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Let (X,Y ) be a random vector whose conditional excess probability θ(x, y) := P(Y ≤ y | X > x) is of
interest. Estimating this kind of probability is a delicate problem as soon as x tends to be large, since the
conditioning event becomes an extreme set. Assume that (X,Y ) is elliptically distributed, with a rapidly
varying radial component. In this paper, three statistical procedures are proposed to estimate θ(x, y) for
fixed x, y, with x large. They respectively make use of an approximation result of Abdous et al. (cf. Canad.
J. Statist. 33 (2005) 317–334, Theorem 1), a new second order refinement of Abdous et al.’s Theorem 1,
and a non-approximating method. The estimation of the conditional quantile function θ(x, ·)← for large
fixed x is also addressed and these methods are compared via simulations. An illustration in the financial
context is also given.

Keywords: asymptotic independence; conditional excess probability; elliptic law; financial contagion;
rapidly varying tails

1. Introduction

Consider two positively dependent market returns, X and Y . It is of practical importance to
assess the possible contagion between X and Y . Contagion formalizes the fact that for large
values x, the probability P(Y > y | X > x) is greater than P(Y > y): see, for example, Abdous
et al. [1] or Bradley and Taqqu [9,10], among others. Besides, this conditional probability is
also related to the tail dependence coefficient which has been widely investigated in the financial
risk management context: see, for instance, Frahm et al. [22]. Therefore, the behavior of the
conditional excess probability θ(x, y) := P(Y ≤ y | X > x) is of practical interest, especially
for large values of x. Estimating this kind of probability is a delicate problem as soon as x

tends to be large, since the conditioning event becomes an extreme set. “Large” here essentially
means that x is beyond the largest value of the X observations so that the conditional empirical
distribution function then fails to be of any use, even if the probability θ(x, y) in itself is not a
small probability, nor close to 1. Alternative methods have to be considered.

A classical approach is to call on multivariate extreme value theory. Many refined inference
procedures have been developed, making use of the structure of multivariate max-stable dis-
tributions introduced by De Haan and Resnick [15], Pickands [37] and De Haan [14]. These
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procedures are successful in the rather general situation where (X,Y ) are asymptotically depen-
dent (for the maxima), which means heuristically that X and Y can be simultaneously large (see,
e.g., Resnick [38] or Beirlant et al. [5] for more details).

Efforts have recently been made to address the problem in the opposite case of asymptotic
independence. In some papers, attempts are made to provide models for joint tails (see, e.g.,
Ledford and Tawn [33,34], Draisma et al. [18], Resnick [39], Maulik and Resnick [36]). In a par-
allel way, Heffernan and Tawn [28] explored modeling for multivariate tail regions which are not
necessarily joint tails, and Heffernan and Resnick [27] provided a complementary mathematical
framework in the bivariate case.

In these papers, the key assumption is that there exists a limit for the conditional distribution
of Y , suitably centered and renormalized, given that X tends to infinity. This assumption was
first checked for bivariate spherical distributions by Eddy and Gale [19] and Berman [8], The-
orem 12.4.1. Abdous et al. [1] obtained it for bivariate elliptical distributions, Hashorva [25]
for multivariate elliptical distributions, Balkema and Embrechts [3] for generalized multivariate
elliptical distributions and Hashorva et al. [26] for Dirichlet multivariate distributions.

Elliptical distributions form a large family of multivariate laws which have received consider-
able attention, especially in the financial risk context; see Artzner et al. [2], Embrechts et al. [20],
Hult and Lindskog [30], among others. Assume from now on that (X,Y ) is elliptically distrib-
uted; Theorem 1 of Abdous et al. [1] exhibits the asymptotic behavior of θ(x, y) when x → ∞
for such an elliptical pair. The appropriate rate y = y(x) is made explicit to get a non-degenerate
behavior of limx→∞ θ(x, y). This rate depends on the tail behavior of the radial random variable
R defined by the relation R2 = (X2 − 2ρXY +Y 2)/(1 − ρ2), where ρ is the Pearson correlation
coefficient between X and Y . The only parameters involved in y(x) and in the limiting distribu-
tion are the Pearson correlation coefficient ρ and the index of regular variation of R (say α) or
an auxiliary function of R (say ψ ), depending on whether R has a regularly or rapidly varying
upper tail.

In financial applications, the regularly varying behavior of the upper tails is commonly en-
countered. Abdous et al. [1] provided a simulation study in the specific case where R has a
regularly varying tail. Existing estimators of ρ and α were used therein to obtain a practical way
to estimate excess probabilities. However, this assumption fails to hold in some situations, as
shown by Levy and Duchin [35] who compared the fit of 11 distributions on a wide range of
stock returns and investment horizons. They concluded that the logistic distribution, which has a
rapidly varying tail, gives the best fit in most of the cases for weekly and monthly returns.

