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This paper investigates multistep prediction errors for non-stationary autoregressive processes with both
model order and true parameters unknown. We give asymptotic expressions for the multistep mean squared
prediction errors and accumulated prediction errors of two important methods, plug-in and direct prediction.
These expressions not only characterize how the prediction errors are influenced by the model orders,
prediction methods, values of parameters and unit roots, but also inspire us to construct some new predictor
selection criteria that can ultimately choose the best combination of the model order and prediction method
with probability 1. Finally, simulation analysis confirms the satisfactory finite sample performance of the
newly proposed criteria.
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1. Introduction

Forecasting theory for stationary series with known true parameters is well studied but not much
is known about the case for non-stationary models with estimated parameters. To fill the gap, this
paper investigates multistep prediction errors for autoregressive (AR) processes with unit root.
The plug-in and direct predictors are the two most frequently used multistep prediction methods
and comparing their relative performance has become a major issue in forecast theory. In the
case of squared error losses, the plug-in predictor is obtained from repeatedly using the fitted
(by least squares) AR model with an unknown future value replaced by their own forecasts and
the direct predictor is obtained by estimating the coefficient vector in the associated multistep
prediction formula directly by linear least squares (see (1.2) and (1.3) below). Recently, many
informative guidelines have been proposed to choose between these two methods in various time
series models; see Findley [5,6], Tiao and Tsay [20], Lin and Tsay [16], Ing [9,10], Chevillon
and Hendry [3] and Lin and Wei [17], among many others. However, a theoretical resolution to
the problem of how to select the optimal multistep predictor in non-stationary time series still
seems to be lacking, at least when the estimation uncertainty is taken into account. In this paper,
we have developed and rigorously analyzed the theoretical properties of some predictor selection
criteria to choose the model order and prediction method simultaneously.
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Assume that observations x1, . . . , xn are generated from a unit root AR model,

xt+1 =
p+1∑
i=1

aixt+1−i + εt+1, (1.1)

where 0 ≤ p < ∞ is unknown, ap+1 �= 0, εt ’s are white noises with zero means and common
variance σ 2 and the characteristic polynomial

A(z) = 1 − a1z − · · · − apzp − ap+1z
p+1

= (1 − z)(1 − α1z − · · · − αpzp),

with α(z) = (1 −α1z−· · ·−αpzp) �= 0 for all |z| ≤ 1. xt is called stationary or stable if all roots
of A are outside the unit circle and unstable or non-stationary if some roots of A are on the unit
circle. For the sake of convenience, the initial conditions are set to xt = 0 for all t < 0. To predict
xn+h,h ≥ 1, based on x1, . . . , xn and a working model AR(k), one may use the plug-in predictor,
x̂n+h(k), or direct predictor, x̌n+h(k), where

x̂n+h(k) = x′
n(k)ân(h, k), (1.2)

and

x̌n+h(k) = x′
n(k)ǎn(h, k), (1.3)

with xj (k) = (xj , . . . , xj−k+1)
′ being the regressor vector and ân(h, k) and ǎn(h, k) being plug-

in and direct estimators, respectively. Note that

{
i−1∑
j=k

xj (k)x′
j (k)

}
âi (1, k) =

i−1∑
j=k

xj (k)xj+1,

{
i−h∑
j=k

xj (k)x′
j (k)

}
ǎi (h, k) =

i−h∑
j=k

xj (k)xj+h,

and âi (h, k) = Âh−1
i (k)âi (1, k), with Â0

i (k) = Ik ,

Âi(k) =
⎛
⎝âi (1, k)

∣∣∣∣∣∣
Ik−1

0′
k−1

⎞
⎠ ,

and Im and 0m, respectively, denoting an identity matrix and a vector of zeros of dimension m.
To assess the prediction performance of x̂n+h(k) and x̌n+h(k), we consider their mean squared
prediction errors (MSPEs),

MSPEPn,h(k) = E
(
xn+h − x̂n+h(k)

)2
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and

MSPEDn,h(k) = E
(
xn+h − x̌n+h(k)

)2
.

Theoretical investigations of MSPEPn,h(k) (or MSPEDn,h(k)) in non-stationary AR models
date back at least to Fuller and Hasza [7]. When k ≥ p + 1, an argument similar to that used in
their Theorem 3.1 yields the following asymptotic expressions:

MSPEPn,h(k) = σ 2
h + E{RP,n(k)} (1.4)

and

MSPEDn,h(k) = σ 2
h + E{RD,n(k)}, (1.5)

where RP,n(k) = Op(n−1), RD,n(k) = Op(n−1) and σ 2
h = E(η2

t,h), with ηt,h = ∑h−1
j=0 bj εt+h−j ,

bj = ∑j

i=0 ci , c0 = 1 and cj , j ≥ 1, satisfying 1+∑∞
j=1 cj z

j = 1/α(z) (note that α(z) is defined
after (1.1)). The first term on the right-hand sides of (1.4) and (1.5), originating from the random
disturbances {εt }, is common for each multistep predictor, whereas the second terms on the right-
hand sides of (1.4) and (1.5), arising from the estimation uncertainty, can vary with different k,
different prediction methods and different parameter values. However, since only rates of con-
vergence of the second terms are reported, (1.4) and (1.5) fail to depict these features, which
are indispensable in performing predictor comparisons. To remedy this difficulty, the constants
associated with the terms of order n−1 in E{RP,n(k)} and E{RD,n(k)} need to be characterized.
Recently, Ing [8] made a first step toward this goal. In the special case where p = 0 in (1.1) (the
random walk model) and k = h = 1, he showed that

lim
n→∞n

(
MSPEPn,1(1) − σ 2) = lim

n→∞E

{
x2
n

n
n2(ân(1,1) − 1

)2
}

= 2σ 2. (1.6)

The main obstacle in dealing with the above expectation, as argued by Ing, is the fact that
the square of the normalized regressor, x2

n/n, and the square of the normalized estimator,
n2(ân(1,1)− 1)2, are not asymptotically independent – a situation somewhat different from that
encountered in the stationary case. While Ing was able to overcome this difficulty, his approach,
focusing only on the random walk model and the case of one-step-ahead prediction, cannot be
directly applied to more general non-stationary AR models or multistep prediction cases.

Another subtle problem, related to the direct method, can be illustrated using the following
special case of (1.1):

(1 − B)(1 + 0.1B + 0.91B2)xt+1 = (1 − 0.9B + 0.81B2 − 0.91B3)xt+1 = εt+1, (1.7)

where B is the back shift operator. Simple algebra yields

xt+1 = 0.181xt−2 + 0.819xt−3 + εt+1 + 0.9εt . (1.8)

As observed in (1.8), the direct method only requires two regressors to make a three-step-ahead
prediction, which indicates the interesting fact that the minimal correct order for the direct
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method, determined by the prediction lead time and unknown parameters, can be strictly less
than that for the plug-in method. In general, model (1.1) can be rewritten as

xt+h = (
Ah−1(p + 1)a(p + 1)

)′xt (p + 1) + ηt,h, h ≥ 1,

where a(k) = (a1, . . . , ak)
′, with aj = 0 for j > p + 1,

A(k) =
⎛
⎝a(k)

∣∣∣∣∣∣
Ik−1

0′
k−1

⎞
⎠ ,

and A0(k) = Ik . Let a(h,p + 1) = (a1(h,p + 1), . . . , ap+1(h,p + 1))′ = Ah−1(p + 1)a(p + 1).
The above example leads us to define the minimal correct order for the h-step direct method,
ph = max{j : 1 ≤ j ≤ p + 1, aj (h,p + 1) �= 0}. As will be seen in Section 2 below, compari-
son results between the plug-in and direct predictors are very complicated in situations where
ph < p1.

In Section 2, we first derive asymptotic expressions for MSPEPn,h(k1) and MSPEDn,h(k2)

up to terms of order n−1, where k1 ≥ p1 and k2 ≥ ph. The constants associated with the terms
of order n−1 in these expressions characterize how the prediction error is influenced by the or-
ders, methods (plug-in or direct), values of parameters and even the unit roots. Based on these
expressions, a series of examples (Examples 1–3) is given to illuminate that to find the asymp-
totically optimal (from the MSPE point of view) multistep predictor among candidate plug-in
and direct predictors, prediction orders and prediction methods must simultaneously be taken
into account. The traditional order selection criteria can no longer serve that purpose. Section 3
is devoted to alleviating this difficulty. Our strategy is to find a statistic for each MSPEPn,h(k)

and MSPEDn,h(k), k = 1, . . . ,K and show that the ordering of these statistics coincides with the
ordering of their corresponding multistep MSPEs. Here, K ≥ p1 is a known integer. In view of
Ing [10], the statistics adopted in this section are the multistep generalizations of accumulated
prediction errors (APEs) based on sequential plug-in and direct predictors, namely,

APEPn,h(k) =
n−h∑
i=mh

(
xi+h − x̂i+h(k)

)2 (1.9)

and

APEDn,h(k) =
n−h∑
i=mh

(
xi+h − x̌i+h(k)

)2
, (1.10)

where mh denotes the smallest positive number such that âi (h,K) and ǎi (h,K) are well defined
for all i ≥ mh. Note that APEPn,1 was first proposed by Rissanen [19]. A complete asymptotic
analysis of APEPn,1 was given by Wei [21,22] under a model more general than (1.1). However,
due to some “nice” properties in APEPn,1 that are missing in its multistep counterparts (see
Remarks 2 and 3 in Section 3), the asymptotic analysis of (1.9) and (1.10) in non-stationary
AR processes is still lacking. We propose a resolution to this problem, which shows that every
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APEPn,h(k1) and APEDn,h(k2), with k1 ≥ p1 and k2 ≥ ph, can be asymptotically decomposed
into two terms; one of which, due to estimation uncertainty, is of order logn, and the other, due
to the random disturbances, is of order n and common for each predictor. More important, the
constant associated with the term of logn in APEPn,h (APEDn,h) is exactly the same as the
one associated with the term of n−1 in its corresponding MSPEPn,h (MSPEDn,h). This special
feature enables us to show that Ing’s [10] asymptotically efficient predictor selection procedure
(based on APEPn,h and APEDn,h) in stationary AR processes can carry over to non-stationary
cases and hence leads to a unified approach. Note that a predictor selection procedure is said
to be asymptotically efficient if, with probability 1, it can choose the order/method combination
with the minimal MSPE for all sufficiently large n; see Section 3 for the exact definition.

