1

vj

)δ+βn−1

dv1 · · · dvn

is finite for a.e. s > 0. Setting, for each s > 0 and n = 1,2, . . . ,


n(s) = {(z1, . . . , zn) : z1 ≥ 0, . . . , zn ≥ 0, z1 + · · · + zn ≤ s}, (3.4)

we observe, by Fubini’s theorem, that

∫ ∞

0
ds sδ−1e−λs

∫

n

n∏
i=1

|G(svi)|
v

β
i

(
1 −

n∑
j=1

vj

)δ+βn−1
dv1 · · · dvn

v1 · · ·vn

=
∫ ∞

0
ds e−λs

∫

n(s)

n∏
i=1

|G(zi)|
z
β
i

(
s −

n∑
j=1

zj

)δ+βn−1
dz1 · · · dzn

z1 · · · zn

=
∫

(0,∞)n
dz1 · · · dzn

n∏
i=1

|G(zi)|
z
β+1
i

∫ ∞∑n
j=1 zj

ds e−λs

(
s −

n∑
j=1

zj

)δ+βn−1

= 	(δ + βn)

λδ

(
λ−β

∫ ∞

0
dz

e−λz

zβ+1
|G(z)|

)n

.

Therefore, term-by-term integration yields

λδ

∫ ∞

0
ds sδ−1e−λsG0(s) =

∞∑
n=1

|rn|
(

λ−β

∫ ∞

0
dz

e−λz

zβ+1
|G(z)|

)n

.

Since the above series converges for sufficiently large λ, G0(s) < ∞ for a.e. s > 0 and thus the
desired absolute convergence follows.

Calculations needed for the proof of (i) have almost been done. Indeed, denoting by G1(s)

the sum (3.2), one can see by obvious modification of the above calculations that (3.1) with F

replaced by G1 holds for sufficiently large λ > 0. We thus conclude, by virtue of the uniqueness
of Laplace transforms, that F(s) = G1(s) for a.e. s > 0. This proves assertion (i). The proof of
assertion (ii) is essentially contained in the above and is therefore omitted. �
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At least formally, (3.3) is obtained as the ‘degenerate limit’ of (3.2), that is, by first setting
β = 0 in (3.2) and then taking the limit as δ ↓ 0. Although our inversion formula given in
Lemma 3.1(i) requires the Laplace transform to have a certain special form, one advantage is
that it is described in the ‘real world’, that is, we do not need any complex integrals. Considered
as prototypes of the inversion formula are integral representations of the Dickman function and
the Buchstab function (cf. [1], page 22). Both functions appeared in asymptotic number theory
[4,12] and are related to PD(0,1). On the other hand, assertion (ii) will be used below to compute
the Laplace transform of a probability generating function of the PD(α, θ) process discussed in
[45].

In such applications, we will employ

Rα,θ (u) :=
⎧⎨⎩	(θ)(eθu − 1), α = 0, θ > 0,

	(θ + 1){(1 − Cαu)−θ/α − 1}θ−1, 0 < α < 1, θ �= 0,
−α−1 log(1 − Cαu), 0 < α < 1, θ = 0,

(3.5)

where Cα = α/	(1 − α). The precise meanings of the power and logarithm in (3.5) as complex
functions are as follows. Given p ∈ R and t ∈ C \ (−∞,0], define tp = exp(p log t), where
log t = log |t | + arg t , with arg t being chosen in (−π,π). As mentioned in Exercise 1.2.7 of
[44], the function Rα,θ itself appears in connection with generalized Stirling numbers. Note that
three expressions in the right-hand side of (3.5) vary continuously in (α, θ), even in the limit as
θ → 0 or α ↓ 0. This fact is consistent with the continuity of the two-parameter Poisson–Dirichlet
family [52], [50]. More importantly, Rα,θ admits an expansion of the form

Rα,θ (u) =
∞∑

n=1

	(θ + αn)cn,α,θ

n! un (3.6)

as long as |u| < 1/Cα(= ∞ for α = 0 by definition). Combining Corollary 2.2 and Lemma 3.1,
we prove the following formula, a refinement of Corollaries 49 and 50 in the aforementioned
paper [45] by Pitman and Yor. We will use the convention that inf∅ = ∞ so that, for a subset X

of R, infX < ∞ means X �= ∅.

Theorem 3.2. Suppose that g : (0,∞) → C is a measurable function such that λα(g) := inf{λ >

0 :
∫ ∞

0 dz z−(α+1)e−λz|g(z) − 1| < ∞} < ∞. Put

λ∗
α(g) = inf

{
λ′ > λα(g) :

Cα

λα

∫ ∞

0
dz

e−λz

zα+1

(
g(z) − 1

)
/∈ [1,∞) for all λ ≥ λ′

}
so that, in particular, λ∗

0(g) = λ0(g). Then for a.e. s > 0,

Eα,θ

[ ∞∏
i=1

(
1 + |g(sVi) − 1|)] < ∞ (3.7)
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and for λ > λ∗
α(g),

λθ

	(θ + 1)

∫ ∞

0
ds sθ−1e−λs

(
Eα,θ

[ ∞∏
i=1

g(sVi)

]
− 1

)
(3.8)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

θ
exp

(
θ

∫ ∞

0
dz

e−λz

z

(
g(z) − 1

))− 1

θ
, α = 0, θ > 0,

1

θ

(
1 − Cα

λα

∫ ∞

0
dz

e−λz

zα+1

(
g(z) − 1

))−θ/α

− 1

θ
, 0 < α < 1, θ �= 0,

− 1

α
log

(
1 − Cα

λα

∫ ∞

0
dz

e−λz

zα+1

(
g(z) − 1

))
, 0 < α < 1, θ = 0.

Proof. Consider

F0(s) := Eα,θ

[ ∞∏
i=1

(
1 + |g(sVi) − 1|)]− 1,

which admits a series expansion due to (2.11). Noting (3.6), we apply the first half of
Lemma 3.1(ii) with β = α, δ = θ and R = Rα,θ to show that F0(s) < ∞ for a.e. s > 0. Also, the
last half of Lemma 3.1(ii) can be applied to the series expression of F(s) := Eα,θ [∏∞

i=1 g(sVi)]−
1 due to (2.12) and we obtain

λθ

∫ ∞

0
ds sθ−1e−λsF (s) = Rα,θ

(
λ−α

∫ ∞

0
dz

e−λz

zα+1

(
g(z) − 1

))
for sufficiently large λ. This extends to all λ > λ∗

α(g) by analytic continuation, showing (3.8).
The proof of Theorem 3.2 is thus complete. �

This result will be exploited later in a variety of ways by taking

g(s) =
{1(0,1)(s), in Section 4,

exp(−sp), in Section 6.2,
ψν(±s), in Section 7,

where p > 0 and ψν is the characteristic function of a distribution ν. We conclude this section
with the observation that the probability generating function of the PD(α, θ) process can also be
characterized by an integral equation.

Proposition 3.3. Suppose that g : (0,∞) → C is as in Theorem 3.2 and set φ(s) = g(s) − 1.
Then �g(s) := Eα,θ [∏∞

i=1 g(sVi)] solves the following integral equation for a.e. s > 0:

(i) for α = 0 and θ > 0,

sθ�g(s) − θ

∫ s

0
g(s − t)tθ−1�g(t)dt = 0; (3.9)
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(ii) for 0 < α < 1 and θ �= 0,∫ s

0
dt (s − t)−αtθ�g(t) −

∫ s

0
dt (s − t)−αtθg(s − t)

− α

∫ s

0
du

∫ u

0
dt (u − t)−(α+1)φ(u − t)tθ�g(t) (3.10)

−θ

∫ s

0
du

∫ u

0
dt (u − t)−αg(u − t)tθ−1(�g(t) − 1

) = 0;

(iii) for 0 < α < 1 and θ = 0,∫ s

0
dt (s − t)−α�g(t) −

∫ s

0
t−αg(t)dt

(3.11)

− α

∫ s

0
du

∫ u

0
dt (u − t)−(α+1)φ(u − t)�g(t) = 0.

Proof. Given a measurable function f on (0,∞), let f̂ denote the Laplace transform of f and
introduce the temporary notation fβ(z) = f (z)/zβ for β ∈ R. All equalities below involving λ

hold at least for sufficiently large λ.

(i) Set f (s) = sθ�g(s) so that f1(s) = sθ−1�g(s). We start with a simplified version of
(3.8) for α = 0, that is, λθ f̂1(λ) = 	(θ) exp(θφ̂1(λ)). Taking the logarithmic derivative of both
sides with respect to λ, we get

θ

λ
− f̂ (λ)

f̂1(λ)
= −θφ̂(λ)

(
= −θĝ(λ) + θ

λ

)
and hence f̂ (λ) = θĝ(λ)f̂1(λ). This suffices to prove (3.9).

(ii) For notational simplicity, let �(s) = �g(s) − 1 and G(s) = �g(s). In the case where
0 < α < 1 and θ �= 0, the equality (3.8) reads

θλθ

	(1 + θ)
�̂1−θ (λ) =

(
1 − Cα

λα
φ̂α+1(λ)

)−θ/α

− 1.