The aim of this paper is to focus on the case where the radial component R associated with
the elliptical pair (X,Y ) has a rapidly varying upper tail. A second order approximation result is
obtained, which refines Theorem 1 of Abdous et al. in the case of rapid variation of R. As we
mentioned earlier, under the rapidly varying upper tail assumption, the obtained approximation
involves an auxiliary function ψ which has to be estimated. To the best of our knowledge, es-
timation of the auxiliary function has never been considered in the literature. We propose three
statistical procedures for the estimation of θ(x, y) for fixed x, y with x large. They respectively
make use of Abdous et al.’s approximation result, its second order refinement and an alternative
method which does not rely on an analytic approximation result.

The conditional quantiles – also called regression quantiles – of a response Y given a co-
variate X have received significant attention; see, for example, Koenker and Bassett [32] or
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Koenker [31]. More specifically, extremal conditional quantiles have proven to be useful in eco-
nomics and financial applications (see, e.g., Chernozhukov [11]). In the same spirit, one might
be interested in estimating the conditional quantile function θ(x, ·)← when x is fixed and large.
This problem is also addressed in detail in the present paper and the simulation study performed
is presented in terms of estimation of both θ and θ(x, ·)←.

The paper is organized as follows. The second order approximation result is presented in Sec-
tion 2, as well as some remarks and examples illustrating the theorem. The statistical procedures
are described in Section 3, where a semi-parametric estimator of ψ is proposed. Section 4 deals
with a comparative simulation study, while Section 5 provides an application to the financial
context, revisiting data studied by Levy and Duchin [35]. Some concluding comments are given
in Section 6. Proofs are deferred to the Appendix.

2. Asymptotic approximation

Consider a bivariate elliptical random vector (X,Y ). General background on elliptical distribu-
tions can be found in, for example, Fang et al. [21]. One can focus, without loss of theoretical
generality, on the standard case where EX = EY = 0 and VarX = VarY = 1. A convenient repre-
sentation is then the following (see, e.g., Hult and Lindskog [30]): (X,Y ) has a standard elliptical
distribution with radial positive distribution function H and Pearson correlation coefficient ρ if
it can be expressed as

(X,Y ) = R
(
cosU,ρ cosU +

√
1 − ρ2 sinU

)
,

where R and U are independent, R has distribution function H with ER2 = 2 and U is uniformly
distributed on [−π/2,3π/2]. Hereafter, to avoid trivialities, we assume |ρ| < 1.

Let � denote the normal distribution function and ϕ its density, that is,

ϕ(t) = e−t2/2

√
2π

, �(x) =
∫ x

−∞
ϕ(t)dt.

This paper deals with elliptical distributions with rapidly varying marginal upper tails or, equiv-
alently, with a rapidly varying radial component. More precisely, the radial component R asso-
ciated with (X,Y ) is assumed to be such that there exists an auxiliary function ψ for which one
gets, for any positive t ,

lim
x→∞

P {R > x + tψ(x)}
P(R > x)

= e−t . (1)

Such a condition implies that R belongs to the max-domain of attraction of the Gumbel distrib-
ution; see Resnick [38], page 26 for more details. De Haan [13] introduced this class of distri-
butions as the �-varying class. The function ψ is positive, absolutely continuous and satisfies
limt→∞ ψ ′(t) = 0, limt→∞ ψ(t)/t = 0 and limt→∞ ψ{t + xψ(t)}/ψ(t) = 1 for each positive x.
It is only unique up to asymptotic equivalence.

Let us recall Abdous et al. [1]’s result in this rapidly varying context (see Theorem 1(ii)).
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Theorem 1. Let (X,Y ) be a bivariate standardized elliptical random variable with Pearson
correlation coefficient ρ and radial component satisfying (1). Then, for each z ∈ R, one has

lim
x→∞P

(
Y ≤ ρx + z

√
1 − ρ2

√
xψ(x) |X > x

) = �(z).

In the following subsection, a rate of convergence is provided for the approximation result
stated in Theorem 1, as well as a second order correction. Note that if (X,Y ) has an elliptic
distribution with correlation coefficient ρ, then the couple (X,−Y) has an elliptic distribution
with correlation coefficient −ρ. Therefore, one can focus on non-negative ρ. From now on,
assume that ρ ≥ 0. As a consequence, one can assume that both x > 0 and y > 0.