Despite its theoretical advantage, Ing’s procedure suffers from unsatisfactory finite-sample
performance, as explained at the beginning of Section 4. To fix this flaw, a new predictor selection
method is proposed in Section 4. This new method not only shares the same asymptotic advantage
as Ing’s procedure, it also has satisfactory finite-sample performance, which is illustrated at the
end of Section 4 through a simulation experiment. Appendices A–C contain the proofs of the
theorems in Sections 2–4, respectively.

2. MSPEs of plug-in and direct predictors in the presence of
unit roots

Throughout this section, it is assumed that in model (1.1) the εt ’s are independent random vari-
ables with zero means and variances σ 2 > 0. Moreover, there are small positive numbers α1
and δ1 and a large positive number M1 such that for 0 ≤ s − ν ≤ δ1

sup
1≤m≤t<∞,‖vm‖=1

|Ft,m,vm(s) − Ft,m,vm(ν)| ≤ M1(s − ν)α1 , (2.1)

where vm = (v1, . . . , vm)′ ∈ Rm, ‖vm‖2 = ∑m
j=1 v2

j and Ft,m,vm(·) denotes the distribution of∑m
l=1 vlεt+1−l .
In the case, where εt ’s are i.i.d., the following lemma provides sufficient conditions under

which (2.1) is fulfilled. The proof of this lemma can be found in Ing and Sin [12].

Lemma 2.1. Let εt ’s be i.i.d. random variables satisfying E(ε1) = 0,E(ε2
1) > 0, and E(|ε1|α) <

∞ for some α > 2. Assume also that for some positive constant M2 < ∞,∫ ∞

−∞
|ϕ(t)|dt ≤ M2, (2.2)

where ϕ(t) = E{exp(itε1)} is the characteristic function of ε1. Then, for all −∞ < t < ∞,
m ≥ 1, rm ∈ Rm and ‖rm‖ = 1, there is a finite positive constant M3 such that

sup
−∞<x<∞

ft,m,rm(x) < M3,

where ft,m,rm(·) is the density function of (εt , . . . , εt+1−m)rm. As a result, (2.1) follows.
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Since (2.2) is satisfied by most absolutely continuous distributions, (2.1) is flexible enough to
accommodate a wide range time series applications. Note that (2.1) is given to ensure that the
inverses of the normalized Fisher information matrices, R̂−1

n (k) and R̄−1
n,h(k), have finite positive

moments in the senses of (A.1) and (A.19) (in Appendix A), where

R̂n(k) = 1

n
Dn(k)

n−1∑
j=k

xj (k)x′
j (k)Dn(k)′

and

R̄n,h(k) = 1

n
D̄n(k)

n−h∑
j=k

xj (k)x′
j (k)D̄n(k)′,

with

Dn(k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 1 −1
1√
n

−α1√
n

. . . . . .
−αk−1√

n

⎞
⎟⎟⎟⎟⎟⎟⎠

,

αj = 0 for j > p and D̄n(k) equal to Dn(k) with αi replaced by 0 for i = 1, . . . , k − 1. These
results will be used to deal with the asymptotic properties of MSPEPh,n and MSPEDh,n; see
the proofs of Theorems 2.2 and 2.3 for details. Theorems 2.2 below provides an asymptotic
expression for MSPEPn,h(k) with k ≥ p1. Before stating the result, we need to define S0

M(k) = Ik

and with α(k) = (α1, . . . , αk)
′,

SM(k) =
⎛
⎝α(k)

∣∣∣∣∣∣
Ik−1

0′
k−1

⎞
⎠ .

Theorem 2.2. Assume that {xt } satisfies model (1.1). Also assume that {εt } satisfies (2.1) and

E(|ε1|θh) < ∞,

where θh = max{8,2(h + 2)} + δ for some δ > 0. Then, for k ≥ p1 and h ≥ 1,

n
(
MSPEPn,h(k) − σ 2

h

) = 2σ 2

(
h−1∑
j=0

bj

)2

+ f1,h(k − 1) + o(1), (2.3)

where f1,h(0) = 0 and for k ≥ 2,

f1,h(k − 1) = tr
(

(k − 1)Mh(k − 1)
−1(k − 1)M ′

h(k − 1)
)
σ 2,
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with Mh(k − 1) = ∑h−1
j=0 bjS

h−1−j
M (k − 1), 
(k − 1) = limj→∞ E(sj (k − 1)s′

j (k − 1)), sj (k −
1) = (sj , . . . , sj−k+2)

′ and sj = xj − xj−1.

An asymptotic expression for MSPEDn,h(k), with k ≥ ph, is given as follows:

Theorem 2.3. Let the assumptions of Theorem 2.2 hold, with θh replaced by 8 + δ for some
δ > 0. Then, for k ≥ ph and h ≥ 1,

n
(
MSPEDn,h(k) − σ 2

h

) = 2σ 2

(
h−1∑
j=0

bj

)2

+ f2,h(k − 1) + o(1), (2.4)

where f2,h(0) = 0, for k ≥ 2,

f2,h(k − 1) = tr

{

−1(k − 1) lim

t→∞ cov

(
h−1∑
j=0

bj st+j (k − 1)

)}
σ 2,

and for random vector y, cov(y) = E{(y − E(y))(y − E(y))′}.

Theorems 2.2 and 2.3 show that each n(MSPEPn,h(k1)− σ 2
h ) and n(MSPEDn,h(k2)− σ 2

h ), with
k1 ≥ p1 and k2 ≥ ph, can be asymptotically decomposed as a sum of two terms. The first term,
2σ 2(

∑h−1
j=0 bj )

2, arising from predicting the non-stationary component in model (1.1), is com-
mon for each predictor, whereas the second term, f1,h(k − 1) (or f2,h(k − 1)), arising from
predicting the stationary component in model (1.1), can vary with different orders and methods.
The following examples help provide a better understanding of Theorems 2.2 and 2.3.

Example 1. When k ≥ max{2,p1} and h = 2, by (2.3) and (2.4), it is straightforward to show
that

f1,2(k − 1) = {(k − 2) + α2
k−1 + 2α1b1 + b2

1(k − 1)}σ 2 (2.5)

and

f2,2(k − 1) = {(k − 1)(1 + b2
1) + 2α1b1}σ 2, (2.6)

which yields

f2,2(k − 1) − f1,2(k − 1) = (1 − α2
k−1)σ

2 > 0. (2.7)

Moreover, by an argument similar to that used to prove (17) of Ing [9], it can be shown that for
k ≥ max{2,p1} and h ≥ 2,

f2,h(k − 1) − f1,h(k − 1) ≥ f2,2(k − 1) − f1,2(k − 1) > 0, (2.8)

and hence x̂n+h(k) is asymptotically more efficient than x̌n+h(k) in this case.
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As shown in Section 1, it is possible that ph < p1. In this case, it would be more interesting to
compare n(MSPEPn,h(p1) − σ 2

h ) and n(MSPEDn,h(ph) − σ 2
h ) rather than those MSPEs of the

same order. The following example shows that the advantage of the plug-in predictor illustrated
in Example 1 vanishes in this kind of comparison.

Example 2. Assume

(1 − B)(1 + a1B + · · · + apBp)xt = et ,

where p ≥ 2, 1 + a1z + · · ·+ apzp �= 0 for |z| ≤ 1 and ap �= 0. If a1 = 1, then it is not difficult to
see that p2 = p1 − 1 = p and f2,2(p) − f2,2(p − 1) = σ 2. In addition, (2.7) implies f2,2(p) −
f1,2(p) = (1 − a2

p)σ 2. As a result,

n{MSPEPn,2(p1) − σ 2} − n{MSPEDn,2(p2) − σ 2} → a2
pσ 2 > 0,

as n → ∞. Hence x̌n+2(p2) is asymptotically more efficient than x̂n+2(p1) in this case.

When h = 2 and p1 ≥ 2, Examples 1 and 2 together suggest a simple rule that x̂n+2(p1)

is asymptotically more efficient than x̌n+2(p2) if p1 = p2; and the conclusion is reversed if
p1 > p2. This rule, however, fails to hold for h ≥ 3, as detailed in the following example.

Example 3. Consider the following AR(4) model

(1 − B)(1 + a1B)(1 + a2B
2)xt

= {1 − (1 − a1)B − (a1 − a2)B
2 − a2(1 − a1)B

3 − a1a2B
4}xt = et ,

where 0 < a1 < 1 and a2 = a2
1 − a1 + 1. It is straightforward to show that p3 = 3 = p1 − 1. By

numerical calculations, we obtain the values of f2,3(2)−f1,3(3), with a1 = 0.1,0.2, . . . ,0.9; see
Table 1. According to Table 1, x̌n+3(p3) is asymptotically more efficient than x̂n+3(p1) in cases
of a1 = 0.1,0.2,0.9, and less efficient than x̂n+3(p1) in all other cases.

Consequently, when h ≥ 3, the rankings of x̂n+h(p1) and x̌n+h(ph) are determined not only
by whether ph < p1, but also by the values of the unknown parameters. Simply determining p1
or ph through certain consistent model selection techniques cannot guarantee optimal multistep
prediction (from the MSPE point of view) in situations, where plug-in and direct predictors are
simultaneously taken into account. This phenomenon was first reported by Ing [10] in stationary
AR models. The above three examples show that the same difficulty occurs in the presence of
unit root. In the next two sections, some proposals toward resolving this problem are given.