Setting β = −θ(< α < 1), we convert the above identity to(
	(1 − β)λβ − β�̂β+1(λ)

)1/β = (
	(1 − α)λα − αφ̂α+1(λ)

)1/α
.

By taking the logarithmic derivative,

�̂β(λ) + 	(1 − β)λβ−1

	(1 − β)λβ − β�̂β+1(β)
= φ̂α(λ) + 	(1 − α)λα−1

	(1 − α)λα − αφ̂α+1(λ)
.
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Here, considering the function 1γ (z) := 1/zγ for every γ < 1, note that the numerator of the
left-hand side equals �̂β(λ) + 1̂β(λ) = Ĝβ(λ) and, similarly,

φ̂α(λ) + 	(1 − α)λα−1 = ĝα(λ). (3.12)

Consequently, we have

1̂α(λ)Ĝβ(λ) − 1̂β(λ)ĝα(λ) − α

λ
φ̂α+1(λ)Ĝβ(λ) + β

λ
ĝα(λ)�̂β+1(λ) = 0. (3.13)

This proves (3.10).
(iii) Differentiating (3.8) with θ = 0 and again using (3.12), we get

1̂α(λ)�̂g(λ) − 1

λ
ĝα(λ) − α

λ
φ̂α+1(λ)�̂g(λ) = 0, (3.14)

which shows (3.11). The proof is thus completed. �

In fact, the generality of the assumptions in Proposition 3.3 makes the resulting equations
(3.10) and (3.11) rather complicated. Under an additional hypothesis which ensures that both
g and �g are of bounded variation on each finite interval, the following equations are derived
instead.

For 0 < α < 1 and θ �= 0,∫ s

0
(s − t)−αtθ d�g(t) −

∫ s

0
(s − t)θ t−α dg(t)

(3.15)

−
∫ s

0
dt {(s − t)−αθtθ−1 + α(s − t)−(α+1)tθ }φ(s − t)

(
�g(t) − 1

) = 0.

For 0 < α < 1 and θ = 0,∫ s

0
(s − t)−α d�g(t) − s−αφ(s) − α

∫ s

0
dt (s − t)−(α+1)φ(s − t)�g(t) = 0. (3.16)

The proof changes only after multiplying (3.13) and (3.14) by λ and then uses

1̂α(λ)λĜβ(λ) − 1̂β(λ)λĝα(λ) = 1̂α(λ)

∫ ∞

0
e−λs d�β(s) − 1̂β(λ)

∫ ∞

0
e−λs dφα(s)

and λ�̂g(λ) = 1 + ∫ ∞
0 e−λs d�g(s), respectively. The details are omitted.

4. The two-parameter generalization of the Dickman function

One of fundamental ‘observables’ in a point process on R is the ‘position of the last particle’
(cf. [27]), if any. As for the PD(α, θ) process, this is nothing but V1, the first component of a
PD(α, θ)-distributed random element (Vi). For special values of α and θ , the law of V1 was found



The two-parameter Poisson–Dirichlet point process 1093

in various contexts much earlier than Kingman’s discovery of the Poisson–Dirichlet limit. For
example, the Dickman function [12], usually denoted ρ(·), is identified with ρ(s) = P0,1(sV1 <

1); see, for example, Section III 5.3 of [48] for related discussions in asymptotic number theory
and Section 1.1 of [1]. Here and in what follows, Pα,θ is a probability distribution under which
(Vi) is PD(α, θ)-distributed. Also, a distribution function found independently in [8] and [35]
can be identified with Pα,0(V

−1
1 ≤ s). See also [32] ((77), page 14). It is natural to introduce the

two-parameter version of the Dickman function by

ρα,θ (s) = Pα,θ (sV1 < 1).

Clearly, ρα,θ (s) = 1 for all s ≤ 1. The one-parameter family {ρ0,θ : θ > 0} has been studied in
connection with both population genetics [18,54] and the asymptotic theory of the symmetric
group [22]. For details, we refer the reader to the identity (4.13) in [3] (resp., Lemma 4.7 in [1]),
where gθ (s) (resp., pθ(s)) is identical with sθ−1ρ0,θ (s) up to some multiplicative constant. It
also appears in a natural extension [21] of Dickman’s result in number theory. Another interest-
ing context in which the one-parameter family arises is the identification of limit distributions
associated with random minimal directed spanning trees [40].

The aim of this section is to describe consequences for ρα,θ ’s which follow from the results
in Sections 2 and 3. First, a choice of φ in (2.12) to give an expression for ρα,θ is φ(v) =
−1[1,∞)(sv), with s > 0 being given. With this choice, (2.12) now reads

ρα,θ (s) =
∞∑

n=0

(−1)ncn,α,θ

n! In,α,θ (s), (4.1)

where I0,α,θ (·) ≡ 1 and where, for n = 1,2, . . . ,

In,α,θ (s) =
∫


n

n∏
i=1

1[1,∞)(svi)

vα+1
i

(
1 −

n∑
j=1

vj

)θ+αn−1

dv1 · · · dvn. (4.2)

The reader is cautioned that our notation In,α,θ is in conflict with that of [45]. We observe that
In,α,θ (s) = 0 whenever n > s. So, the right-hand side of (4.1) is in fact a finite sum taken over
n with 0 ≤ n ≤ s. In the case (α, θ) = (0,1), we recover a well-known formula for the Dick-
man function (cf. (1.35) in [1]), while the above identity with θ = 0 extends the formula for
Pα,0(V

−1
1 ≤ s) =: Hα(s), obtained in [35] ((3.7), page 730), to all values of s ≥ 1. As a two-

parameter example, we find in [34] (Theorem 3.3.1, page 164) this type of expression for ρ1/2,1/2,
which determines the limit distribution of the maximal size of trees associated with a random
mapping.

It is proved in Propositions 19 and 20 of [45] that for all s > 0,

ρα,θ (s) = 	(θ + 1)

	(θ + α)	(1 − α)

∫ min{s−1,1}

0
dv

(1 − v)θ+α−1

vα+1
ρα,θ+α

(
1 − v

v

)
(4.3)

and hence the probability density Pα,θ (V1 ∈ dv)/dv is given by

fα,θ (v) := 	(θ + 1)

	(θ + α)	(1 − α)
· (1 − v)θ+α−1

vα+1
ρα,θ+α

(
1 − v

v

)
1(0,1)(v). (4.4)
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For later convenience, we remark that underlying (4.3) are ‘termwise equalities’ shown in the
next lemma. For every positive integer n and s > 0, let

∇n(s) = {(v1, . . . , vn) :v1 ≥ · · · ≥ vn ≥ 0, v1 + · · · + vn ≤ s}.
In particular, ∇n(1) is simply denoted by ∇n.

Lemma 4.1. For all n = 1,2, . . . and s > 0, it holds that

In,α,θ (s) = n

∫ 1

min{s−1,1}
dv

(1 − v)θ+α−1

vα+1
In−1,α,θ+α

(
1 − v

v

)
. (4.5)

Proof. Obviously, we may assume that s ≥ 1. Also, (4.5) with n = 1 is clear from the definition
(4.2). For n ≥ 2, by symmetry of the integrand in (4.2), In,α,θ (s) equals

n!
∫ 1

0

dvn

vα+1
n

1{svn≥1}
∫

∇n−1(1−vn)

dv1 · · · dvn−1

vα+1
1 · · ·vα+1

n−1

1{vn−1≥vn}

(
1 −

n∑
j=1

vj

)θ+αn−1

. (4.6)

The change of variables vi = (1 − vn)ui converts the inner integral to

(1 − vn)
θ+α−1

∫
∇n−1

du1 · · · dun−1

uα+1
1 · · ·uα+1

n−1

1{(1−vn)un−1≥vn}

(
1 −

n−1∑
j=1

uj

)θ+αn−1

= 1

(n − 1)! (1 − vn)
θ+α−1In−1,α,θ+α

(
1 − vn

vn

)
.

Substituting this into (4.6), we get (4.5). �

It should be noted that (4.3) does not give a closed equation for ρα,θ unless α = 0. To derive
such equations for the general case, we shall apply some results from the previous section. Setting
g = 1(0,1) in (3.8) and observing that λ∗

α(g) = 0, we see from Theorem 3.2 that for all λ > 0,

λθ

∫ ∞

0
ds sθ−1e−λs

(
ρα,θ (s) − 1

) = Rα,θ

(
−λ−α

∫ ∞

1
dz

e−λz

zα+1

)
. (4.7)

For θ > 0, this relation is rewritten in a slightly simpler form:

λθ

	(θ)

∫ ∞

0
ds sθ−1e−λsρα,θ (s) =

⎧⎪⎪⎨⎪⎪⎩
exp

(
−θ

∫ ∞
1 dz e−λz

z

)
, α = 0,(

1 + Cα

λα

∫ ∞
1 dz e−λz

zα+1

)−θ/α

, 0 < α < 1.
(4.8)

Integral equations satisfied by ρα,θ will be derived as the ones equivalent to (4.7), in other words,
as consequences of Proposition 3.3, its variant (3.15) and (3.16). Preliminary observations con-
cerning this are that �g(s) = ρα,θ (s) for g = 1(0,1) and that (3.9), (3.15) and (3.16) hold for all
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s ≥ 1 because of continuity. As will be discussed, the equation below is known in the cases α = 0
and θ = 0. For this reason, the proof of the next theorem will be concerned with the remaining
case only.