2.1. Main result

For each distribution function H , denote by H̄ the survival function H̄ = 1 − H . The following
assumption will be sufficient to obtain the main result. It is a strengthening of (1).

Assumption 1. Let H be a rapidly varying distribution function such that
∣∣∣∣ H̄ {x + tψ(x)}

H̄ (x)
− e−t

∣∣∣∣ ≤ χ(x)
(t) (2)

for all t ≥ 0 and x large enough, where limx→∞ χ(x) = 0, ψ satisfies

lim
x→∞

ψ(x)

x
= 0 (3)

and 
 is locally bounded and integrable over [0,∞).

The following result is a second order approximation for conditional excess probabilities in
the elliptical case with rapidly varying radial component.

Theorem 2. Let (X,Y ) be a bivariate elliptical vector with Pearson correlation coefficient ρ ∈
[0,1) and radial distribution H that satisfies Hypothesis 1. Then, for all x > 0 and z ∈ R,

P
(
Y ≤ ρx + z

√
1 − ρ2

√
xψ(x) | X > x

)
(4)

= �(z) −
√

ψ(x)

x

ρϕ(z)√
1 − ρ2

+ O

(
χ(x) + ψ(x)

x

)
,

P
(
Y ≤ ρx + z

√
1 − ρ2

√
xψ(x) + ρψ(x) | X > x

)
(5)

= �(z) + O

(
χ(x) + ψ(x)

x

)
.

All the terms O( ) are locally uniform with respect to z.
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Remark 1. This result provides a rate of convergence in the approximation result of Abdous
et al. [1] Theorem 1, and a second order correction. This correction is useful only if χ(x) =
o(

√
ψ(x)/x).

Remark 2. Theorem 2 and the formula

P(X ≤ x′; Y ≤ y | X > x)

= P(Y ≤ y | X > x) − P(X > x′ | X > x)P(Y ≤ y | X > x′)

yield (with some extra calculations) the asymptotic joint distribution (and the rate of conver-
gence) of (X,Y ) given that X > x when x is large: for all x > 0 and z ∈ R,

P
(
X ≤ x + tψ(x); Y ≤ ρx + z

√
1 − ρ2

√
xψ(x) | X > x

)

= (1 − e−t )�(z) + O

(
χ(x) +

√
ψ(x)

x

)
, (6)

where all the terms O( ) are locally uniform with respect to z.

Remark 3. Hashorva [25] obtained that the conditional limit distribution of Y , given that X = x

for multivariate elliptical vectors with rapidly varying radial component, is also the Gaussian dis-
tribution. The equality of these two asymptotic distributions is not true in general. In the elliptical
context, this is only true if the radial variable is rapidly varying. The conditional distribution of
Y given that X = x is of course related to the joint distribution of (X,Y ) given that X > x via
the formula

P(X ≤ x ′; Y ≤ y | X > x) =
∫ x′

x

P(Y ≤ y | X = u)PX(du),

where PX is the distribution of X. However, the limiting behavior of the integrand is not sufficient
to obtain the limit of the integral, so (6) is not a straightforward consequence of Hashorva’s result.

2.2. Remarks and examples

Hypothesis 1 gives a rate of convergence in the conditional excess probability approximation.
To the best of our knowledge, the literature deals more classically with second order conditions
providing limits (see, e.g., Beirlant et al. [5], Section 3.3) or with pointwise or uniform rates of
convergence (cf. De Haan and Stadtmüller [16] or Beirlant et al. [6]). The need here is to have
a non-uniform bound that can be used for dominated convergence arguments. However, in the
examples given below, the non-uniform rates χ(x) that we exhibit are the same as the optimal
uniform rates provided by De Haan and Stadtmüller [16].

One can, however, check that Hypothesis 1 holds for the usual rapidly varying functions, in
particular, for most of the so-called Von Mises distribution functions, which satisfy (see, e.g.,
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Resnick [38], page 40)

H̄ (x) = d exp

{
−

∫ x

x0

ds

ψH (s)

}
(7)

for x greater than some x0 ≥ 0, where d > 0 and ψH is positive, absolutely continuous and
limx→∞ ψ ′

H (x) = 0. Note that under this assumption, ψH = H̄ /H ′ and ψH is an auxiliary func-
tion in the sense of (1). In the sequel, auxiliary functions ψH satisfying (7) will be called Von
Mises auxiliary functions.

The following lemma provides sufficient conditions for Hypothesis 1, which could be weak-
ened at the price of additional technicalities.