Table 1. The values of Diff = f2,3(2) − f1,3(3)

a1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Diff −0.378 −0.013 0.197 0.310 0.354 0.336 0.247 0.051 −0.321
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3. Multistep accumulated prediction errors

Let x̂n+h(k), k = 1, . . . ,K and x̌n+h(k), k = 1, . . . ,K , be candidate plug-in and direct predic-
tors, where h ≥ 1 and K ≥ p1. For convenience, we use (k,1) to denote x̂n+h(k) and (k,2)

to denote x̌n+h(k). In response to the difficulty mentioned at the end of the previous section,
this section attempts to choose the order/method combination having the minimal MSPE in-
stead of identifying p1 or ph. To this end, the loss functions of (k,1) and (k,2) are defined to
be

L1,h(k) =
{

lim
n→∞n

(
MSPEPn,h(k) − σ 2

h

)
, if p1 ≤ k ≤ K ,

∞, if k < p1,
(3.1)

and

L2,h(k) =
{

lim
n→∞n

(
MSPEDn,h(k) − σ 2

h

)
, if ph ≤ k ≤ K ,

∞, if k < ph,
(3.2)

respectively. Note that the existence of the above limits is ensured by Theorems 2.2 and 2.3; and
in order to have the prediction loss due to underspecification be much larger than the one due
to overspecification, the loss function values of (k,1) with k < p1 and (k,2) with k < ph are
set to ∞. A predictor selection criterion, (k̃n, j̃n), with 1 ≤ k̃n ≤ K and 1 ≤ j̃n ≤ 2, is said to be
asymptotically efficient if

P
(
(k̃n, j̃n) ∈ Ch,K, eventually

) = 1, (3.3)

where

Ch,K =
{
(k, j) : 1 ≤ k ≤ K,1 ≤ j ≤ 2 and Lj,h(k) = min

1≤k0≤K,1≤j0≤2
Lj0,h(k0)

}
.

Therefore, with probability 1 (k̃n, j̃n) can choose the predictor having the minimal loss function
value for all sufficiently large n.

The goal of this section is to show that (3.3) is fulfilled by (k̂n, ĵn). Here, (k̂n, ĵn), first proposed
by Ing [10], is obtained through the following procedure:

Step 1. Define k̂
(1)
D,n = arg min

1≤k≤K
APEDn,1(k).

Step 2. Define

k̂
(h)
D,n = arg min

1≤k≤K
APEDn,h(k)

and define

k̂(1,h)
n = arg min

k̂
(1)
D,n≤k≤K

APEPn,h(k).
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Step 3. If APEDn,h(k̂
(h)
D,n) > APEPn,h(k̂

(1,h)
n ), then (k̂n, ĵn) = (k̂

(1,h)
n ,1); otherwise (k̂n, ĵn) =

(k̂
(h)
D,n,2).

Remark 1. Our analysis below implies that the asymptotic properties of (k̂n, ĵn) remain un-
changed if Step 1 is skipped and k̂

(1,h)
n in Step 2 is defined to be arg min

1≤k≤K
APEPn,h(k).

In the sequel, the above procedure will be referred to as Procedure I. We begin by investigating
the asymptotic properties of APEPn,h(k) and APEDn,h(k) in the correctly specified case. Note
that for k ≥ p1,

APEPn,h(k) =
n−h∑
i=mh

{
ηi,h − x′

i (k)L̂i,h(k)
(
âi (1, k) − a(k)

)}2
, (3.4)

where L̂i,h(k) = ∑h−1
j=0 bj Â

h−1−j
i (k); and for k ≥ ph,

APEDn,h(k) =
n−h∑
i=mh

{
ηi,h − x′

i (k)
(
ǎi (h, k) − aD(h, k)

)}2
, (3.5)

where aD(h, k) = (a1(h,p + 1), . . . , ak(h,p + 1))′, with aj (h,p + 1),1 ≤ j ≤ p + 1, defined
in Section 1 and aj (h,p + 1) = 0 if j > p + 1.

Theorem 3.1. Assume that {xt } satisfies model (1.1) and {εt } is a sequence of independent ran-
dom noises with zero means and common variance σ 2 > 0. Moreover, assume supt E(|εt |α) < ∞
for some α > 2. Then, for k ≥ p1 and h ≥ 1,

APEPn,h(k) −
n−h∑
i=mh

η2
i,h =

{
2σ 2

(
h−1∑
j=0

bj

)2

+ f1,h(k − 1)

}
logn + o(logn) a.s.

(3.6)
= L1,h(k) logn + o(logn) a.s.

Remark 2. As shown in (B.18),

APEPn,h(k) −
n−h∑
i=mh

(ηi,h)
2 =

n−h∑
i=mh

{
x′
i (k)L̂i,h(k)

(
âi (1, k) − a(k)

)}2(1 + o(1)
)

+O(1) a.s.

Therefore, the main task of proving (3.6) is to explore the almost sure properties of the first term
on the right-hand side of the above equality. Through a recursive expression for Qn(1, k), where,
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with V −1
i (k) = ∑i

i=k xi (k)x′
i (k),

Qn(1, k) =
n−1∑
i=k

{
x′
i (k)

(
ân(1, k) − a(k)

)}2

=
(

n−1∑
i=k

x′
i (k)εi+1

)
Vn−1(k)

(
n−1∑
i=k

xi (k)εi+1

)

is the (second-order) residual sum of squares for one-step predictions, Lai and Wei [14] estab-
lished a connection between Qn(1, k) and its sequential counterpart,

n−1∑
i=m1

{
x′
i (k)

(
âi (1, k) − a(k)

)}2 =
n−1∑
i=mh

{
x′
i (k)Vi−1(k)

(
i−1∑
j=k

xj (k)εj+1

)}2

. (3.7)

Based on this connection and some strong laws for martingales, Wei [21,22] subsequently ob-
tained an asymptotic expression for the left-hand side of (3.6) in the case of h = 1. However,
it is extremely difficult to obtain an analyzable recursive formula for the multistep analog of
Qn(1, k), Qn(h, k) = ∑n−h

i=k {x′
i (k)L̂n,h(k)(ân(1, k) − a(k))}2, h ≥ 2, due to the appearance of

L̂n,h(k). Hence, Wei’s approach is not easily extended to the case of multistep predictions. By
observing

Qn(h, k) =
(

n−1∑
i=k

x′
i (k)εi+1

)
S′

n(k)Vn−h(k)Sn(k)

(
n−1∑
i=k

x′
i (k)εi+1

)
,

where

Sn(k) =
(

n−h∑
i=k

xi (k)x′
i (k)

)
L̂n,h(k)

(
n−1∑
i=k

xi (k)x′
i (k)

)−1

,

Ing [10], under stationary AR processes, adopted

Q∗
n(h, k) =

(
n−1∑
i=k

x′
i (k)εi+1

)
S′(k)Vn−h(k)S(k)

(
n−1∑
i=k

x′
i (k)εi+1

)

to replace Qn(h, k), where S(k) is the almost sure limit of Sn(k) that is a non-random matrix. He
then obtained a recursive formula for Q∗

n(h, k) and established a connection between Q∗
n(h, k)

and
∑n−h

i=k {x′
i (k)Li,h(k)(âi (1, k) − a(k))}2, which further yields an asymptotic expression for

the latter. Unfortunately, when model (1.1) is assumed, Sn(k), with k ≥ 2, no longer has an
almost sure and non-random limit, which makes it hard to apply Ing’s [10] approach to the
non-stationary case. To obtain (3.6), extra effort is made to overcome the above difficulties; see
Appendix B for details. For some other interesting analysis of APEs in various non-standard
situations, see de Luna and Skouras [4] and Bercu [2].
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Theorem 3.2. Let the assumptions of Theorem 3.1 hold. Then, for k ≥ ph and h ≥ 1,

APEDn,h(k) −
n−h∑
i=mh

η2
i,h =

{
2σ 2

(
h−1∑
j=0

bj

)2

+ f2,h(k − 1)

}
logn + o(logn) a.s.

(3.8)
= L2,h(k) logn + o(logn) a.s.

Remark 3. As indicated in (B.35),

APEDn,h(k) −
n−h∑
i=mh

η2
i,h = (

1 + o(1)
) n−h∑
i=mh

{
x′
i (k)Vi−h(k)

(
i−h∑
j=k

xj (k)ηj,h

)}2

+O(1) a.s.

While

n−h∑
i=mh

{
x′
i (k)Vi−h(k)

(
i−h∑
j=k

xj (k)ηj,h

)}2

looks very similar to (3.7), Wei’s approach for the one-step APE still cannot be applied to it
because

∑i−h
j=k xj (k)ηj,h, h ≥ 2, is not a martingale transformation. While Ing [10] resolved this

difficulty in the stationary AR model, his method, which is highly reliant on the stationary as-
sumption, is not applicable to the unit root processes.

Remark 4. Theorems 2.2, 2.3, 3.1 and 3.2 together disclose a fascinating fact that the constants
associated with the terms of order n−1 in MSPEPn,h(k1) and MSPEDn,h(k2), with k1 ≥ p1 and
k2 ≥ ph, are exactly the same as the constants associated with the terms of order logn in their
corresponding multistep APEs. While MSPEPn,h(k1) and MSPEDn,h(k2) are unobservable, this
special property allows us to preserve their asymptotic rankings through the values of the as-
sociated multistep APEs, which can be easily obtained from the data. This is also the driving
motivation for constructing (k̂n, ĵn) in model (1.1).

Before showing the asymptotic efficiency of (k̂n, ĵn), we need to investigate the asymptotic
properties of APEDn,k(k) in misspecified cases.

Theorem 3.3. Let the assumptions of Theorem 3.1 hold. Then, for 1 ≤ k < ph and h ≥ 1,

lim inf
n→∞

1

n

(
APEDn,h(k) −

n−h∑
j=mh

η2
j,h

)
> 0 a.s. (3.9)

We are now in a position to state the main result of this section.
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Theorem 3.4. Let the assumptions of Theorem 3.1 hold. Then, for K ≥ p1, (k̂n, ĵn) is asymptot-
ically efficient in the sense of (3.3).

Remark 5. Since Ing [10] showed that (k̂n, ĵn) is also asymptotically efficient in stationary AR
models, Theorem 3.4, together with Ing’s result, provides a unified approach for choosing the
(asymptotically) optimal multistep predictor for AR processes with or without unit roots. While
it is possible to select multistep predictors after unit root tests are performed (which means that
the selection procedure will be carried out based on the differenced data if the unit-root hypoth-
esis is not rejected), all unit root tests suffer from low power when the process is near unity.
One can hardly expect a reliable selection/prediction result once the process is erroneously dif-
ferenced.