Theorem 4.2. ρα,θ solves the equation

(s − 1)θρα,θ (s − 1) +
∫ s

s−1
(s − t)−αtθ dρα,θ (t) = 0 (s > 1). (4.9)

Proof. The case where 0 < α < 1 and θ �= 0. (3.15) now reads, for all s > 1, as∫ s

0
(s − t)−αtθ dρα,θ (t) + (s − 1)θ

+
∫ s−1

0
dt

{
(s − t)−αθtθ−1 + α(s − t)−(α+1)tθ

}(
ρα,θ (t) − 1

) = 0

because −dg(t) on (0,∞) equals δ1(dt). Integration by parts yields (4.9). �

Remarks. (i) (4.9) with α = 0 or its variant can be found in [19,21,22,54]; see also (4.25) in [1].
(ii) One can easily see that (4.9) with θ = 0 is derived from a functional equation for Hα(t) =

1 − ρα,0(t) obtained in [35] ((3.5), page 730).

In the next section, we calculate not only the marginal distributions Pα,θ (Vm ∈ ·) for m =
2,3, . . . , but also multidimensional distributions of PD(α, θ), by developing point process cal-
culus based on Theorem 2.1.

5. Distributional results for PD(α, θ)

In this section, we apply the theory of point processes to deduce from (2.3) some distributional in-
formation on PD(α, θ). An essential idea underlying the subsequent argument is the principle of
inclusion-exclusion, which was already being used in [19]. By the same reasoning as in the proof
of Theorem 2 there, namely, by a version of Fréchet’s formula (see, for example, Section IV.5 in
[15]), the following relationship between one-dimensional distributions and correlation functions
holds with great generality.

Lemma 5.1. Let −∞ ≤ a < b ≤ ∞ and let ξ be a simple point process on (a, b) with correlation
measures μ1,μ2, . . . . Suppose that ξ((a, b)) = ∞ a.s. and that ξ([c, b)) < ∞ a.s. for each c ∈
(a, b). Given a positive integer m, let Zm be the mth largest point in ξ . Then, for every z ∈ (a, b),

P(Zm ≥ z) = 1

(m − 1)!
∞∑

k=0

(−1)k

(m + k)k!
∫

[z,b)m+k

μm+k(dy1 · · · dym+k). (5.1)
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If, in addition, ξ has correlation functions q1, q2, . . . , then

P(Zm ∈ dz)

dz
= 1(a,b)(z)

(m − 1)!
∞∑

k=0

(−1)k

k!
∫

[z,b)m+k−1
dy1 · · · dym+k−1 qm+k(z, y1, . . . , ym+k−1).

Example 5.1. Consider a Poisson point process Z1 > Z2 > · · · on (a, b) with mean measure
�(dz) = h(z)dz such that �((a, b)) = ∞ and �([c, b)) < ∞ for all c ∈ (a, b). Lemma 5.1 then
gives

P(Zm ∈ dz)

dz
= h(z)

(m − 1)!
(∫ b

z

h(y)dy

)m−1

exp

(
−
∫ b

z

h(y)dy

)
1(a,b)(z) (5.2)

because the nth correlation function is h(y1) · · ·h(yn); see, for example, Example 2.5 in [27].

Setting ρm,α,θ (s) = Pα,θ (sVm < 1) (m = 1,2, . . .), we obtain the following proposition con-
taining a two-parameter generalization of the aforementioned result in [19].

Proposition 5.2. Let m be a positive integer. Then, for all s > 0,

ρm,α,θ (s) = 1 − 1

(m − 1)!
∑

0≤k≤s−m

(−1)k

(m + k)k!cm+k,α,θ Im+k,α,θ (s) (5.3)

and for all λ > 0,

λθ

∫ ∞

0
ds sθ−1e−λs

(
ρm,α,θ (s) − 1

) = Rm,α,θ

(
−λ−α

∫ ∞

1
dz

e−λz

zα+1

)
, (5.4)

where

Rm,α,θ (u) := (−1)m−1cm−1,α,θ

(m − 1)!
∫ u

0
xm−1Rα,θ+α(m−1)

′(x)dx

(5.5)

=

⎧⎪⎪⎨⎪⎪⎩
	(θ + 1)(−θ)m−1

(m − 1)!
∫ u

0
xm−1eθx dx, α = 0,

	(θ + 1)	(θ/α + m)(−α)m−1

(m − 1)!	(θ/α + 1)	(1 − α)m

∫ u

0

xm−1

(1 − Cαx)θ/α+m
dx, 0 < α < 1.

Also, for v ∈ (0,1),

Pα,θ (Vm ∈ dv)

dv
= 	(θ + 1)

	(θ + α)	(1 − α)
v−(α+1)(1 − v)θ+α−1

(5.6)

× 1

(m − 1)!
∑

0≤k≤1/v−m

(−1)k

k! cm+k−1,α,θ+αIm+k−1,α,θ+α

(
1 − v

v

)
.
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Remarks. (i) Since ρ1,α,θ = ρα,θ , it is worth noting that the right-hand sides of (5.3), (5.5) and
(5.6) with m = 1 equal the right-hand sides of (3.5), (4.1) and (4.4), respectively.

(ii) In [34], Theorem 3 on page 47 gives the expression (5.3) with (α, θ) = (0,1) to the limit
distribution of the mth maximal cycle length in a random permutation.

(iii) At the end of this section, another expression of the density (5.6) will be given in terms of
the generalized Dickman function.

Proof of Proposition 5.2. First, (5.1) and Theorem 2.1 together imply that

Pα,θ (sVm ≥ 1) = 1

(m − 1)!
∞∑

k=0

(−1)k

(m + k)k!cm+k,α,θ Im+k,α,θ (s).

By removing the terms which actually vanish, (5.3) follows. Next, showing (5.4) reduces to
verifying that for u sufficiently close to 0,

Rm,α,θ (u) = (−1)m−1

(m − 1)!
∞∑

k=0

	(θ + α(m + k))

(m + k)k! cm+k,α,θu
m+k. (5.7)

For, if (5.7) is true, then (5.3) and Lemma 3.1(ii) with R = Rm,α,θ and G = −1[1,∞) show that
(5.4) is valid, at least for λ sufficiently large, and the expression (5.5) allows us to extend (5.4)
to all λ > 0 by analytic continuation. Turning to (5.7), one can easily verify it by using (term-
by-term differentiation of) (3.6) or, alternatively, by substituting the expansion of eθx or (1 −
Cαx)−(θ/α+m) into (5.5). This proves (5.4).

Lastly, since (5.3) is at hand, the proof of (5.6) is similar to that of (4.4) based on (4.5). The
details are left to the reader. �

To obtain multidimensional results for PD(α, θ), one needs more developed arguments still
based essentially on inclusion-exclusion. In the theory of point processes, one such calculus is
formulated as a connection between correlation measures and Jonassy measures; see Section 5
of [7]. Its significance is that the local probabilistic structure of points in the process is revealed
in terms of correlation measures.

Lemma 5.3. Let −∞ ≤ a < b ≤ ∞ and let ξ be a simple point process on (a, b) with correla-
tion functions q1, q2, . . . . Suppose that ξ((a, b)) = ∞ a.s. and that for each c ∈ (a, b), the nth
factorial moments Mn(c) of ξ([c, b)) satisfy

∞∑
n=1

Mn(c)

n! (1 + ε)n < ∞ for some ε = ε(c) > 0. (5.8)

Let Z1 > Z2 > · · · be the decreasing sequence of points in ξ . Then, for each m = 1,2, . . . , the
joint probability density fm of (Z1, . . . ,Zm) is given by

fm(z) =
∞∑

k=0

(−1)k

k!
∫

[zm,b)k
dy1 · · · dyk qm+k(z, y1, . . . , yk), (5.9)
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where z = (z1, . . . , zm) is such that b > z1 > · · · > zm > a.

Proof. Let b =: z0 > z1 > · · · > zm > a be given arbitrarily. Consider the localized process
ξ (m)(dx) := ξ(dx ∩ [zm,b)), the nth correlation function of which is given by q

(m)
n (xn) :=

qn(xn)1[zm,b)(x1) · · ·1[zm,b)(xn), where xn = (x1, . . . , xn). By applying Theorem 5.4.II in [7],
then, we have

P(Z1 > z1 ≥ Z2 > z2 ≥ · · · > zm−2 ≥ Zm−1 > zm−1, zm > Zm)

= P
(
ξ (m)([zm, z0]) = m − 1, ξ (m)((z1, z0]) = · · · = ξ (m)((zm−1, zm−2]) = 1

)
=

∞∑
k=0

(−1)k

k!
∫

(a,b)m−1+k

m−1∏
i=1

1(zi ,zi−1](xi)q
(m)
m−1+k(xm−1+k)dx1 · · · dxm−1+k

=
∫ zm−2

zm−1

dxm−1 · · ·
∫ z1

z2

dx2

∫ b

z1

dx1

×
∞∑

k=0

(−1)k

k!
∫

[zm,b)k
dxm dxm+1 · · · dxm−1+k qm−1+k(xm−1+k) (5.10)

=
∫ zm−2

zm−1

dxm−1 · · ·
∫ z1

z2

dx2

∫ b

z1

dx1

×
∞∑

k=0

(−1)k
∫ b

zm

dxm

∫ b

xm

dxm+1 · · ·
∫ b

xm−2+k

dxm−1+k qm−1+k(xm−1+k), (5.11)

where the last equality is due to symmetry in xm, . . . , xm−1+k and the terms for k = 0 in (5.10)
and (5.11) are understood as qm−1(xm−1) with the convention that q0 ≡ 1. This shows (5.9) by
the symmetry of the integrand in (5.11) in k − 1 variables xm+1, . . . , xm−1+k . �

Example 5.2. If ξ is a Poisson point process with mean measure density h as in Example 5.1,
the joint density of the first m largest points in ξ is given by

∞∑
k=0

(−1)k

k!
∫

[zm,b)k
dy1 · · · dyk

m∏
i=1

h(zi)

k∏
j=1

h(yj ) =
m∏

i=1

h(zi) exp

(
−
∫ b

zm

h(z)dz

)
, (5.12)

provided that b > z1 > · · · > zm > a.