Lemma 1. Let H be a Von Mises distribution function and assume that

(i) ψH is ultimately monotone, differentiable and |ψ ′
H | is ultimately decreasing;

(ii) if ψH is decreasing, then either limx→∞ ψH (x) > 0 or there exist positive constants c1
and c2 such that for all x ≥ 0 and u ≥ 0,

ψH (x)

ψH (x + u)
≤ c1ec2u. (8)

Then Hypothesis 1 holds the for ψH :
∣∣∣∣ H̄ {x + tψH (x)}

H̄ (x)
− e−t

∣∣∣∣ ≤ χ(x)
(t),

with χ(x) = O(|ψ ′
H (x)|) and 
(t) = O((1 + t)−κ) for an arbitrary κ > 0.

Remark 4. Assumption (8) holds if ψH is regularly varying with index γ < 0. It also holds if
ψH (x) = e−cx for some c > 0.

Remark 5. If ψH is regularly varying with index γ < 1 and ψ ′
H ultimately decreasing, then

ψ ′
H (x) = o(

√
ψH (x)/x) and hence the second order correction is useful.

Remark 6. This bound corresponds to a worst-case scenario. In many particular cases, a much
faster rate of convergence can be obtained. For instance, if H̄ (x) = e−t , then (2) holds with
ψH ≡ 1, whence χ(x) = 1/x, but for any positive x and t , H̄ {x + tψH (x)}/H̄ (x) = e−t . The
rate of convergence is infinite here. If H̄ is the Gumbel distribution, then ψH ≡ 1 and the rate of
convergence in (2) is exponential: |H̄ (x + t)/H̄ (x) − e−t | ≤ 2e−xe−t .

Some examples of continuous distributions satisfying Hypothesis 2 are given for the purposes
of illustration in Section 4, Table 1. The following example illustrates a discrete situation.

Example 1 (Discrete distribution in the domain of attraction of the Gumbel law). Let ψ be a
concave increasing function such that limx→∞ ψ(x) = +∞ and limx→∞ ψ ′(x) = 0, and define

H̄#(x) = exp

{
−

∫ x

x0

ds

ψ(s)

}
, H̄ (x) = H̄#([x]),
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where [x] is the integer part of x. H is then a discrete distribution function and H̄ belongs to the
domain of attraction of the Gumbel distribution, but does not satisfy condition (7). Nevertheless,
following the lines of the proof of Lemma 1, one can check that condition (2) holds with

χ(x) = O
(
ψ ′([x]) + 1/ψ(x)

)
, 
(t) = O

(
(1 + t)−κ

)
for any arbitrary κ > 0.

One can deduce from Lemma 1 that Theorem 2 holds for ψ = ψH . The following lemma
concerns what happens if one uses an asymptotically equivalent auxiliary function ψ instead of
ψH in Theorem 2.

Lemma 2. Under the assumption of Lemma 1, let ψ be equivalent to ψH at infinity and define
ξ(x) = |ψ(x) − ψH (x)|/ψH (x). Then

∣∣∣∣ H̄ (x + tψ(x))

H̄ (x)
− e−t

∣∣∣∣ ≤ O{|ψ ′
H (x)| + ξ(x)}
(t). (9)

Remark 7. A consequence of Lemma 2 is that if an auxiliary function ψ is used instead of ψH

in Theorem 2, then the second order correction is relevant, provided that ξ(x) = o(
√

ψH (x)/x ).
This is the case in the examples given on line 1 and line 3 of Table 1 (‘Normal’ and ‘Logis’)
if one takes ψ(x) = 1/x or ψ(x) = 1/(2x), respectively, and in the example given on line 5 of
Table 1 (‘Lognor’) when using ψ(x) = x/ log(x).

3. Statistical procedure

For given large positive x and y, consider the problems of estimating θ(x, y) = P(Y ≤ y | X > x)

and the conditional quantile function θ(x, ·)←. Note, in passing, that in a practical situation,
x is neither a threshold nor a parameter of the statistical procedure, but a value imposed by
the practical problem (e.g., a high quantile of the marginal distribution of X). The empirical
distribution function is useless since there might be no observations in the considered range. We
suggest estimating these quantities by means of Theorem 2.

Assume that a sample (X1, Y1), . . . , (Xn,Yn) is available, drawn from an elliptical distribution
with radial component satisfying Hypothesis 2. Note that in this section, we do not assume that
the distribution is standardized, so a preliminary standardization is required.