Before leaving this section, we note that to analyze the effect of the estimation of the mean
into the performance of the predictors, one may consider a unit root AR model with drift,

A(B)xt+1 = β + εt+1, (3.10)

where A(B) is defined after (1.1) and −∞ < β < ∞ is some real number. In the case of h = 1,
we have obtained (through non-trivial modifications of the proofs of the results in Sections 2
and 3) that if β �= 0, then for k ≥ p1,

lim
n→∞n

{
E

(
xn+1 − x̂n+1(k)

)2 − σ 2} = (k + 3)σ 2,

and

APEPn,1(k) −
n−1∑
i=m1

ε2
i+1 = σ 2(k + 3) logn + o(logn) a.s.,

where x̂n+1(k) = x̌n+1(k) = w
′
n(k)ân(1, k), with wj (k) = (1,x

′
j (k))

′
and âj (1, k) satisfying

{∑j−1
l=k wl(k)w

′
l (k)}âj (1, k) = ∑j−1

l=k wl(k)xl+1. Moreover, if β = 0, then for k ≥ p1,

lim
n→∞n

{
E

(
xn+1 − x̂n+1(k)

)2 − σ 2} = (k + 2)σ 2,

and

APEPn,1(k) −
n−1∑
i=m1

ε2
i+1 = σ 2(k + 2) logn + o(logn) a.s.

As observed in the above four equalities, the correspondence between APE and MSPE remains
valid under model (3.10), regardless of whether β = 0 or not. Therefore, it is natural to conjecture
that under model (3.10), (i) this correspondence can be extended to the case of h > 1; and (ii)
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Procedure I is still asymptotically efficient for multistep prediction. However, we shall not pursue
a proof of these conjectures here, since it goes beyond the scope of this paper.

4. New criteria

Although Theorem 3.4 shows that (k̂n, ĵn) is asymptotically efficient in the sense of (3.3), sur-
prisingly, its finite sample performance is rather unsatisfactory. Simulation results show that the
rankings of APEPn,h(k1) and APEDn,h(k2) are often inconsistent with the rankings L1,h(k1)

and L2,h(k2) even when n > 500. One possible explanation for this phenomenon is as follows:
In view of (3.4) and (3.5), for k1 ≥ p1 and k2 ≥ ph,

APEPn,h(k1) − APEDn,h(k2)

=
n−h∑
i=mh

{
x′
i (k1)L̂i,h(k1)

(
âi (1, k1) − a(k1)

)}2

(4.1)

−
n−h∑
i=mh

{
x′
i (k2)

(
ǎi (h, k2) − aD(h, k2)

)}2 − 2
n−h∑
i=mh

x′
i (k1)L̂i,h(k1)

(
âi (1, k1) − a(k1)

)
ηi,h

+2
n−h∑
i=mh

x′
i (k2)

(
ǎi (h, k2) − aD(h, k2)

)
ηi,h ≡ (I) − (II) − (III) + (IV).

While the cross-product terms, (III) and (IV), in (4.1) are almost surely of order o(logn) and
asymptotically negligible compared to (I) and (II) (see Appendix B), we have found that the
finite sample values of (III) and (IV) can differ remarkably. This “nonuniformity” feature causes
“rank-distortion” when we perform cross-method comparisons.

To overcome the above difficulty, we consider using PMICn,h(k) and DMICn,h(k) to replace
APEPn,h(k) and APEDn,h(k) in Procedure I, where

PMICn,h(k)
(4.2)

= σ̂ 2
P,n(h, k) + tr

{(
n−h∑
j=k

xj (k)x′
j (k)

)
L̈h,n(k)

(
n−h∑
j=k

xj (k)x′
j (k)

)−1

L̈′
h,n(k)

}
σ̃ 2

nCn,

and

DMICn,h(k) = σ̂ 2
D(h, k) + tr

{(
n−h∑
j=k

xj (k)x′
j (k)

)−1(n−2h+1∑
j=k

zj (k)z′
j (k)

)}
σ̃ 2

nCn, (4.3)

where limn→∞ Cn = 0 and lim infn→∞ Cnn/ logn > 0. Note that σ̂ 2
P,n(h, k) = (n − h −

K)−1 ∑n−h
j=K {xj+h − ân(h, k)xj (k)}2 and σ̂ 2

D,n(h, k) = (n−h−K)−1 ∑n−h
j=K {xj+h − ǎn(h, k)×
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xj (k)}2 are the h-step residual mean squared errors obtained from the k-regressor plug-
in and direct methods, respectively; σ̃ 2

n = σ̂ 2
P,n(1,K) = σ̂ 2

D,n(1,K) is the one-step residual

mean squared error obtained from the largest candidate model, zj (k) = ∑h−1
i=0 b̂i,nxj+i (k), and

L̈h,n(k) = ∑h−1
j=0 b̂j,nÂ

h−1−j
n (k), where b̂0,n = 1, and for j ≥ 1, b̂j,n = ∑j

l=1 b̂j−l,nâl,n(1,K),
with (â1,n(1,K), . . . , âK,n(1,K))′ = ân(1,K) and âl,n(1,K) = 0 if l > K .

Here, we briefly describe some of the theoretical rationale behind this new criterion. Observe
that

PMICn,h(k1) − DMICn,h(k2)

= σ̂ 2
P,n(h, k1) − σ̂ 2

D(h, k2)
(4.4)

+ tr

{(
n−h∑
j=k1

xj (k1)x′
j (k1)

)
L̈h,n(k1)

(
n−h∑
j=k1

xj (k1)x′
j (k1)

)−1

L̈′
h,n(k1)

}
σ̃ 2

nCn

− tr

{(
n−h∑
j=k2

xj (k2)x′
j (k2)

)−1(n−2h+1∑
j=k2

zj (k2)z′
j (k2)

)}
σ̃ 2

nCn.

It is shown in Appendix C that when k1 ≥ p1 and k2 ≥ ph,

tr

{(
n−h∑
j=k1

xj (k1)x′
j (k1)

)
L̈h,n(k1)

(
n−h∑
j=k1

xj (k1)x′
j (k1)

)−1

L̈′
h,n(k1)

}
σ̃ 2

n

− tr

{(
n−h∑
j=k2

xj (k2)x′
j (k2)

)−1(n−2h+1∑
j=k2

zj (k2)z′
j (k2)

)}
σ̃ 2

n (4.5)

= L1,h(k1) − L2,h(k2) + o(1) a.s.

Therefore, the trace terms in (4.2) and (4.3) play roles in keeping the rankings of their corre-
sponding loss functions. On the other hand, for k1 ≥ p1 and k2 ≥ ph, the weight associated with
the trace terms, Cn, asymptotically dominates σ̂ 2

P,n(h, k1) − σ̂ 2
D(h, k2) (see (C.2)), which helps

to protect the trace term effects in (4.4) from being distorted by σ̂ 2
P,n(h, k1) − σ̂ 2

D(h, k2). In fact,
our simulations reveal that this domination usually occurs quite early (particular when Cn is rel-
atively large), and hence considerably alleviate the dilemma encountered by Procedure I in finite
samples. (Note that σ̂ 2

P,n(h, k) and σ̂ 2
D,n(h, k) cannot be dropped from (4.2) and (4.3) because

they are necessary for preventing underspecification; see, e.g., (C.1).) The following is the new
predictor selection procedure (which is referred to as Procedure II) and its asymptotic property.

Step 1. Define Ô(1)
n = arg min

1≤k≤K
DMICn,1(k).

Step 2. Define

Ô(h)
n = arg min

1≤k≤K
DMICn,h(k)
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and define

Ô(1,h)
n = arg min

Ô(1)
n ≤k≤K

PMICn,h(k).

Step 3. If DMICn,h(Ô
(h)
n ) > PMICn,h(Ô

(1,h)
n ), then (Ôn, M̂n) = (Ô(1,h)

n ,1); otherwise
(Ôn, M̂n) = (Ô(h)

n ,2).

Theorem 4.1. Let the assumptions of Theorem 3.1 hold. Then, for K ≥ p1, (Ôn, M̂n) is asymp-
totically efficient in the sense of (3.3).

Remark 6. Although (4.5) holds, it is worth mentioning that the trace terms in (4.5) are not
consistent estimators of their corresponding loss functions L1,h(k1) and L2,h(k2); see (C.5) and
(C.6) in Appendix C.

Remark 7. Following an argument similar to that used in the proof of Theorem 4.1, it is not
difficult to show that (Ôn, M̂n) is also asymptotically efficient in stationary AR models.

To illustrate the asymptotic results obtained in Theorem 4.1, we conduct a simulation study.
The data generating processes (DGPs) are given by

DGP I xt = −0.8xt−2 + εt ,
DGP II xt = 0.3xt−1 − 0.8xt−2 + εt ,
DGP III xt = 0.2xt−2 + 0.8xt−3 + εt ,
DGP IV xt = 0.3xt−1 − 0.1xt−2 + 0.8xt−3 + εt ,
DGP V xt = 0.9xt−1 − 0.81xt−2 + εt ,
DGP VI xt = 0.6xt−1 − 0.36xt−2 + εt ,
DGP VII xt = 0.9xt−1 − 0.81xt−2 + 0.91xt−3 + εt ,
DGP VIII xt = 0.9xt−1 − 0.56xt−2 + 0.66xt−3 + εt ,

where εt ’s are independent and identically N (0,25) distributed. We aim to select two-step
(h = 2) predictors for DGPs I–IV and three-step (h = 3) predictors for DGPs V–VIII using
Procedure II with Cn = logn/n,2 logn/n and 3 logn/n, which will be referred to as Procedures
A, B and C, respectively. The candidate predictors are set to (i, j), i = 1, . . . ,10 and j = 1,2.
According to Section 2 and Section 2 of Ing [10], the asymptotically optimal multistep predictors
(or the order/method combinations with the minimal loss function values) for DGPs I–VIII are
listed in Table 2. We generated 1000 replications for each of these DGPs and carried out predic-
tor selection for each replication. The frequency of these combinations selected by Procedures
A, B and C is shown in Table 3 for n = 150, 300, 500, 1000 and 2000. The simulation results are
summarized as follows:

(1) Two-step predictions. Procedures A, B and C can efficiently select the best order/method
combination (listed in Table 2) regardless of whether the DGP is stationary or non-stationary.
(Note that DGPs I and II are stationary, but DGPs III and IV are not.) In particular, the proportion
of the best combination selected by Procedures B and C always exceeds 95 percent, except in
DGPs II and IV with n = 150. Note that while the differences between the parameter values of
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Table 2. Order/method combination with the minimal loss function value

h = 2 h = 3

DGP I II III IV V VI VII VIII

Combination (1,2) (2,1) (2,2) (3,1) (1,2) (2,1) (2,2) (3,1)

DGPs I and II (or III and IV) are not sizable, different order/method combinations are required
to attain the minimal loss function value (defined in (3.1) and (3.2)). Table 3 shows that these
procedures are sensitive to small parameter changes and can efficiently switch to the “right track”.
However, we also notice that the finite-sample performance of Procedure A seems to be slightly
worse than that of Procedures B and C.