By applying (5.9), we deduce the next result for joint densities, which is essentially con-
tained in [45], although an explicit formula is not given. (Indeed, the authors obtained in their
Corollary 41 a corresponding result for the variables y1, y2, . . . in (2.6) instead of v1, v2, . . . .

Alternatively, the formula below can be retrieved from their Proposition 47 after some additional
calculations. See also Lemma 3.1 in [16].) This simultaneously generalizes the formula due to
Watterson [54] for α = 0 and the one-dimensional result (4.4). Also, our expression (5.13) below
will be quite useful in Section 6.1.
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Theorem 5.4. Let (Vi) be governed by PD(α, θ). Then, for each m = 1,2, . . . , the joint proba-
bility density of (V1, . . . , Vm) at v = (v1, . . . , vm) ∈ ∇m is

fm,α,θ (v) := cm,α,θ

m∏
i=1

v
−(α+1)
i

(
1 −

m∑
j=1

vj

)θ+αm−1

ρα,θ+αm

(1 −∑m
j=1 vj

vm

)
. (5.13)

Proof. First note that the PD(α, θ) process ξ = ∑
δVi

is a point process on (0,1) which satisfies
all of the assumptions in Lemma 5.3 since, for each 0 < c < 1, ξ([c,1)) ≤ 1/c a.s. by Vi ≤
1/i (i = 1,2, . . .). According to (5.9), the density to be computed is

∞∑
k=0

(−1)k

k!
∫

[vm,1)k
du1 · · · duk qm+k,α,θ (v, u1, . . . , uk).

Here, by (2.3) and (2.2),∫
[vm,1)k

du1 · · · duk qm+k,α,θ (v, u1, . . . , uk)

= cm,α,θ

m∏
i=1

v
−(α+1)
i ck,α,θ+αm (5.14)

×
∫


k(1−∑m
i=1 vi )

k∏
j=1

1{uj ≥vm}
uα+1

j

(
1 −

m∑
i=1

vi −
k∑

j=1

uj

)θ+α(m+k)−1

du1 · · · duk

with notation (3.4). Because the last integral in (5.14) is equal to(
1 −

m∑
i=1

vi

)θ+αm−1

Ik,α,θ+αm

(
1 −∑m

i=1 vi

vm

)
, (5.15)

the desired expression (5.13) is derived from (5.14), (5.15) and (4.1). �

Since fm,α,θ is too complicated to compute quantities concerning the joint distribution directly
from this, it is worth providing a moment formula. For the one-parameter case where α = 0 and
θ > 0, Griffiths [18] showed that E0,θ [V1

a1 · · ·Vm
am ] equals

θm	(θ)

	(θ + a1 + · · · + am)

∫
z1>···>zm>0

dz
m∏

i=1

(z
ai−1
i e−zi ) exp

(
−θ

∫ ∞

zm

dz
e−z

z

)
, (5.16)

provided that θ + a1 + · · · + am > 0, where dz = dz1 · · · dzm. The proof reduces to calculus of
a gamma process by virtue of the well-known independence property of it; see [50] and [51]
for extensive discussions and related topics. In this regard, we remark only that the integrand
in (5.16) contains the density function, computed from (5.12), of the first m largest points in a
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gamma process with parameter θ , that is, a Poisson point process on (0,∞) with mean measure
θ dz/(zez). Although the case where 0 < α < 1 and θ > −α can be handled by means of repre-
senting a PD(α, θ)-distributed random element by an α-stable subordinator ([45,50] combined
with (5.12)), we prefer to exploit the previous results in order to make the proof self-contained.

Corollary 5.5. Let 0 < α < 1 and θ > −α. If a1 + · · · + am > −θ , then

Eα,θ [V1
a1 · · ·Vm

am ]

= 	(θ + 1)	(θ/α + m)αm−1

	(θ + a1 + · · · + am)	(θ/α + 1)	(1 − α)m
(5.17)

×
∫

z1>···>zm>0
dz

m∏
i=1

(
z
ai−(α+1)
i e−zi

)(
1 + Cα

∫ ∞

zm

dz
e−z

zα+1

)−(θ/α+m)

.

Proof. By (5.13),

Eα,θ [V1
a1 · · ·Vm

am ]/cm,α,θ

=
∫

∇m

dv1 · · · dvm

m∏
i=1

v
ai−(α+1)
i

(
1 −

m∑
j=1

vj

)θ+αm−1

ρα,θ+αm

(1 −∑m
j=1 vj

vm

)
.

Multiplying both sides by 	(θ + A) = ∫ ∞
0 yθ+A−1e−y dy with A = a1 + · · · + am, we introduce

an additional integration with respect to a new variable y on the right-hand side. For the resulting
(m + 1)-dimensional integral, perform the change of variables

s := v−1
m

(
1 −

m∑
j=1

vj

)
, zi := viy (i = 1, . . . ,m),

or, equivalently, y = (z1 + · · · + zm) + zms, vi = zi/y (i = 1, . . . ,m), to get

Eα,θ [V1
a1 · · ·Vm

am ]	(θ + A)/cm,α,θ

=
∫

z1>···>zm>0
dz

m∏
i=1

z
ai−(α+1)
i zθ+αm−1

m

∫ ∞

0
ds yme−y |J |sθ+αm−1ρα,θ+αm(s)

with Jacobian J = ∂(v1, . . . , vm, y)/∂(z1, . . . , zm, s) = y−mzm. Thanks to (4.8), with θ + αm >

0 in place of θ , we arrive at (5.17). �

Remarks. (i) It can be seen that the formula for Eα,θ [V p
m ](p > −θ) in Proposition 17 of [45] is

recovered by putting a1 = · · · = am−1 = 0 and am = p in (5.17).
(ii) Let 0 < v < 1 and m ∈ {2,3, . . .}. By integrating fm,α,θ (v1, . . . , vm−1, v) with respect to

dv1 · · · dvm−1 over {1 > v1 > · · · > vm−1 > v}, we can deduce a representation (an alternative to
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(5.6)) of the density Pα,θ (Vm ∈ dv)/dv of the form

cm,α,θ (1 − v)θ+α−1

(m − 1)!vα+1

∫

m−1

du1 · · · dum−1

m−1∏
i=1

1{ui≥v/(1−v)}
uα+1

i

uθ+αm−1
m ρα,θ+αm

(
1 − v

v
um

)
,

where um = 1 − (u1 + · · · + um−1). This formula, a natural extension of (4.4), is verified by
calculations similar to (5.14) and (5.15). The details are left to the reader.

6. Asymptotics of PD(α, θ) for large θ

In this section, we study certain asymptotic behaviors of PD(α, θ) as θ → ∞, generalizing re-
sults of Griffiths [18] and of Joyce, Krone and Kurtz [28], who all worked on PD(0, θ)’s with
motivation coming from the study of population genetics. Although there is a context [24] in
which such an extension could be applicable, this section is mainly intended to demonstrate that
the results we have thus far obtained provide efficient methods for the study of two-parameter
Poisson–Dirichlet distributions. It turns out that the presence of the parameter α does not affect
the validity of the assertions analogous to those for PD(0, θ)’s, except for some minor changes
of sub-leading terms or multiplicative constants in rescaling.

6.1. Convergence to a Gumbel point process

Given 0 ≤ α < 1 and θ > 1, put

βα,θ = log θ − (α + 1) log log θ − log	(1 − α). (6.1)

Under the assumption that (V
(θ)
i )∞i=1 is distributed according to PD(0, θ), it was shown in [18]

that as θ → ∞, (θV
(θ)
i −β0,θ )

∞
i=1 converges in law to a Poisson point process with mean measure

density exp(−z), −∞ < z < ∞, which may be called a Gumbel point process since the largest
point in the process obeys the Gumbel distribution exp(− exp(−z)), as seen from (5.2); see also
(6.3) below. A two-parameter generalization of this result is the following.