3.1. Definition of the estimators

The estimation of θ(x, y) and the conditional quantile function requires estimates of μX , μY ,
σX , σY , ρ and ψ . Let μ̂X , μ̂Y , σ̂X , σ̂Y , ρ̂n and ψ̂n denote such estimates. For fixed x, y > 0,
define

θ̂n,1(x, y) = �

(
ŷ − ρ̂nx̂√

1 − ρ̂2
n

√
x̂ψ̂n(x̂)

)
(10)
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and

θ̂n,2(x, y) = �

(
ŷ − ρ̂nx̂ − ρ̂nψ̂n(x̂)√

1 − ρ̂2
n

√
x̂ψ̂n(x̂)

)
, (11)

where x̂ = (x − μ̂X)/σ̂X and ŷ = (y − μ̂Y )/σ̂Y .
In order to estimate the conditional quantile function θ(x, ·)←, define, for fixed θ ∈ (0,1),

ŷn,1 = μ̂Y + σ̂Y

{
ρ̂nx̂ +

√
1 − ρ̂2

n

√
x̂ψ̂n(x̂)�−1(θ)

}
, (12)

ŷn,2 = μ̂Y + σ̂Y

{
ρ̂nx̂ + ρ̂nψ̂n(x̂) +

√
1 − ρ̂2

n

√
x̂ψ̂n(x̂)�−1(θ)

}
. (13)

Estimating μX , μY , σX , σY and ρ is a classical topic and the empirical version of each quan-
tity can easily be used. Under the assumption of elliptical distributions, however, one can observe
better stability when the Pearson correlation coefficient is estimated by ρ̂n = sin(πτ̂n/2), where
τ̂n is the empirical Kendall’s tau (see, e.g., Hult and Lindskog [30] for more details). This esti-
mator is

√
n-consistent and asymptotically normal.

Consider now the problem of the estimation of ψ . Since auxiliary functions are defined up to
asymptotic equivalence, a particular representantive must be a priori chosen in order to define
the estimator. We assume that an admissible auxiliary function is

ψ(x) = 1

cβ
x1−β (14)

for some constants c > 0 and β > 0. Under this assumption, estimation of ψ reduces to estimat-
ing c and β .

An extensive body of literature exists on estimators of β (see, e.g., Beirlant et al. [4], Gardes
and Girard [23], Dierckx et al. [17], among others). The method chosen here is the one proposed
in Beirlant et al. [7]. Let kn be a user-chosen threshold and Rj,n, 1 ≤ j ≤ n, be the order statistics
of the sample R1, . . . ,Rn. The estimator of β is obtained as the slope of the Weibull quantile plot
at the point (log log(n/kn), log(Rn−kn,n)):

β̂n = k−1
n

∑kn

i=1 log log(n/i) − log log(n/kn)

k−1
n

∑kn

i=1 log(Rn−i+1,n) − log(Rn−kn,n)
. (15)

An estimator of c is then naturally given by

ĉn = 1

kn

kn∑
i=1

log(n/i)

R
β̂n

n−i+1,n

. (16)

Actually, in our context, the radial component is not observed. We estimate the Ri ’s by

R̂2
i = X̂2

i + (Ŷi − ρ̂nX̂i)
2/(1 − ρ̂2

n),

where X̂i = (Xi − μ̂X)/σ̂X and Ŷi = (Yi − μ̂Y )/σ̂Y , and we plug these values into (15) and (16).
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We then define ψ̂n(x) = x1−β̂n/(ĉnβ̂n).

3.2. Discussion of the estimation error versus approximation error

Let

ẑn,1 = y − ρ̂nx√
1 − ρ̂2

n

√
xψ̂n(x)

, ẑn,2 = y − ρ̂nx − ρ̂nψ̂n(x)√
1 − ρ̂2

n

√
xψ̂n(x)

,

z1 = y − ρx√
(1 − ρ2)

√
x2−β/(cβ)

, z2 = y − ρx − ρx1−β/(cβ)√
(1 − ρ2)

√
x2−β/(cβ)

.

Then, for i = 1,2,

θ̂n,i (x, y) − θ(x, y) = �(ẑn,i ) − �(zi) + �(zi) − θ(x, y).

This shows that the estimators defined in (10) and (11) have two sources of error: the first one,
�(ẑn,i ) − �(zi), comes from the estimation of ρ, μ, σ and ψ , and the second one, �(zi) −
θ(x, y), from the asymptotic nature of the approximations (4) and (5).