(2) Three-step predictions. Note that DGPs V and VI are stationary AR(2) models with AR
coefficients satisfying 0 < a1 < 1 and a2

1 +a2 = 0. Ing [10] recently showed that (1,2) is asymp-

Table 3. Frequency of choosing predictors with minimal loss function values in 1000 replications

h = 2 h = 3

Procedure Procedure

n Model(Unit Root) A B C Model(Unit Root) A B C

150 I (No) 853 963 987 V (No) 882 976 993
300 890 984 997 880 974 993
500 901 990 999 913 985 997
1000 921 990 997 918 994 999
2000 948 992 1000 951 991 1000

150 II (No) 817 887 869 VI (No) 698 711 689
300 845 968 983 827 936 915
500 891 980 996 898 989 992
1000 913 985 995 913 992 1000
2000 923 990 999 941 997 1000

150 III (Yes) 844 972 991 VII (Yes) 841 970 993
300 893 989 997 855 978 993
500 916 992 998 911 989 998
1000 939 993 999 917 995 999
2000 950 997 1000 939 997 1000

150 IV (Yes) 780 894 878 VIII (Yes) 633 722 705
300 881 971 995 835 901 903
500 881 973 993 888 973 975
1000 906 980 994 930 990 996
2000 926 989 999 944 994 1000
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Table 4. Frequency of choosing predictors with minimal loss function values in 1000 replications

h = 10

Procedure Procedure

n Model (Unit Root) A B C Model (Unit Root) A B C

500 IX (Yes) 967 1000 1000 X (Yes) 726 787 719
1000 981 997 1000 808 927 936

totically more efficient than (2,1) in DGP V, whereas (2,1) is asymptotically more efficient than
(1,2) in DGP VI. Procedures A, B and C perform quite well in this subtle case. More specif-
ically, for (a1, a2) = (0.9,−0.81), they can correctly choose (1, 2) over 90 percent of the time
for all sample sizes (except for Procedure A in the sample sizes of 150 and 300). On the other
hand, when (a1, a2) = (0.6,−0.36), Procedures B and C successfully select another combina-
tion, (2,1), with rather high frequency for n ≥ 300. While Procedure A performs slightly worse
than the other two procedures, it can still choose (2,1) with over 89 percent frequency as n ≥ 500.
Data generating processes VII and VIII are unit root processes. In DGP VII, the direct method
only requires two regressors to perform three-step predictions and, according to Section 2, (2, 2)
can attain the minimal loss function value. On the other hand, (3, 1) is the best combination for
DGP VIII. Table 3 shows that the performance of Procedures A, B and C in DGPs VII and VIII
are similar to those in DGPs V and VI.

To explore the finite-sample performance of these procedures for larger lead times, we also
conduct a small Monte Carlo study using the following two unit root AR models:

DGP IX xt = 0.2xt−10 + 0.8xt−11 + εt ,
DGP X xt = 1.5xt−1 − 0.5xt−2 + εt ,

where εt ’s are independent and identically N (0,25) distributed. Our goal is to select ten-step
(h = 10) predictors for these two DGPs among a family of predictors, {(i, j), i = 1, . . . ,20,

j = 1,2}. Note that DGP IX is an AR(11) model with p10 = 2 
 p1 = 11. Theorems 2.2 and
2.3 yield that the best combination for DGP IX is (2, 2). On the other hand, DGP X is an AR(2)
model with p10 = p1 = 2 and, in view of Example 1, (2, 1) is the best combination for DGP X.
Our simulation results, based on 1000 replications for n = 500 and 1000, are reported in Table 4.
Table 4 shows that when h increases to 10, Procedures A, B and C still work well, except in
DGP X with n = 500. In this latter case, while the proposed procedures can choose the best
combination 70–80 percent of the time, we have found that the proportion of (1, 2) chosen by
them is about 20 percent, indicating an underfitting problem. However, this difficulty is alleviated
as n increases to 1000, which coincides with the asymptotic results given in Theorem 4.1.

Finally, we note that the choice of Cn in Procedure II does influence its finite-sample results.
While we do not intend to suggest the best Cn in finite-sample cases, the Cn’s used in this paper
may serve as good “initial values” for pursuing better performance based on Procedure II.
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Appendix A

Throughout this section, we only consider the case k ≥ 2 (recall that k denotes the order of the
working AR model) because the results for the case k = 1 can be verified similarly. We start with
some useful lemmas.

Lemma A.1. Assume that {xt } satisfies model (1.1) with {εt } obeying (2.1). Then, for any q > 0
and k ≥ p1,

E‖R̂−1
n (k)‖q = O(1), (A.1)

where R̂n(k) is defined after (2.2) and for a matrix A, ‖A‖2 = sup‖z‖=1 z′A′Az with ‖z‖ denoting
the Euclidean norm for vector z.

Proof. (A.1) can be verified by an argument similar to that used in the proof of Lemma A.1 in
Ing et al. [13]. The details are omitted. �

Lemma A.2. Assume that {xt } satisfies model (1.1) with {εt } obeying (2.1) and for some q1 ≥ 2,
sup−∞<t<∞ E|εt |2q1 < ∞. Then, for any 0 < q < q1 and k ≥ p + 1,

E‖R̂−1
n (k) − R̂∗−1

n (k)‖q = O(n−q/2), (A.2)

where

R̂∗
n(k) =

⎛
⎜⎝


̂n(k − 1) 0′
k−1

0′
k−1

1

n2

n−1∑
j=k

N2
j

⎞
⎟⎠ ,


̂n(k − 1) = (1/n)
∑n−1

j=k sj (k − 1)s′
j (k − 1) and Nj = xj − ∑k−1

l=1 αjxj−l .

Proof. First note that Lemma A.1 ensures for any q > 0,

E‖R̂∗−1

n (k)‖q = O(1). (A.3)

We also have

‖R̂−1
n (k) − R̂∗−1

n (k)‖q ≤ ‖R̂−1
n (k)‖q‖R̂∗−1

n (k)‖q‖R̂n(k) − R̂∗
n(k)‖q

(A.4)

≤ C1‖R̂−1
n (k)‖q‖R̂∗−1

n (k)‖q

∥∥∥∥∥n−3/2
n−1∑
j=k

sj (k − 1)Nj

∥∥∥∥∥
q

,

where C1 is some positive constant. By analogy with Lemma A.3 in Ing et al. [13],

E

∥∥∥∥∥n−3/2
n−1∑
j=k

sj (k − 1)Nj

∥∥∥∥∥
q1

= O(n−q1/2). (A.5)
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Consequently, (A.2) follows from (A.1), (A.3)–(A.5) and Hölder’s inequality. �

To prove Theorem 2.2, we also need the following two lemmas, the proofs of which are
straightforward and hence omitted.

Lemma A.3. Assume that {xt } satisfies model (1.1) with sup−∞<t<∞ E|εt |q < ∞, where q ≥ 2.
Then, for k ≥ p1,

E

∥∥∥∥∥n−1/2Dn(k)

n−1∑
j=k

xj (k)εj+1

∥∥∥∥∥
q

= O(1). (A.6)

Lemma A.4. Assume that {xt } satisfies model (1.1) with sup−∞<t<∞ E|εt |r < ∞ for some
r > 4. Then, for k ≥ p1,

lim
n→∞E(Fn,k) = 0, (A.7)

where

Fn,k = sn(k − 1)Mh(k − 1)
̂−1
n (k − 1){∑n−1

j=k sj (k − 1)εj+1}Nn

∑n−1
j=k Nj εj+1∑n−1

j=k N2
j

. (A.8)

Proof of Theorem 2.2. Some algebraic manipulations give

xn+h − x̂n+h(k) = ηn,h − x′
n(k)L̂n,h(k)

(
ân(1, k) − a(k)

)
, (A.9)

where L̂n,h(k) is defined after (3.4). We also have

nE
{
x′
n(k)

(
L̂n,h(k) − Lh(k)

)(
ân(1, k) − a(k)

)}2

= E

{
x′
n(k)

(
L̂n,h(k) − Lh(k)

)
D′

n(k)R̂−1
n (k)

1√
n
Dn(k)

n−1∑
j=k

xj (k)εj+1

}2

(A.10)

≡ E{G2
n(k)},

where Lh(k) = ∑h−1
j=0 bjA

h−1−j (k), with A(k) defined in Section 1. Let α̂n(k − 1) =
(α̂(n,1), . . . , α̂(n, k − 1))′ = �(k)ân(1, k), where �(k) is a (k − 1) × k matrix, with the (i, j)th
component equal to 0 if j ≤ i and equal to −1 if j > i. Then, by observing A(k)D′

n(k) =
D′

n(k)Ā(k) and Ân(k)D̂′
n(k) = D̂′

n(k)A∗
n(k), where D̂n(k) is Dn(k) with αi replaced by α̂(n, i)

for i = 1, . . . , k − 1,

Ā(k) =
(

SM(k − 1) 0k−1
0′
k−1 1

)
,
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and A∗
n(k) is Ā(k) with SM(k − 1) replaced by

ŜM,n(k − 1) =
⎛
⎝ α̂n(k − 1)