Theorem 6.1. Fix an α ∈ [0,1) arbitrarily. For each θ > 1, let (V
(α,θ)
i )∞i=1 have PD(α, θ) dis-

tribution and define

Z
(α,θ)
i = θV

(α,θ)
i − βα,θ (i = 1,2, . . .). (6.2)

Then, as θ → ∞, (Z
(α,θ)
1 ,Z

(α,θ)
2 , . . .) converges in joint distribution to the decreasing order

statistics (Z∗
1 ,Z∗

2 , . . .) of a Poisson point process on the whole real axis with mean measure
exp(−z)dz.
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The proof of this theorem reduces to showing pointwise convergence of joint densities, thanks
to Scheffé’s theorem (cf. [2]). It follows from (5.12) that

P(Z∗
1 ∈ dz1, . . . ,Z

∗
m ∈ dzm) = exp

(
−

m∑
i=1

zi − e−zm

)
dz1 · · · dzm, (6.3)

while the density of (Z
(α,θ)
1 , . . . ,Z

(α,θ)
m ) derived from (5.13) involves the generalized Dickman

function as a key factor. It is therefore essential to study the asymptotic behavior of ρα,θ with
a properly rescaled variable for large θ . This is the content of the following lemma, in which is
derived the Gumbel distribution, the law of Z∗

1 .

Lemma 6.2. Fix 0 ≤ α < 1. Let θ0 > 1 and b : [θ0,∞) → R be bounded. If V
(α,θ)
1 and Z

(α,θ)
1

are as in Theorem 6.1, then for each x ∈ R,

P
(
Z

(α,θ)
1 < x − (x + βα,θ )b(θ)V

(α,θ)
1

) = ρα,θ

(
θ

x + βα,θ

+ b(θ)

)
→ e−e−x

(6.4)

as θ → ∞. In particular, Z
(α,θ)
1 → Z∗

1 weakly and ρα,θ (s) → 1 for all s ∈ R.

Proof. First, the equality in (6.4) is clear from (6.2). Rather than using (4.1), which is not very
informative for the estimation of the value of ρα,θ , we employ (4.8), that is,

λθ

∫ ∞

0
ds sθ−1e−λsρα,θ (s) =

⎧⎪⎪⎨⎪⎪⎩
	(θ) exp

(
−θ

∫ ∞

λ

dz
e−z

z

)
, α = 0,

	(θ)

(
1 + Cα

∫ ∞

λ

dz
e−z

zα+1

)−θ/α

, 0 < α < 1,
(6.5)

where λ > 0 is arbitrary. We will give only a proof for the case where 0 < α < 1 because the case
α = 0 can be handled in much the same way. By Fubini’s theorem, the left-hand side of (6.5) is
written as

λθEα,θ

[∫ V −1
1

0
ds sθ−1e−λs

]
= Eα,θ

[∫ λV −1
1

0
dt tθ−1e−t

]
= Eα,θ [fλ,θ (V

−1
1 )],

where fλ,θ (s) = ∫ λs

0 dt tθ−1e−t . For all λ > 0 and s > 0, we get

ρα,θ (s) ≤ Eα,θ [fλ,θ (V
−1
1 )]

fλ,θ (s)
= 	(θ)

fλ,θ (s)

(
1 + Cα

∫ ∞

λ

dz
e−z

zα+1

)−θ/α

(6.6)

as a Chebyshev-type bound. Set ε(θ) = θ−1/4, so that

ε(θ) log θ → 0, ε(θ)
√

θ → ∞ (θ → ∞). (6.7)
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Given arbitrary x ∈ R, choose

s = s(x, θ) := θ

x + βα,θ

+ b(θ) and λ = λ(x, θ) := (
1 + ε(θ)

)
(x + βα,θ ),

both of which are positive for sufficiently large θ . Then ε̃(x, θ), defined implicitly by
λ(x, θ)s(x, θ) = (1 + ε̃(x, θ))θ , has the same properties as (6.7). The latter property, combined
with the standard argument in the proof of Stirling’s formula (that is, the Laplace method [9]),
shows that

	(θ)

fλ(x,θ),θ (s(x, θ))
=

∫ ∞
0 dt tθ−1e−t∫ (1+̃ε(x,θ))θ

0 dt tθ−1e−t
=

∫ ∞
0 duuθ−1e−θu∫ 1+̃ε(x,θ)

0 duuθ−1e−θu
→ 1

as θ → ∞. Consequently, by (6.6), with the above choice of s and λ, we have

lim sup
θ→∞

ρα,θ

(
θ

x + βα,θ

+ b(θ)

)
≤ lim sup

θ→∞

(
1 + Cα

∫ ∞

λ(x,θ)

dz
e−z

zα+1

)−θ/α

. (6.8)

For two functions a1(θ) and a2(θ), which may have parameters α, x, etcetera, the notation
a1(θ) ∼ a2(θ) will mean that a1(θ)/a2(θ) → 1 as θ → ∞. By (6.7) and (6.1),∫ ∞

λ(x,θ)

dz
e−z

zα+1
∼ e−λ(x,θ)

λ(x, θ)α+1
∼ e−(x+βα,θ )

(x + βα,θ )α+1
∼ 	(1 − α)

θ
e−x.

Combining this with (6.8) yields

lim sup
θ→∞

ρα,θ

(
θ

x + βα,θ

+ b(θ)

)
≤ exp(−e−x). (6.9)

The converse estimate can be shown in an analogous way. Indeed, considering this time 1 −
ρα,θ (s) = Pα,θ (V1 ≥ s−1), we again have, by Fubini’s theorem,

λθ

∫ ∞

0
ds sθ−1e−λs

(
1 − ρα,θ (s)

) = Eα,θ [ϕλ,θ (V1)], (6.10)

where ϕλ,θ (s) = ∫ ∞
λ/s

dt tθ−1e−t . Therefore, a Chebyshev-type bound we get is

1 − ρα,θ (s) ≤ Eα,θ [ϕλ,θ (V1)]
ϕλ,θ (s−1)

= 	(θ)∫ ∞
λs

dt tθ−1e−t

{
1 −

(
1 + Cα

∫ ∞

λ

dz
e−z

zα+1

)−θ/α}
,

where the last equality follows from (6.10) and (6.5) together. By setting s = s(x, θ) and λ =
(1 − ε(θ))(x + βα,θ ), one can easily modify the previous argument to obtain

lim sup
θ→∞

{
1 − ρα,θ

(
θ

x + βα,θ

+ b(θ)

)}
≤ 1 − exp(−e−x).
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This, together with (6.9), proves the convergence in (6.4). The other assertions can be seen simply
by taking b(·) ≡ 0 and noting that ρα,θ (·) is non-increasing. �

Proof of Theorem 6.1. Fix a positive integer m and z1 > · · · > zm arbitrarily. By (5.13), the
joint probability density of (Z

(α,θ)
1 , . . . ,Z

(α,θ)
m ) at (z1, . . . , zm) is

θ−mfm,α,θ

(
z1 + βα,θ

θ
, . . . ,

zm + βα,θ

θ

)

= cm,α,θ

m∏
i=1

(zi + βα,θ )
−(α+1)

(
1 −

m∑
j=1

zj + βα,θ

θ

)θ+αm−1

(6.11)

× θαmρα,θ+αm

(
θ −∑m

j=1(zj + βα,θ )

zm + βα,θ

)
1∇m

(
z1 + βα,θ

θ
, . . . ,

zm + βα,θ

θ

)
.

It is easy to see that the factors in (6.11) behave as

cm,α,θ

m∏
i=1

(zi + βα,θ )
−(α+1) ∼ θ(1−α)m	(1 − α)−m(log θ)−(1+α)m

and (
1 −

m∑
j=1

zj + βα,θ

θ

)θ+αm−1

∼ exp

(
−

m∑
j=1

zj

)
θ−m(log θ)(1+α)m	(1 − α)m,

respectively. In view of (6.3), it remains to show that the factor involving ρα,θ+αm(· · ·) converges
to exp(− exp(−zm)). But this follows from (6.4) with b(·) defined appropriately. The proof of
Theorem 6.1 is thus complete. �

The weak convergence of Z
(α,θ)
m to Z∗

m implies the following.

Corollary 6.3. For each m = 1,2, . . . and x ∈ R, as θ → ∞,

ρm,α,θ

(
θ

x + βα,θ

)
→ exp(−e−x)

m−1∑
k=0

e−kx

k! . (6.12)

Proof. As a consequence of Theorem 6.1, the left-hand side of (6.12), that is, P(Z
(α,θ)
m ≤ x),

tends to P(Z∗
m ≤ x), which is calculated by (5.2):

P(Z∗
m ≤ x) =

∫ x

−∞
dy

(m − 1)! exp(−my − e−y) = 1

(m − 1)!
∫ ∞

e−x

tm−1e−t dt.

This changes into the right-hand side of (6.12) after repeated integration by parts. �
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Theorem 6.1 immediately implies that (V
(α,θ)
1 ,V

(α,θ)
2 , . . .) → (0,0, . . .) as θ → ∞. Feng [16]

has recently obtained associated large deviation estimates with rate function (vi) 	→ − log(1 −∑
vi). The proof is based on logarithmic asymptotics of the finite-dimensional densities. We note

that, in view of (5.13), one can grasp the validity of such a result because the factor involving
ρα,θ+αm stays away from 0 by (6.4).