The order of magnitude of the estimation error can be measured by the rate of convergence of
the estimators. In order to obtain a rate of convergence for the estimators β̂n and ĉn, we assume
that H is a Von Mises distribution function with

ψH (x) = 1

cβ
x1−β{1 + t (x)}, (17)

where t is a regularly varying function1 with index ηβ for some η < 0. This implies that H̄ (x) =
exp{−cxβ [1 + s(x)]}, where s is also regularly varying with index ηβ . Under this assumption,
the function ψ defined in (14) is an admissible auxiliary function and Girard [24] has shown that
β̂n is k

1/2
n -consistent, for any sequence kn such that

kn → ∞, k
1/2
n log−1(n/kn) → 0, k

1/2
n b

(
log(n/kn)

) → 0,

where b is regularly varying with index η; see Girard [24], Theorem 2 for details. Similarly, it can
be shown that k

1/2
n (ĉn − c) = OP (1) under the same assumptions on the sequence kn. Thus, for

any x, ψ̂n(x) is a k
1/2
n -consistent estimator of ψ(x). Besides, ρ̂n, μ̂n and σ̂n are

√
n-consistent,

so the estimation error �(ẑn,i ) − �(zi) is of order k
−1/2
n in probability.

If ψH satisfies (17), then Hypothesis 1 holds, and Theorem 2 and Lemma 2 provide a bound
for the deterministic approximation error �(zi) − θ(x, y). Some easy computation shows that
the second order correction is useful only if η < −1/2.

1A function f is regularly varying at infinity with index α if for all t > 0, limx→∞ f (tx)/f (x) = tα .
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3.3. Discussion of an alternative method

The method described previously makes use of the asymptotic approximations of Theorem 2. It
could be thought that a direct method, making use of (19) and an estimator of H̄ , would yield a
better estimate of θ(x, y) since it would avoid this approximation step. Recall, however, that we
specifically need to estimate the tail of the radial distribution so that a nonparametric estimator
of H cannot be considered. The traditional solution given by extreme value theory consists of
fitting a parametric model for the tail. This will always induce an approximation error.

Nevertheless, there exists a situation in which the approximation error can be canceled: if the
radial component is exactly Weibull distributed, that is, H̄ (x) = exp{−cxβ}, then ψH satisfies
(14), so for any x,u > 0, (7) implies that

H̄ (xu)

H̄ (x)
= exp

{∫ xu

x

ds

ψ(s)

}
.

Therefore, in this specific case, a consistent estimator of θ(x, y), say θ̂n,3(x, y), can be intro-
duced which does not make use of any asymptotic expansion as in Theorem 2. Via (19), we get,
explicitly,

θ̂n,3(x, y) = 1 −
∫ π/2

arctan(t̂0)
K̂(x̂, x̂, cos(u))du + ∫ arctan(t̂0)

−Û0
K̂(x̂, ŷ, sin(u + Û0))du

2
∫ π/2

0 K̂(x̂, x̂, cos(u))du
, (18)

where

K̂(x, y, v) = exp

{∫ y/v

x

ds

ψ̂n(s)

}
,

t̂0 = (ŷ/x̂ − ρ̂n)/

√
1 − ρ̂2

n, Û0 = arctan
(
ρ̂n/

√
1 − ρ̂2

n

)
,

x̂ = (x − μ̂X)/σ̂X, ŷ = (y − μ̂Y )/σ̂Y .

We included this estimator in the simulation study as a benchmark when looking at elliptical
Kotz-distributed observations (see Table 1).

4. Simulation study

To assess the performance of the proposed estimators, we simulated several families of bivariate
standard elliptical distributions. Recall that a standardized bivariate elliptical density function
can be written as f (x, y) = Cg{(x2 − 2ρxy + y2)/(1 − ρ2)}, where g is called the generator,
ρ is the Pearson correlation coefficient and C is a normalizing constant. The density of the radial
component R is given by H ′(r) = Krg(r2), where K is a normalizing constant (see, e.g., Fang
et al. [21]).

The distributions used are presented in Table 1. The Pearson correlation coefficient will be
either ρ = 0.5 or ρ = 0.9. Three of them (Normal, Kotz and Logis) are Von Mises distributions
which satisfy both Hypothesis 1 and (17); in addition, the Von Mises auxiliary function of the
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Table 1. Bivariate elliptical distributions used for the simulations, together with elliptical generator g, Von
Mises auxiliary function ψH (or equivalent), the function χ defined in Hypothesis 1 and the values of the
parameters used (in addition to ρ ∈ {0.5,0.9})

Bivariate law Generator g(u) ψH (x) χ(x) Parameters

Normal e−u/2 1

x
+ O

(
1

x3

)
O(x−2)

Kotz uβ/2−1e−uβ/2
x1−β/β O(x−β) β ∈ {1,4}

Logis∗ e−u

(1 + e−u)2

1 + e−x2

2x
O(x−2)

Modified Kotz g�(u)‡ x1−β

1 + β logx
O

(
x−β

logx

)
β = 3/2

Lognor∗∗ 1

u
e−(log2 u)/8 x

logx
+ O

(
x

log3 x

)
O

(
1

logx

)

Student

(
1 + u

ν

)−(ν+2)/2
− − ν ∈ {3,20}

∗“Logis” and “Lognor” refer to the elliptical distributions with logistic and lognormal generator, respectively.
∗∗g�(u) = {(3/8) logu + 1/2}u−1/4 exp{−(1/2)u3/4 logu}.