∣∣∣∣∣∣
Ik−2

0′
k−2

⎞
⎠ ,

we have

Lh(k)D′
n(k) = D′

n(k)L̄h(k) (A.11)

and

L̂n,h(k)D̂′
n(k) = D̂′

n(k)L∗
n,h(k), (A.12)

where

L̄h(k) =
⎛
⎜⎝

Mh(k − 1) 0k−1

0′
k−1

h−1∑
j=0

bj

⎞
⎟⎠

and L∗
n,h(k) is L̄h(k) with Mh(k −1) replaced by M̂n,h(k −1) = ∑h−1

j=0 bj Ŝ
h−1−j
M,n (k −1). (A.11)

and (A.12) yield

(
L̂n,h(k) − Lh(k)

)
D′

n(k)

= L̂n,h(k)
(
D′

n(k) − D̂′
n(k)

) + (
D̂′

n(k) − D′
n(k)

)
L∗

n,h(k)

+D′
n(k)

(
L∗

n,h(k) − L̄h(k)
)
,

and hence

|Gn(k)| ≤ G∗
n(k), (A.13)

where G∗
n(k) = (I ) + (II), with

(I ) = ‖n−1/2xn(k)‖‖α̂n(k − 1) − α(k − 1)‖(‖L̂n,h(k)‖ + ‖L∗
n,h(k)‖)G∗

1,n(k),

(II) = (‖sn(k − 1)‖ + |n−1/2Nn|
)‖L∗

n,h(k) − L̄h(k)‖G∗
1,n(k)

and G∗
1,n(k) = ‖R̂−1

n (k)‖‖n−1/2Dn(k)
∑n−1

j=k xj (k)εj+1‖. By (A.10), (A.13), Lemmas A.1–A.3
and Hölder’s inequality, it can be shown that

nE
{
x′
n(k)

(
L̂n,h(k) − Lh(k)

)(
ân(1, k) − a(k)

)}2 ≤ E(G∗
n(k))2 = O(n−1). (A.14)
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Similarly, we have

E

{
x′
n(k)Lh(k)D′

n(k)
(
R̂−1

n (k) − R̂∗−1

n (k)
) 1√

n
Dn(k)

n−1∑
j=k

xj (k)εj+1

}2

= O(n−1). (A.15)

By (A.11) and some algebraic manipulations,

E

{
x′
n(k)Lh(k)D′

n(k)R̂∗−1

n (k)
1√
n
Dn(k)

n−1∑
j=k

xj (k)εj+1

}2

(A.16)
= E1,n(k) + E2,n(k) + E3,n(k),

where

E1,n(k) = E

{
s′
n(k − 1)Mh(k − 1)
̂−1

n (k − 1)n−1/2
n−1∑
j=k

sj (k − 1)εj+1

}2

,

E2,n(k) =
(

h−1∑
j=0

bj

)2

E

{
n
N2

n(
∑n−1

j=k Nj εj+1)
2

(
∑n−1

j=k N2
j )2

}
,

E3,n(k) = 2

(
h−1∑
j=0

bj

)
E(Fn,k).

By an analogy with Theorem 1 of Ing [9],

lim
n→∞E1,n(k) = f1,h(k − 1). (A.17)

In view of Ing [8], it is straightforward to show that

lim
n→∞E2,n(k) = 2σ 2

(
h−1∑
j=0

bj

)2

. (A.18)

Consequently, the desired result follows from (A.9), (A.14)–(A.18) and Lemma A.4. �

Proof of Theorem 2.3. By analogies with lemmas A.1–A.4, for k ≥ ph,

E‖R̄−1
n,h(k)‖q = O(1), (A.19)

E‖R̄−1
n,h(k) − R̄∗−1

n,h (k)‖4 = O(n−2), (A.20)
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E

∥∥∥∥∥n−1/2D̄n

n−1∑
j=k

xj (k)ηj+h

∥∥∥∥∥
8

= O(1) (A.21)

and

lim
n→∞E(F̄n,k) = 0, (A.22)

where q > 0,

R̄∗
n,h(k) =

⎛
⎜⎜⎜⎜⎝

1

n

n−h∑
j=k

sj (k − 1)s′
j (k − 1) 0k−1

0′
k−1

1

n2

n−h∑
j=k

x2
j

⎞
⎟⎟⎟⎟⎠

and

F̄n,k = sn(k − 1){(1/n)
∑n−h

j=k sj (k − 1)s′
j (k − 1)}−1{∑n−h

j=k sj (k − 1)ηj,h}xn

∑n−h
j=k xjηj,h∑n−h

j=k x2
j

.

(A.23)

In addition, according to (1.9) and (3.5) of Ing and Sin [12], it can be shown that

lim
n→∞E

{
n
x2
n(

∑n−h
j=k xjηj,h)

2∑n−h
j=k x2

j

}
= 2σ 2

(
h−1∑
j=0

bj

)2

. (A.24)

As a result, Theorem 2.3 follows from (A.19)–(A.22), (A.24) and arguments similar to those
used in the proofs of Theorem 2 in Ing [9] and Theorem 2.2 above. �

Appendix B

Lemma B.1 below provides (almost sure) asymptotic bounds for ‖
̂n(k − 1) − 
(k − 1)‖,
‖R̂n(k) − R̂∗

n(k)‖ and ‖R̂−1
n (k)‖ under a minimal moment condition, sup−∞<t<∞ E|εt |α for

some α > 2. As will be seen later, these bounds play subtle roles in our asymptotic analysis.

Lemma B.1. Assume that the assumptions of Theorem 3.1 hold. Then,

(i) for k ≥ 2, k ≥ p1, and some ι > 0,

‖
̂n(k − 1) − 
(k − 1)‖ = o(n−ι) a.s.; (B.1)
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(ii) for k ≥ p1 and some η > 0,

‖R̂n(k) − R̂∗
n(k)‖ = o(n−η) a.s.; (B.2)

(iii) for k ≥ p1,

‖R̂−1
n (k)‖ = O(log logn) a.s. (B.3)

Proof. First note that

‖
̂n(k − 1) − 
(k − 1)‖ ≤
k−2∑
l=0

k−2∑
m=0

∣∣∣∣∣n−1
n−1∑
j=k

sj−lsj−m − γl,m

∣∣∣∣∣,
where γl,m is the (l,m)th component of 
(k − 1). Therefore, (B.1) is ensured by showing that
for any 1 ≤ l ≤ k − 1 and 1 ≤ m ≤ k − 1,∣∣∣∣∣1

n

n−1∑
j=k

sj−lsj−m − γl,m

∣∣∣∣∣ = o(n−ι) a.s. (B.4)

In the following, we only prove the case of l = m = 0 since the proofs of other cases can be
similarly obtained. For l = m = 0, the left-hand side of (B.4) can be rewritten as∣∣∣∣∣1

n

n−1∑
j=k

(
s2
j − γ

(j)

0,0

) + 1

n

n−1∑
j=k

(
γ

(j)

0,0 − γ0,0
) + kγ0,0

n

∣∣∣∣∣, (B.5)

where γ
(j)

0,0 = σ 2 ∑j−1
r=0 c2

r with cj ’s defined in Section 1. By observing γ0,0 = σ 2 ∑∞
r=0 c2

r and

|cr | ≤ C1e−β1r for all r and some C1, β1 > 0, we have (1/n)
∑n−1

j=k(γ
(j)

0,0 − γ0,0) = O(1/n) and
kγ0,0/n = O(1/n). In addition, straightforward calculations yield that

s2
j − γ

(j)

0,0 =
j∑

l=1

c2
j−l(ε

2
l − σ 2) + 2

j∑
l2=2

l2−1∑
l1=1

cj−l1cj−l2εl1εl2 . (B.6)

In view of (B.6), one obtains, through changing the order of summations, that

n2∑
j=n1

s2
j − γ

(j)

0,0

jθ
=

n1∑
l=1

(
n2∑

j=n1

c2
j−l

j θ

)
ηl +

n2∑
l=n1+1

(
n2∑
j=l

c2
j−l

j θ

)
ηl

+2
n1∑

l2=2

{
l2−1∑
l1=1

(
n2∑

j=n1

cj−l1cj−l2

jθ

)
εl1

}
εl2

+2
n2∑

l2=n1+1

{
l2−1∑
l1=1

(
n2∑

j=l2

cj−l1cj−l2

jθ

)
εl1

}
εl2 ≡ (I) + (II) + (III) + (IV),
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where ηt = ε2
t − σ 2, θ < 1 and θα/2 > 1. If we can show that for any 1 ≤ n1 ≤ n2 < ∞,

E|(G)|α/2 ≤ C

(
n2∑

j=n1

1

jξ1

)ξ2

(B.7)

(where G = I, II, III and IV) and C > 0, ξ1 > 1, ξ2 > 1 are some positive constant independent
of n1 and n2 (but they can vary with G), then by Móricz [18] for all sufficiently large n1,

E max
n1≤l≤n2

∣∣∣∣∣
l∑

j=n1

s2
j − γ

(j)

0,0

jθ

∣∣∣∣∣
α/2

≤ C∗
(

n2∑
j=n1

1

jξ∗
1

)ξ∗
2

, (B.8)

where C∗ > 0, ξ∗
1 > 1 and ξ∗

2 > 1 are some positive constants independent of n1 and n2. (B.8)
and Kronecker’s lemma yield

1

nθ

n∑
j=1

(
s2
j − γ

(j)

0,0

) = o(1) a.s. (B.9)

As a result, (B.1) holds with ι = 1 − θ .
Without loss of generality, assume 2 < α < 4. Then,

E|(I )|α/2 ≤ C2E

{
n1∑
l=1

(
n2∑

j=n1

c2
j−l

j θ

)2

η2
l

}α/4

≤ C2

n2∑
j1=n1

n2∑
j2=n1

1

j
θα/4
1 j

θα/4
2

n1∑
l=1

|cj1−lcj2−l |α/2E|ηl |α/2

≤ C3

(
n2∑

j=n1

1

jθα/2
+

n2−1∑
j1=n1

1

j
θα/4
1

n2∑
j2=j1+1

1

j
θα/4
2

(j2 − j1)
−s

)
(B.10)

≤ C4

(
n2∑

j=n1

1

jθα/2

)

≤ C4

(
n2∑

j=n1

1

jξ1

)ξ2

,

where Ci > 0, i = 2, . . . ,4, and s > 1 are some positive constants independent of n1 and n2,
1 < ξ1 < θα/2, ξ2 = θα/2ξ1, the first inequality follows from Burkholder’s inequality, the second
one follows from the fact that α/4 < 1 and changing the order of summations, the third one
is ensured by supt E|εt |α < ∞ and cj ≤ C1e−β1j , which implies for all n1 ≤ j1 �= j2 ≤ n2,∑n1

l=1 |cj1−lcj2−l |α/2 ≤ C5|j1 − j2|−s , for some C5 > 0. As a result, (B.7) holds with G = I. The
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proof of (B.7) for the case of G = II is similar. The details are omitted. To show (B.7) for the
case of G = III, note that

E

∣∣∣∣∣
n1∑

l2=2

{
l2−1∑
l1=1

(
n2∑

j=n1

cj−l1cj−l2

jθ

)
εl1

}
εl2

∣∣∣∣∣
α/2

≤
{

E

(
n1∑

l2=2

{
l2−1∑
l1=1

(
n2∑

j=n1

cj−l1cj−l2

jθ

)
εl1

}
εl2

)2}α/4

(B.11)

= |σ |α
(

n1∑
l2=2

l2−1∑
l1=1

(
n2∑

j=n1

cj−l1cj−l2

jθ

)2)α/4

.