6.2. Asymptotic normality of the population moments

As the final topic on PD(α, θ) for large θ , we discuss asymptotic normality of the population
moment, which is defined for each p > 0 by the sum

H(α,θ)
p = (

V
(α,θ)
1

)p + (
V

(α,θ)
2

)p + · · · ,

where (V
(α,θ)
1 ,V

(α,θ)
2 , . . .) continues to be PD(α, θ)-distributed. We can verify that H

(α,θ)
p < ∞,

a.s. for all p > α. Indeed, setting gp(s) = exp(−sp), one observes that λα(gp) in Theo-
rem 3.2 is finite for p > α and the claim follows from (3.7) with g = gp . Also, (2.12) with

φ(v) = gp(sv)−1 makes it possible to derive the Laplace transform of the law of H
(α,θ)
p because∏∞

i=1 gp(sV
(α,θ)
i ) = exp(−spH

(α,θ)
p ). As far as the PD(0, θ) case is concerned, the statistics

H
(0,θ)
2 , called the population homozygosity, is known to play a special role in some population

genetics contexts (see [19,20,29]), where V
(0,θ)
i are regarded as the ranked frequencies of alle-

les in a population. More generally, H
(0,θ)
p is referred to as the pth population moment in [28],

where the asymptotic normality of H
(0,θ)
p for large θ has been established. On the other hand,

covariances of H
(α,0)
p ’s are calculated in [10] ((12), page 188), motivated by certain physical

problems. In this subsection, we will provide an extension of these results to the two-parameter
setting.

In the case α = 0, it was shown in [28] that for each p = 2,3, . . . , as θ → ∞, the limit
distribution of W

(θ)
p := √

θ(θp−1H
(0,θ)
p /	(p) − 1) is the normal distribution with mean 0 and

variance 	(2p)/	(p)2 − p2. In fact, in [28], much stronger results were obtained, showing, for
example, asymptotic normality of random vectors (W

(θ)
m )∞m=2. To seek an appropriate rescaling

for the two-parameter case, we give some auxiliary results by means of the first and second
correlation functions, namely, q1,α,θ and q2,α,θ .

Lemma 6.4. Let p > α and p′ > α. Then

E
[
H(α,θ)

p

] = 	(θ + 1)	(p − α)

	(θ + p)	(1 − α)
=: h(α,θ)

p (6.13)

and the covariance Cov(H
(α,θ)
p ,H

(α,θ)

p′ ) of H
(α,θ)
p and H

(α,θ)

p′ is given by

h
(α,θ)

p+p′ + 	(p − α)	(p′ − α)

	(1 − α)2

(
	(θ + 1)(θ + α)

	(θ + p + p′)
− 	(θ + 1)2

	(θ + p)	(θ + p′)

)
. (6.14)
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Moreover, as θ → ∞,

θp−1E
[
H(α,θ)

p

] → 	(p − α)

	(1 − α)
(6.15)

and

θp+p′−1 Cov
(
H(α,θ)

p ,H
(α,θ)

p′
) → 	(p + p′ − α)

	(1 − α)
+ 	(p − α)	(p′ − α)

	(1 − α)2
(α − pp′). (6.16)

Proof. (6.13) and (6.14) are immediate by calculating
∫ 1

0 vpq1,α,θ (v)dv and

E
[
H(α,θ)

p H
(α,θ)

p′
] =

∫ 1

0
vp+p′

q1,α,θ (v)dv +
∫


2

v
p

1 v
p′
2 q2,α,θ (v1, v2)dv1 dv2,

respectively. By virtue of the well-known formula 	(θ + 1)/	(θ + p) ∼ θ1−p implied by Stir-
ling’s formula, (6.15) follows from (6.13). Showing (6.16), however, requires a more accurate
version of Stirling’s formula: with the standard o-notation, 	(θ + 1) = θθ

√
2πθ exp(−θ +

Cθ−1 + o(θ−1)) as θ → ∞ for some universal constant C; see, for example, [9]. This makes
it possible to show that

	(θ + 1)

	(θ + p)
= θ1−p exp

(−p(p − 1)(2θ)−1 + o(θ−1)
)
. (6.17)

The proof of (6.16) is a matter of straightforward calculation, combining (6.17) with (6.14). The
details are omitted. �

Lemma 6.4 suggests a rescaling of the form

W(α,θ)
p := √

θ

(
	(1 − α)

	(p − α)
θp−1H(α,θ)

p − 1

)
. (6.18)

We can now state a desired result for 0 < α < 1.

Theorem 6.5. Fix an α ∈ (0,1) arbitrarily. Suppose that p > α and p �= 1. For each θ > 0,
let W

(α,θ)
p be defined as above. Then, as θ → ∞, W

(α,θ)
p converges in law to a normal random

variable with mean 0 and variance

σα,p
2 := 	(1 − α)	(2p − α)

	(p − α)2
+ α − p2 > 0. (6.19)

Proof. Fixing an arbitrary x ∈ R, we will prove that as θ → ∞,

ψ(α,θ)
p (x) := E

[
exp

(√−1xW(α,θ)
p

)] → exp

(
−σα,p

2

2
x2

)
. (6.20)
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The proof is based on (3.8), a consequence of Theorem 3.2 which can be written as

1

	(θ)

∫ ∞

0
ds sθ−1e−sEα,θ

[ ∞∏
i=1

g(sVi)

]
=

(
1 + Cα

∫ ∞

0
dz

e−z

zα+1

(
1 − g(z)

))−θ/α

, (6.21)

provided that 1 > λ∗
α(g). Let g be of the form g(z) = exp(c1z

p + d1z) and observe that

Eα,θ

[ ∞∏
i=1

g(sVi)

]
= E

[
exp

(
c1s

pH(α,θ)
p + d1s

)]
. (6.22)

Note that (6.21) is valid as long as the integral on the right-hand side is small enough in modulus.
With the choices

c1 = √−1
x√
θ

· 	(1 − α)

	(p − α)
and d1 = −√−1

x√
θ
, (6.23)

this requirement for the validity of (6.21) is fulfilled for θ large enough since as θ → ∞,∫ ∞

0
dz

e−z

zα+1

(
1 − g(z)

) = −√−1
x√
θ

∫ ∞

0
dz

e−z

zα+1

(
	(1 − α)

	(p − α)
zp − z

)

+ x2

2θ

∫ ∞

0
dz

e−z

zα+1

(
	(1 − α)

	(p − α)
zp − z

)2

+ o(θ−1)

= x2

2θ
	(1 − α)

(
σα,p

2 + (p − 1)2)+ o(θ−1),

where the last equality is achieved by direct calculations. This also implies that the right-hand
side of (6.21) tends to exp(−σα,p

2x2/2 − (p − 1)2x2/2). On the other hand, the left-hand side
of (6.21) with (6.23) becomes, by (6.22), after change of variable s = θt ,∫ ∞

0
dt tθ−1e−θtE

[
exp

(
c1θ

pH(α,θ)
p tp + d1θt

)]
(	(θ)θ−θ )−1

=
∫ ∞

0
dt t−1e−θh(t)ψ(α,θ)

p (xtp) exp
(√−1x

√
θ(tp − t)

)
(	(θ)θ−θ eθ )−1,

where h(t) = t − log t − 1. Thus, by Stirling’s formula, (6.20) is equivalent to∫ ∞
0 dt t−1e−θh(t)ψ

(α,θ)
p (xtp) exp(

√−1x
√

θ(tp − t))√
2π/θ

− ψ(α,θ)
p (x)e−(p−1)2x2/2 → 0,

the proof of which will be divided into proofs of

√
θ

∫ ∞

0
dt t−1e−θh(t)

(
ψ(α,θ)

p (xtp) − ψ(α,θ)
p (x)

)
exp

(√−1x
√

θ(tp − t)
) → 0 (6.24)
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and √
θ

2π

∫ ∞

0
dt t−1e−θh(t) exp

(√−1x
√

θ(tp − t)
)− e−(p−1)2x2/2 → 0. (6.25)

Note that the integral in (6.24) can be bounded in modulus by∫ ∞

0
dt t−1e−θh(t)

∣∣ψ(α,θ)
p (xtp) − ψ(α,θ)

p (x)
∣∣ ≤ |x|E[∣∣W(α,θ)

p

∣∣] ∫ ∞

0
dt t−1e−θh(t)|tp − 1|

and that supθ>1 E[|W(α,θ)
p |] < ∞ since, by Lemma 6.4 and (6.17),(
E
[∣∣W(α,θ)

p

∣∣])2 ≤ Var
(
W(α,θ)

p

)+ (
E
[
W(α,θ)

p

])2 → σ 2
α,p.

Therefore, our task is reduced to establishing that
√

θ
∫ ∞

0 dt t−1e−θh(t)|tp − 1| → 0 and (6.25).
Both are purely analytic problems which can be solved without difficulty by the Laplace method
(or by the change of variable t = 1 + u/

√
θ ).