Kotz distribution satisfies (14). The Lognor and the modified Kotz distributions satisfy Hypoth-
esis 1 but not (14) and, finally, the bivariate Student distribution has a regularly varying radial
component, so it does not satisfy any of the assumptions. These three distributions are used to
explore the robustness of the proposed estimation method.

In each case, 200 samples of size 500 were simulated. Several values of x were chosen, corre-
sponding to the (1−p)-quantile of the marginal distribution of X, with p = 10−3, p = 10−4 and
p = 10−5. For each value of x, we computed (by numerical integration) the theoretical values
of y corresponding to the probability θ(x, y) = 0.05,0.1,0.2, . . . ,0.8,0.9,0.95. We then esti-
mated θ(x, y) via the three proposed methods (cf. Section 3). For the estimation of the auxiliary
function ψ , the threshold chosen corresponds to the highest 10% of the estimated R̂i ’s. It must
be noted that this choice is independent of x. For each fixed x, we also estimated the conditional
quantile function θ(x, ·)← by both methods (12) and (13). We did not compute the estimated
quantile function for Method 3 since it would involve the numerical inversion of the integrals
which appear in (19). This is one advantage of Methods 1 and 2 over Method 3.

Some general features can be observed which conform to theoretical expectations. (i) First,
in the given range of x and y, there were hardly any observations, so the empirical conditional
distribution function is useless. (ii) For a given probability θ , the variability of the estimators
slightly increases with x for all underlying distributions. For a given x, the variability of the
estimators is greater for medium values of θ . (iii) The results for the Student distribution are as
expected: if the degree of freedom ν is large, the estimation shows a high variability but moderate
bias, while if ν is small, then the estimation is clearly inconsistent. (iv) The results for the Logis
and modified Kotz distributions are similar to those for Gaussian distribution. (v) As described
in Section 3.3, Method 3 is markedly better for the Kotz distribution only.
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Figure 1. Median, 2.5% and 97.5% quantiles of the estimation error θ̂n,i (x, y) − θ(x, y) (i = 1,2,3) as a
function of the estimated probability. Gaussian distribution. First row: ρ = 0.9; second row: ρ = 0.5.

Hence, we have chosen to report only the results for the largest value of x (corresponding to
the 10−5-quantile of the marginal distribution of X) and the Normal, Kotz (with parameter β = 1
and β = 4) and Lognor distributions, for ρ = 0.5 and ρ = 0.9. Figures 1–4 illustrate the behavior
of the estimators of the probability θ : median, 2.5% and 97.5% quantiles of the estimation error
θ̂n,i (x, y) − θ(x, y) (i = 1,2,3) are shown as a function of the estimated probability. Figure 5
shows the estimated conditional quantile functions ŷn,i(x, y) (i = 1,2) and the theoretical condi-
tional quantile function y = θ(x, ·)← for only three distributions and ρ = 0.9 because the results
are much more stable as the correlation or the distribution vary. Median, 2.5% and 97.5% quan-
tiles of the estimated conditional quantile function ŷn,i (x, y) (i = 1,2) are given as a function of
the probability.
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Figure 2. Median, 2.5% and 97.5% quantiles of the estimation error θ̂n,i (x, y) − θ(x, y) (i = 1,2,3) as a
function of the estimated probability. Kotz distribution, β = 1. First row: ρ = 0.9; second row: ρ = 0.5.

From these simulation results, one can see that the estimator of θ by Method 1 presents a
systematic positive bias which, of course, induces an underestimation of the conditional quantile
function. As expected, Method 2 corrects this systematic bias; the correction is better when ρ is
large. This is also true for the Lognormal generator, though to a lesser extent.