By arguments similar to those used to verify the second to fifth inequalities in (B.10), the desired
result follows. Similarly, it can be shown that (B.7) holds for the case of G = IV .

To show (B.2), first observe that

‖R̂n(k) − R̂∗
n(k)‖ ≤ √

2
k−2∑
l=0

∣∣∣∣∣ 1

n3/2

n−1∑
j=k

sj−lNj

∣∣∣∣∣.
Therefore, it suffices to show that for l = 0, . . . , k − 2 and some η > 0,

1

n3/2

n−1∑
j=k

sj−lNj = o(n−η) a.s. (B.12)

We only verify (B.12) for the case l = 0 since the proof of the case l > 0 can be similarly
obtained. Let max{1, (1/2) + (2/α)} < θ1 < 3/2. Some algebraic manipulations yield

n2∑
j=n1

sjNj

jθ1
= σ 2

n2∑
j=n1

1

jθ1

j∑
m=1

cj−m +
n1∑

m=1

n2∑
j=n1

cj−m

jθ1
ηm +

n2∑
m=n1+1

n2∑
j=m

cj−m

jθ1
ηm

+
n1∑

m=2

m−1∑
l=1

n2∑
j=n1

cj−l

j θ1
εlεm +

n2∑
m=n1+1

m−1∑
l=1

n2∑
j=m

cj−l

j θ1
εlεm

(B.13)

+
n1∑
l=2

l−1∑
m=1

n2∑
j=n1

cj−l

j θ1
εmεl +

n2∑
l=n1+1

l−1∑
m=1

n2∑
j=l

cj−l

j θ1
εmεl

= (Ï) + (ÏI) + ( ¨III) + ( ¨IV) + (V̈) + (V̈I) + (V̈II).

It is clear that

| ¨(I )|α/2 ≤ C6

(
n2∑

j=n1

1

jξ1

)ξ2

, (B.14)
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where ξ1 = θ1 and ξ2 = α/2. By an argument similar to that used in (B.10),

E|(W)|α/2 ≤ C7

(
n2∑

j=n1

1

jξ1

)ξ2

, (B.15)

where W = ÏI, ¨III, 1 < ξ1 < θ1α/2 and ξ2 = θ1α/2ξ1. An argument similar to that used in (B.11)
yields

E|(W)|α/2 ≤ C8

(
n2∑

j=n1

1

jξ1

)ξ2

, (B.16)

where W = ¨IV, V̈, V̈I, V̈II, 1 < ξ1 < (2θ1 −1)α/4 and ξ2 = (2θ1 −1)α/4ξ1. Consequently, (B.12)
(with η = (3/2)−θ1) follows from (B.13)–(B.16), Móricz [18] and Kronecker’s lemma. To show
(B.3), observe that ‖R̂−1

n (k)‖ ≤ ‖R̂−1
n (k)‖‖R̂n(k) − R̂∗

n(k)‖‖R̂∗−1

n (k)‖ + ‖R̂∗−1

n (k)‖. By (3.23)
of Lai and Wei [14] and (3.2) of Lai and Wei [15],

‖R̂∗−1

n (k)‖ = O(log logn) a.s.

This and (B.2) yield (B.3). �

To prove Theorem 3.1, the following auxiliary lemma is required. Its proof can be found in
Appendix B of Ing et al. [11].

Lemma B.2. Assume that the assumptions of Theorem 3.1 hold. Then, for k ≥ max{2,p1},
n−h∑
i=mh

Fi,k = o(n) a.s., (B.17)

where Fi,k is defined in Lemma A.4.

We also need a few elementary facts.

Lemma B.3. Let {zn} be a sequence of real numbers.

(i) If zn ≥ 0, n−1 ∑n
j=1 zj = O(1) and, for some ξ > 1, lim infn→∞ νn/nξ > 0, then

n∑
j=1

zj

νj

= O(1).

(ii) If n−1 ∑n
j=1 zj = o(1), then

n∑
j=1

zj

j
= o(logn).
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Proof of Theorem 3.1. We only prove the case k ≥ 2 since the proof of the case k = 1 is similar.
By Chow [1] and an analogy with (3.8) of Ing [10],

APEPn,h(k) −
n−h∑
i=mh

(ηi,h)
2 =

n−h∑
i=mh

{
x′
i (k)L̂i,h(k)

(
âi (1, k) − a(k)

)}2(1 + o(1)
)

+O(1) a.s. (B.18)

Straightforward calculations give

n−h∑
i=mh

{
x′
i (k)

(
L̂i,h(k) − Lh(k)

)(
âi (1, k) − a(k)

)}2

(B.19)

=
n−h∑
i=mh

1

i

{
x′
i (k)

(
L̂i,h(k) − Lh(k)

)
D′

i (k)R̂−1
i (k)

1√
i
Di(k)

i−1∑
j=k

xj (k)εj+1

}2

.

By Lai and Wei [14] and (3.1) and (3.2) of Lai and Wei [15], we have

‖α̂n(k − 1) − α(k − 1)‖ = O

((
logn

n

)1/2)
a.s., (B.20)

‖L∗
n,h(k) − L̄h(k)‖ = O

((
logn

n

)1/2)
a.s., (B.21)

‖L̂n,h(k)‖ = O(1) a.s., (B.22)∥∥xn(k)/
√

n
∥∥ = O((log logn)1/2) a.s. (B.23)

In addition, by Lemma 1 of Wei [21], the law of the iterated logarithm, and (3.3) of Lai and Wei
[15], ∥∥∥∥∥ 1√

n
Dn(k)

n−1∑
j=k

xj (k)εj+1

∥∥∥∥∥ = o((logn)δ(log logn)1/2) a.s., (B.24)

where δ > 1/α. As a result, by (A.11), (A.12), (B.3), (B.19)–(B.24) and the fact that Nn/
√

n =
O((log logn)1/2) a.s., one obtains

n−h∑
i=mh

{
x′
i (k)

(
L̂i,h(k) − Lh(k)

)(
âi (1, k) − a(k)

)}2 = O(1) a.s. (B.25)

Armed with (B.2), (B.3) and the fact that ‖R̂∗−1

n (k)‖ = O(log logn) a.s. (which is given after
(B.16)), it can be shown that

‖R̂−1
n (k) − R̂∗−1

n (k)‖ = o

(
(log logn)2

nη

)
a.s., (B.26)
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where η > 0 is some positive constant. Since (A.11) yields for some C1 > 0, ‖Di(k)L′
h(k) ×

xi (k)‖ = ‖L̄′
h(k)Di(k)xi (k)‖ ≤ C1(‖si (k − 1)‖ + |Ni/

√
i|), we obtain

n−h∑
i=mh

1

i

{
x′
i (k)Lh(k)D′

i (k)
(
R̂−1

i (k) − R̂∗−1

i (k)
) 1√

i
Di(k)

i−1∑
j=k

xj (k)εj+1

}2

≤ C2

n−h∑
i=mh

1

i

{(
‖si (k − 1)‖ +

∣∣∣∣ Ni√
i

∣∣∣∣
)

‖R̂−1
i (k) − R̂∗−1

i (k)‖ (B.27)

×
∥∥∥∥∥ 1√

i
Di(k)

i−1∑
j=k

xj (k)εj+1

∥∥∥∥∥
}2

= O(1) a.s.,

where C2 > 0 is some positive constant independent of n and the equality follows from
(B.24), (B.26), Nn/

√
n = O((log logn)1/2) a.s., (1/n)

∑n−1
j=k ‖sj (k − 1)‖ = O(1) a.s. and (i) of

Lemma B.3.
By (A.11) and some algebraic manipulations,

n−h∑
i=mh

1

i

{
x′
i (k)Lh(k)D′

i (k)R̂∗−1

i (k)
1√
i
Di(k)

i−1∑
j=k

xj (k)εj+1

}2

= (I) + (II) + (III),

where

(I) =
n−h∑
i=mh

{
s′
i (k − 1)Mh(k − 1)
̂−1

i (k − 1)
1

i

i−1∑
j=k

sj (k − 1)εj+1

}2

,

(II) =
(

h−1∑
j=0

bj

)2 n−h∑
i=mh

N2
i (

∑i−1
j=k Nj εj+1)

2

(
∑i−1

j=k N2
j )2

,

(III) = 2

(
h−1∑
j=0

bj

)
n−h∑
i=mh

Fi,k

i
.

According to (B.21) and analogies with (A.1) and Theorem 3.1 of Ing [10],

(I) =
n−h∑
i=mh

{
s′
i (k − 1)M̂i,h(k − 1)
̂−1

i (k − 1)
1

i

i−1∑
j=k

sj (k − 1)εj+1

}2

+ o(logn) a.s.