It remains to show that σα,p
2 > 0. A stronger result which can be shown is

σα,p
2 = (1 − α)Var

(
	(1 − α)

	(p − α)
Yp−1

α

)
+ α

1 − α
(p − 1)2, (6.26)

where Yα has the density z1−αe−z/	(2 − α),0 < z < ∞. The proof of (6.26) is fairly direct and
therefore omitted. The proof of Theorem 6.5 is thus complete. �

Remark. The above proof also works in the case α = 0 if (6.21) is replaced by the corresponding
equality for α = 0. This gives a proof which is completely different from that in [28] and which
is not based on the independence property underlying PD(0, θ).

One may consider an extension of Theorem 1 in [28] in the two-parameter setting, that is,
convergence of {W(α,θ)

p :p > α} to a centered Gaussian system as θ → ∞. The convergence of
every finite-dimensional law is shown by a suitable modification of the proof of Theorem 6.5. It
means, for instance, that g in (6.21) is taken to be

g(s) = exp

[√−1√
θ

n∑
k=1

xk

(
	(1 − α)

	(pk − α)
spk − s

)]
,

where xk ∈ R, p1 > · · · > pn > α and n = 1,2, . . . are arbitrary. The limit process is described
by its covariance 	(1 − α)	(p + p′ − α)/(	(p − α)	(p′ − α)) + α − pp′ =: C(p,p′) and the
associated quadratic form

∑
C(pk,pl)xkxl has two different expressions:

1

	(1 − α)

∫ ∞

0
dz

e−z

zα+1

{
n∑

k=1

xk

(
	(1 − α)

	(pk − α)
zpk − z

)}2

−
{

n∑
k=1

xk(pk − 1)

}2

= (1 − α)Var

(
n∑

k=1

xk

	(1 − α)

	(pk − α)
Ypk−1

α

)
+ α

1 − α

{
n∑

k=1

xk(pk − 1)

}2

,
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where Yα is as in (6.26). We do not produce the whole proof, a routine matter which is left to the
reader.

7. The generalized Dirichlet process

This section discusses the two-parameter generalization of Dirichlet processes from the point of
view of our previous results. There are a number of motivations to study the original Dirichlet
process, for example, as a prior distribution in Bayesian nonparametric statistics [17] and as a
stationary state of a certain diffusion process arising in population genetics. The well-known
relationship between the Dirichlet process and the Poisson–Dirichlet distribution is described
as follows. Let {Xi}∞i=1 be a sequence of i.i.d. random variables and (Vi)

∞
i=1 be governed by

PD(0, θ). Assuming independence of {Xi}∞i=1 and (Vi)
∞
i=1, we know that a random distribution

η := ∑
ViδXi

defines a Dirichlet process with underlying parameter measure θν, where ν is the
common law of the Xi ’s. In this sense, PD(0, θ) is the simplicial part of a Dirichlet process.
By replacing PD(0, θ) by PD(α, θ), a two-parameter generalization of a Dirichlet process was
introduced in [49].

In the case of Dirichlet processes, there are many articles, including [5,11,23,36,46], in which
exact forms (the distribution function, for example) of the law of the (random) mean

∑
XiVi

of η are obtained in terms of ν. A key tool is an integral identity due to Cifarelli and Regazzini
[5] which connects these two laws. As explained in [31,50,53], it is called the Markov–Krein
identity because in the case θ = 1, an integral transform is involved, analogous to the one studied
by Markov and Krein in the context of moment problems; see [30] for background and various
applications. Its extension was proven by Tsilevich [49] for the generalized Dirichlet process;
see also [31] for a further extension and [50,53] for a simple proof under some restriction on
the support of ν. This identity gives a one-to-one correspondence between ν and the law of∑

XiVi with (Vi) having PD(α, θ) distribution. However, such a correspondence is implicit and
seems very subtle in general. One therefore needs some procedure of inversion in order to obtain
explicit information. Recently, James, Lijoi, and Prünster [25] obtained some distributional re-
sults for the generalized Dirichlet process by means of a Perron–Stieltjes-type inversion formula.
Since PD(0, θ) and PD(α,0) are related to gamma processes and stable subordinators, respec-
tively [45], the corresponding problem is naturally considered for a more general class of random
distributions derived from subordinators, as posed in [53]. For results of this kind, we refer the
reader to works by Regazzini, Lijoi and Prünster [47] and by Nieto-Barajas, Prünster and Walker
[38], both of which make essential use of the Gurland inversion formula.

Our focus now will be on what is implied by Theorem 3.2 in the aforementioned context. It will
be pointed out that the basic identity (3.8) involving the probability generating functional exhibits
a mathematical structure underlying these kinds of identities. This should be compared with the
proofs in [11,31,49], where the Markov–Krein identity is viewed as a relation between moment
sequences through the Ewens(–Pitman) sampling formula [13,42]. Let us introduce some nota-
tion used to describe the domain of a map defined via the Markov–Krein identity. Denoting by
P the totality of Borel probability measures on R, let

P0 =
{
ν ∈ P :

∫
R

ν(dx) log(1 + |x|) < ∞
}
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and set Pα = {ν ∈ P :
∫

R ν(dx)|x|α < ∞} for 0 < α < 1. The Markov–Krein identity already
mentioned is the following. Taking a ν ∈ Pα , let {Xi}∞i=1 be i.i.d. random variables with each
law of Xi being ν and let (Vi)

∞
i=1 be PD(α, θ)-distributed. If {Xi}∞i=1 and (Vi)

∞
i=1 are mutually

independent, then
∑ |Xi |Vi < ∞ a.s. (as was shown in [14] for α = 0 and in Proposition 1 of

[47] for 0 < α < 1) and the law, denoted Mα,θ ν, of M := ∑
XiVi is characterized by one of the

following equalities:

(i) for α = 0 and θ > 0,∫
R

M0,θ ν(dx)(z − x)−θ = exp

(
−θ

∫
R

ν(dx) log(z − x)

)
(z ∈ C \ R); (7.1)

(ii) for α ∈ (0,1) and θ > 0,∫
R

Mα,θ ν(dx)(z − x)−θ =
(∫

R
ν(dx)(z − x)α

)−θ/α

(z ∈ C \ R); (7.2)

(iii) for α ∈ (0,1) and θ ∈ (−α,0), Mα,θ ν ∈ P−θ and (7.2) holds true;
(iv) for α ∈ (0,1) and θ = 0, Mα,0ν ∈ P0 and∫

R
Mα,0ν(dx) log(z − x) = α−1 log

∫
R

ν(dx)(z − x)α (z ∈ C \ R). (7.3)

Thus the correspondence ν 	→ Mα,θ ν defines a map from Pα to P , for which we also write
Mα,θ , by a slight abuse of notation. Since we are not aware of any reference in which integrabil-
ity of the transformed measure Mα,θ ν claimed in (iii) or (iv) has been shown, the proof shall be
given below by applying our result. As will be seen later (Proposition 7.2(i)), such a property is
also needed for further discussion. In the subsequent argument, we often use the following three
equalities: ∫ ∞

0
ds sθ−1e−se−us = 	(θ)(1 + u)−θ (θ > 0), (7.4)

Cα

∫ ∞

0
ds s−α−1e−s(e−us − 1) = 1 − (1 + u)α (0 < α < 1), (7.5)∫ ∞

0
ds s−1e−s(e−us − 1) = − log(1 + u), (7.6)

where u ∈ C is such that Reu > −1.

Lemma 7.1. Let α ∈ (0,1) and θ ∈ (−α,0]. Then Mα,θ ν ∈ P−θ for any ν ∈ Pα .

Proof. Define M∗ := ∑ |Xi |Vi . By the assumed independence,

E[e−sM∗ ] = Eα,θ

[ ∞∏
i=1

∫
R

ν(dx)e−sVi |x|
]

(s ≥ 0). (7.7)
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We will apply Theorem 3.2 by taking g(s) = ∫
R ν(dx) exp(−s|x|). For this purpose, with the

help of Fubini’s theorem, observe from (7.5) that for 0 < α < 1,

Cα

λα

∫ ∞

0
dz

e−λz

zα+1
|g(z) − 1| =

∫
R

ν(dx)(1 + λ−1|x|)α − 1 < ∞, (7.8)

which implies that λ∗
α(g) = 0. Therefore, (3.8) holds for all λ > 0 and reads

λθ

	(θ + 1)

∫ ∞

0
ds sθ−1e−λs(E[e−sM∗ ] − 1)

(7.9)

=

⎧⎪⎪⎨⎪⎪⎩
1

θ

(∫
R

ν(dx)(1 + λ−1|x|)α
)−θ/α

− 1

θ
, 0 < α < 1, θ �= 0,

− 1

α
log

∫
R

ν(dx)(1 + λ−1|x|)α, 0 < α < 1, θ = 0.