= f1,h(k − 1) logn + o(logn) a.s.
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By Theorem 4 of Wei [21],

(II) = 2

(
h−1∑
j=0

bj

)2

σ 2 logn + o(logn) a.s.

In view of Lemma B.2 and (ii) of Lemma B.3, one obtains

(III) = o(logn) a.s.

As a result,

n−h∑
i=mh

1

i

{
x′
i (k)Lh(k)D′

i (k)R̂∗−1

i (k)
1√
i
Di(k)

i−1∑
j=k

xj (k)εj+1

}2

(B.28)

=
{

2

(
h−1∑
j=0

bj

)2

σ 2 + f1,h(k − 1)

}
logn + o(logn) a.s.

Consequently, (3.6) follows from (B.18), (B.25), (B.27), (B.28) and the Cauchy–Schwarz in-
equality. �

To analyze APEDn,h(k), Lemma B.4 is required.

Lemma B.4. Let the assumptions of Theorem 3.1 hold. Then,

n−h∑
i=mh

x2
i (

∑i−h
j=k xjηj,h)

2

(
∑i−h

j=k x2
j )2

= 2

(
h−1∑
j=0

bj

)2

σ 2 logn + o(logn) a.s. (B.29)

Proof. Following arguments similar to those used in the proofs of Lemma 2 and Theorem 1 of
Ing and Sin [12], one obtains

lim inf
n→∞

log logn

n2

n−1∑
j=1

x2
j > 0 a.s. (B.30)

and

xn = O((n log logn)1/2) a.s. (B.31)

By the Borel–Cantelli lemma,

εn = o(n1/2) a.s. (B.32)
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In addition, it is not difficult to show that for θ > 1/2 and l ≥ 1,

1

nθ

n−l∑
j=1

εj εj+l = o(1) a.s. (B.33)

(B.30)–(B.33) together imply

n−h∑
i=mh

x2
i (

∑i−h
j=k xjηj,h)

2

(
∑i−h

j=k x2
j )2

=
(

h−1∑
j=0

bj

)2 n−h∑
i=mh

x2
i (

∑i−1
j=k xj εj+1)

2

(
∑i−1

j=k x2
j )2

+ O(1) a.s. (B.34)

Consequently, (B.29) follows from (B.34) and the fact that

n−h∑
i=mh

x2
i (

∑i−1
j=k xj εj+1)

2

(
∑i−1

j=k x2
j )2

= 2σ 2 logn + o(logn) a.s.,

which is guaranteed by (2.15) of Ing and Sin [12]. �

Proof of Theorem 3.2. We only prove the case of k ≥ 2 since the proof of the case of k = 1 is
similar. By the same reasoning as in (B.18), we have

APEDn,h(k) −
n−h∑
i=mh

η2
i,h = (

1 + o(1)
) n−h∑
i=mh

{
x′
i (k)Vi−h(k)

(
i−h∑
j=k

xj (k)ηj,h

)}2

(B.35)
+O(1) a.s.

Observe that

n−h∑
i=mh

{
x′
i (k)Vi−h(k)

(
i−h∑
j=k

xj (k)ηj,h

)}2

(B.36)

=
n−h∑
i=mh

1

i

{
x′
i (k)D̄′

i (k)R̄−1
i,h (k)

(
1√
i
D̄i(k)

i−h∑
j=k

xj (k)ηj,h

)}2

.

According to (B.30), (B.31) and arguments similar to those used to obtain (B.24) and (B.26),

∥∥∥∥∥ 1√
n
D̄n(k)

n−h∑
j=k

xj (k)ηj,h

∥∥∥∥∥ = o((logn)δ(log logn)1/2) a.s.,

and

‖R̄−1
n,h(k) − R̄∗−1

n,h (k)‖ = O(n−η(log logn)2) a.s.,
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where δ > 1/α and η > 0. These facts and reasoning similar to that used in (B.27) yield

n−h∑
i=mh

1

i

{
x′
i (k)D̄′

i (k)
(
R̄−1

i,h (k) − R̄∗−1

i,h (k)
)( 1√

i
D̄i(k)

i−h∑
j=k

xj (k)ηj,h

)}2

(B.37)
= O(1) a.s.

Now,

n−h∑
i=mh

1

i

{
x′
i (k)D̄′

i (k)R̄∗−1

i,h (k)

(
1√
i
D̄i(k)

i−h∑
j=k

xj (k)ηj,h

)}2

(B.38)
= (I) + (II) + (III),

where

(I) =
n−h∑
i=mh

{
s′
i (k − 1)

[
i−h∑
j=k

sj (k − 1)s′
j (k − 1)

]−1 i−h∑
j=k

sj (k − 1)ηj,h

}2

,

(II) =
n−h∑
i=mh

x2
i (

∑i−h
j=k xjηj,h)

2

(
∑i−h

j=k x2
j )2

and

(III) =
n−h∑

j=mh

F̄i(k)

i

with F̄i(k) defined in (A.23). By analogy with Theorem 3.2 of Ing [10],

(I) = f2,h(k − 1) logn + o(logn) a.s. (B.39)

According to Lemma B.4,

(II) = 2σ 2

(
h−1∑
j=0

bj

)2

logn + o(logn) a.s. (B.40)

By reasoning similar to that used in the proof of Lemma B.2 (see Appendix B of Ing et al. [11]),

n−h∑
j=mh

F̄i(k) = o(n) a.s.,

and hence

(III) = o(logn) a.s. (B.41)
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Consequently, (3.8) follows from (B.35)–(B.41). �

To prove Theorem 3.3 we need a technical lemma, the proof of which can also be found in
Appendix B of Ing et al. [11].

Lemma B.5. Let the assumptions of Theorem 3.1 hold. Then, for 1 ≤ k < ph and h ≥ 1,

n−h∑
i=mh

[
x′
i (k)

(
ǎi (h, k) − ã(h, k)

)]2 = o(n) a.s., (B.42)

where ã(h, k) = 1, if 1 = k < ph, and

ã(h, k) = Uk×(k−1)

{
h−1∑
j=0

αh−j (k − 1)

}
+ (1,0, . . . ,0)′, (B.43)

if 1 < k < ph, where Uk×(k−1) = (uij ) is a k × (k − 1) matrix, with uij = 1, if i = j , uij = −1,

if i − j = 1 and uij = 0, otherwise, and αl(k − 1) = limt→∞ α
(t)
l (k − 1), with

α
(t)
l (k − 1) = arg min

(f1,...,fk−1)
′∈Rk−1

E(st+l − f1st − · · · − fk−1st−k+2)
2.

Proof of Theorem 3.3. By an analogy with (B.35),

APEDn,h(k)

=
n−h∑
i=mh

{
ηi,h + x′

i (p + 1)
(
a(h,p + 1) − ǎi (h, k)

)}2

(B.44)

=
n−h∑
i=mh

η2
i,h + (

1 + o(1)
) n−h∑
i=mh

{
x′
i (p + 1)

(
a(h,p + 1) − ǎi (h, k)

)}2

+O(1) a.s.,

where the ǎi (h, k) in (B.44) is viewed as a (p + 1)-dimensional vector with undefined entries set
to 0. Direct calculations yield

n−h∑
i=mh

{
x′
i (p + 1)

(
a(h,p + 1) − ǎi (h, k)

)}2

= (
a(h,p + 1) − ã(h, k)

)′
Vn−h(k)

(
a(h,p + 1) − ã(h, k)

)
(B.45)
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−2
n−h∑
i=mh

x′
i (p + 1)

(
a(h,p + 1) − ã(h, k)

)
x′
i (p + 1)

(
ǎi (h, k) − ã(h, k)

)

+
n−h∑
i=mh

[
x′
i (k)

(
ǎi (h, k) − ã(h, k)

)]2
,

where the ã(h, k) in the first two terms on the right-hand side of (B.45) is viewed as a (p + 1)-
dimensional vector with undefined entries set to 0. By (3.2) of Lai and Wei [15],

lim inf
n→∞ n−1Vn−h(k) > 0 a.s. (B.46)

Consequently, (3.9) follows from (B.44)–(B.46), (B.42), the Cauchy–Schwarz inequality and the
fact that a(h,p + 1) − ã(h, k) �= 0. �

Proof of Theorem 3.4. Since f2,1(k − 1) = (k − 1)σ 2, Theorems 3.2 and 3.3 imply

P
(
k̂
(1)
D,n = p1, eventually

) = 1. (B.47)

Applying (B.47) and Theorems 3.1–3.3, Theorem 3.4 follows. �

Appendix C

In this Appendix, we sketch the proof of Theorem 4.1. Applying an argument used in the proof
of Theorem 3.5 in Wei [22], it can be shown that for k < ph,

lim inf
n→∞ σ̂ 2

D,n(h, k) − σ̂ 2
D,n(h,ph) > 0 a.s. (C.1)

Armed with the probability results obtained in Appendix B, one obtains for k1 ≥ p1 and k2 ≥ ph,

|σ̂ 2
P,n(h, k1) − σ̂ 2

D,n(h, k2)| = o(logn/n) a.s., (C.2)

|σ̂ 2
P,n(h, k1) − σ̂ 2

P,n(h,p1)| = o(logn/n) a.s., (C.3)

|σ̂ 2
D,n(h, k2) − σ̂ 2

D,n(h,ph)| = o(logn/n) a.s. (C.4)

In addition, it can be shown that for k1 ≥ p1 and k2 ≥ ph,

tr

{(
n−h∑
j=k

xj (k)x′
j (k)

)
L̈h,n(k)

(
n−h∑
j=k

xj (k)x′
j (k)

)−1

L̈′
h,n(k)

}
σ̃ 2

nCn

(C.5)

=
{

σ 2

(
h−1∑
j=0

bj

)2

+ f1,h(k1 − 1)

}
Cn + o(Cn) a.s.
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and

tr

{(
n−h∑
j=k

xj (k)x′
j (k)

)−1(n−2h+1∑
j=k

zj (k)z′
j (k)

)}
σ̃ 2

nCn

(C.6)

=
{

σ 2

(
h−1∑
j=0

bj

)2

+ f2,h(k2 − 1)

}
Cn + o(Cn) a.s.

Consequently, the asymptotic efficiency of (Ôn, M̂n) follows from (C.1)–(C.6).
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