The desired integrability can be seen as follows. For θ = 0, the left-hand side of (7.9) with λ = 1
becomes −E[log(1 + M∗)] by (7.6), while the right-hand side is finite by ν ∈ Pα . This proves
that Mα,0ν ∈ P0 whenever ν ∈ Pα . Similarly, for θ ∈ (−α,0), by using (7.5) with −θ in place of
α, we see that the left-hand side of (7.9) with λ = 1 equals (E[(1 + M∗)−θ ] − 1)/θ . Therefore,
Mα,θ ν ∈ P−θ is implied by ν ∈ Pα . �

Remarks. (i) In view of (7.9), the reader will be able to see that the dichotomy result of Feigin–
Tweedie type [14] (originally shown for PD(0, θ)’s) holds true for PD(α, θ) with θ > 0. More
precisely, if ν ∈ P \ Pα and M∗ is as above, then M∗ = ∞ a.s. Thus the maximal domain of
Mα,θ with θ > 0 is identified with Pα . In the Dirichlet process case, Cifarelli and Regazzini
[6] gave a proof of this fact by using (7.1). Their cutoff argument also applies for 0 < α < 1,
as seen in the following. Considering M∗

n := ∑ |Xi |1{|Xi |≤n}Vi for each n = 1,2, . . . , which
corresponds to the image measure νn of ν under x 	→ |x|1[−n,n](x), we have (7.9) with M∗

n and
νn in place of M∗ and ν, respectively. Under the assumption that ν /∈ Pα , letting n → ∞ yields
E[(1 + M∗/λ)−θ ] = 0 and hence M∗ = ∞ a.s., as long as θ > 0.

(ii) The above proof makes it almost obvious that the Markov–Krein identity itself can be
recovered from Theorem 3.2 with g(s) = ψν(±s), where ψν is the characteristic function of ν.
These choices are allowed for any ν ∈ Pα because for all x ∈ R,∫ ∞

0
dz

e−z

zα+1

∣∣e√−1xz − 1
∣∣ ≤ {

A0 log(1 + |x|) + B0 min{|x|,1}, α = 0,
Aα|x|α + Bα min{|x|,1}, 0 < α < 1,

where Aα and Bα are constants depending only on α. (For the proof of this inequality, first
observe that the left-hand side is bounded above by |x|	(1 − α) and then show it for x > 1 by,
for example, dividing the domain of integration into (0,1/x) and [1/x,∞).) In addition, (7.5)
and (7.6) show that λ∗

α(ψν(±·)) = 0. Therefore, analogously to (7.7),

ψMα,θ ν(±s) = E
[
exp

(±√−1sM
)] = Eα,θ

[ ∞∏
i=1

ψν(±sVi)

]
, (7.10)
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and we obtain, by (3.8),

λθ

∫ ∞

0
ds sθ−1e−λs

(
ψMα,θ ν(±s) − 1

) = Rα,θ

(
λ−α

∫ ∞

0
dz

e−λz

zα+1

(
ψν(±z) − 1

))
(7.11)

for all λ > 0. In the same way as before, (7.11) can be converted to (7.1)–(7.3) with z = ±√−1λ

by making use of (7.4)–(7.6).

The rest of the paper is devoted to describing various consequences of the above calculations
and the Markov–Krein identity.

Proposition 7.2. (i) Let 0 < β < α < 1 and θ > −β . Then, as a map defined on Pα ,

Mβ,θ ◦ Mα,−β = Mα,θ . (7.12)

(ii) Let 0 ≤ α < 1 and θ > −α. Suppose that ν ∈ Pα . Then, for a.e. t ∈ R,

ψMα,θ ν(t) = 1 +
∞∑

n=1

cn,α,θ

n!
∫


n

n∏
i=1

ψν(tvi) − 1

vα+1
i

(
1 −

n∑
j=1

vj

)θ+αn−1

dv1 · · · dvn. (7.13)

(iii) Let 0 < α < 1 and θ > −α. Then Mα,θ defined on Pα is injective.

Proof. (i) First, note that by Lemma 7.1, the composition Mβ,θ ◦ Mα,−β is well defined on Pα

under the conditions assumed. (7.12) with θ = 0 becomes Mβ,0 ◦ Mα,−β = Mα,0, the proof
of which requires careful handling of branches. Taking an arbitrary ν ∈ Pα and putting ν′ =
(Mβ,0 ◦ Mα,−β)ν, we observe from (7.2) and (7.3) that∫

R
ν′(dx) log(z − x) = 1

β
log

∫
R

Mα,−βν(dx)(z − x)β

= 1

β
log

(∫
R

ν(dx)(z − x)α
)β/α

= 1

β
log exp

(
β

α
log

∫
R

ν(dx)(z − x)α
)

.

It should here be noted that since 0 < β/α < 1,

arg exp

(√−1
β

α
arg

∫
R

ν(dx)(z − x)α
)

= β

α
arg

∫
R

ν(dx)(z − x)α.

Combining these equalities yields∫
R

ν′(dx) log(z − x) = 1

β
· β

α
log

∫
R

ν(dx)(z − x)α =
∫

R
Mα,0ν(dx) log(z − x),

where the last equality follows from (7.3). Since z ∈ C \ R is arbitrary, this implies ν′ = Mα,0ν,
as required. It only remains to deal with the case where 0 < β < α < 1 and θ �= 0 is such that
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θ > −β . Calculations are quite similar to those in the previous case and so are left to the reader.
The proof of (i) has already been done.

(ii) By virtue of (7.11), (7.13) is a direct consequence of Lemma 3.1(i).
(iii) First, suppose that Mα,0ν = Mα,0ν

′ for some ν, ν′ ∈ Pα . Then, by (7.3),
∫

R ν(dx)(1 +√−1λ−1x)α = ∫
R ν′(dx)(1 + √−1λ−1x)α for all λ ∈ R \ {0}. This, together with (7.5), implies

that ν = ν′. Next, let θ �= 0 be such that θ > −α and assume that Mα,θ ν = Mα,θ ν
′ for some

ν, ν′ ∈ Pα . Taking care with branches, we see by (7.2) that for each λ ∈ R \ {0}, there exists an
integer n(λ) such that

log
∫

R
ν(dx)

(
1 + √−1λ−1x

)α − log
∫

R
ν′(dx)

(
1 + √−1λ−1x

)α = 2πn(λ)αθ−1. (7.14)

However, since the left-hand side is continuous in λ and tends to 0 as |λ| → ∞, we have n(λ) ≡ 0.
This proves ν = ν′ and therefore Mα,θ is injective. �

Let us make some comments on Proposition 7.2. The assertion (i) extends Theorem 2.1 of
[25], where (7.12) with β = 0 is shown and applied for a sampling procedure. We can also
understand (7.12) via (7.11) combined with Rβ,θ ◦ Rα,−β = Rα,θ . In general, a random vari-
able M having (Mα,β ◦ Mγ,δ)ν distribution (if such a law is well defined) is constructed by

M = ∑
j (
∑

i XijV
(γ,δ)

ij )V
(α,β)
j , where {Xij } is a family of i.i.d. random variables with com-

mon law ν, (V
(α,β)
j )∞j=1 has PD(α,β) distribution and (V

(γ,δ)

i1 )∞i=1, (V
(γ,δ)

i2 )∞i=1, . . . are PD(γ, δ)-
distributed. Moreover, these random elements are required to be mutually independent. (ii) and
(iii) are motivated by some results of Lijoi and Regazzini [36] concerned with M0,θ . Applying
to (7.11) a general complex inversion formula for Laplace transforms (the Bromwich integral),
the authors provided an expression for the characteristic function of M0,θ ν. It is not clear how
to verify equivalence between such a formula and (7.13) directly. They also proved a prototype
of (iii), that is, that M0,θ : P0 → P is injective for each θ > 0.

As observed [26] (Remark 4.2) in a much more general scheme called a species sampling
model, Cauchy distributions are fixed points of every Mα,θ . Alternatively, this also follows from
(7.10). It should be emphasized that any property of PD(α, θ) as a law on ∇∞ is irrelevant to
the validity of this fact, except the one which ensures that

∑ |Xi |Vi < ∞ a.s. The study of the
inverse problem would require a deeper understanding of Mα,θ itself or PD(α, θ). In this respect,
Yamato [55] gave a partial result concerning the case α = 0. It was shown in [36] that for any
ν ∈ P0, M0,1ν = ν occurs only when ν is Cauchy or degenerate. It seems reasonable to expect
that such an equivalence would hold true for any Mα,θ and we could approach this problem
by the use of results presented in Section 3. But here we shall show only a minor extension
by mimicking the proof of Theorem 5 in [36], that is, by reducing to an ordinary differential
equation via the Markov–Krein identity.

Proposition 7.3. Let 0 < α < 1 and ν ∈ Pα . Then Mα,1−αν = ν if and only if ν is Cauchy or
degenerate.

Proof. Supposing that Mα,1−αν = ν, we only have to show that ν is Cauchy or degener-
ate. By combining this equality with (7.2), we easily see that f±(t) := ∫

R ν(dx)(t ± √−1x)α
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solves the equation α−1f±′(t) = f±(t)1−1/α(t > 0) and therefore f±(t)1/α = t + f±(0)1/α(t ≥
0). Here, since f+(0) and f−(0) are complex conjugate with | argf±(0)| ≤ πα/2, we have
| arg(f±(0)1/α)| ≤ π/2 so that f±(0)1/α = σ 2 ± √−1m for some σ 2 ≥ 0 and m ∈ R. Conse-
quently, f±(t)1/α = t + σ 2 ± √−1m(t ≥ 0). Furthermore, by noting the continuity of argf±(t),
we get f±(t) = (t + σ 2 ± √−1m)α for every t ≥ 0. With the help of (7.5), we conclude that ν is
a Cauchy or degenerate distribution with ψν(t) = exp(

√−1mt − σ 2|t |). �
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