As already mentioned, the Lognor and modified Kotz distributions do not satisfy the assump-
tion (17). In both cases the radial component belongs to an extended Weibull-type family, with
auxiliary function ψ of the form

ψ(x) = cx1−β(logx)−δ{1 + o(1)}
with c > 0, β ≥ 0 and δ > 0 if β = 0. The modified Kotz distribution corresponds to β = 3/2
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Figure 3. Median, 2.5% and 97.5% quantiles of the estimation error θ̂n,i (x, y) − θ(x, y) (i = 1,2,3) as a
function of the estimated probability. Kotz distribution, β = 4. First row: ρ = 0.9; second row: ρ = 0.5.

and δ = 1 and Lognor corresponds to β = 0 and δ = 1. The simulation results are much better
for the modified Kotz than for the Lognor distribution. This tends to prove that the method is not
severely affected by the logarithmic factor, as long as β > 0.

5. Financial application

In this section, the practical usefulness of our estimation procedure is illustrated in the context
of financial contagion, for which an estimation of the conditional excess probability is needed.
Data used by Levy and Duchin [35] are here revisited. More precisely, we consider the series of
monthly returns for the 3M stock and the Dow Jones Industrial Average for the period ranging
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Figure 4. Median, 2.5% and 97.5% quantiles of the estimation error θ̂n,i (x, y) − θ(x, y) (i = 1,2,3) as a
function of the estimated probability. Lognor distribution. First row: ρ = 0.9; second row: ρ = 0.5.

from January 1970 to January 2008. In the sequel, we arbitrarily investigate the conditional
behavior of the 3M stock monthly returns, given some extreme values of the Dow Jones Industrial
Average.

According to Levy and Duchin [35], these two series can be marginally fitted by a logistic
distribution. Indeed, a Kolmogorov–Smirnov goodness-of-fit test of the logistic distribution gave
us a P-value of 0.48 for the 3M returns and 0.49 for the Dow Jones Industrial Average returns.
These P-values were obtained via a Monte Carlo simulation, following the procedure outlined
by Stephens [40]. Moreover, the test of elliptical symmetry of Huffer and Park [29] was used to
show that the data fit the bivariate elliptical model (P-value = 0.61). Finally, we checked that
both marginal upper tails exhibit rapid variation; for this, we performed a generalized Pareto
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Figure 5. Median (solid line), 2.5% and 97.5% quantiles (dashed lines) of the estimated conditional quan-
tile function ŷn,i (i = 1,2) defined in (12) and (13) and theoretical conditional quantile function y (dotted
line) as a function of the probability θ . First row: Normal distribution; second row: Kotz distribution, β = 4;
third row: Lognor distribution. For each of these, ρ = 0.9.

distribution fit to the 15%-largest values and checked via a test based on the profile likelihood
95%-confidence interval that the shape parameter could be considered equal to 0 at level 5% (see,
e.g., Coles [12] for details on these classical procedures). Note that the estimated generalized
Pareto tail agreed completely with the tail of the fitted logistic distribution in both cases.

Consequently, the estimation procedures presented in the previous sections can be applied to
these data. As an illustration, in Figure 6, we depict the three estimates of y �→ 1 − θ(x, y) =
P(Y > y | X > x) for different values of x corresponding to the 0.975, 0.99, 0.999 and 0.9999
quantiles of the fitted logistic distribution, together with the estimated marginal survival function
P(Y > y). This last probability was estimated via the logistic distribution fitted to the Yi ’s. It
is clearly evident from these graphics that 1 − θ̂n,2 and 1 − θ̂n,3 provide very similar estimates,
whereas 1 − θ̂n,1 gives uniformly smaller values. All these estimates are uniformly greater than
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Figure 6. Estimates y �→ 1 − θ̂n,i (x, y) (i = 1,2,3) of the conditional excess distribution of the 3M stock
monthly return, given that the Dow Jones Industrial Average monthly return exceeds four extreme values.
The subplots (a), (b), (c) and (d) are for the values x corresponding to the 0.975, 0.99, 0.999 and 0.9999
quantiles of the fitted logistic distribution, respectively. The solid line is for θ̂n,1, the dashed line for θ̂n,2

and the dotted line for θ̂n,3. The estimate of the marginal survival function P(Y > y) is shown as a dot-
ted-dashed line.

the marginal survival function of Y . This allows us to conclude that the data exhibit contagion

from the Dow Jones Industrial Average to the 3M stock.
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6. Concluding remarks

In this paper, we restricted our attention to elliptically distributed random pairs (X,Y ) having a
rapidly varying radial component. Three methods have been proposed to estimate the conditional
excess probability θ(x, y) for large x. Under this specific assumption of elliptical distributions,
Methods 2 and 3 revealed comparable results and outperformed Method 1.

Methods 1 and 2 make use of an asymptotic approximation of the conditional excess distrib-
ution function by the Gaussian distribution function. As shown by Balkema and Embrechts [3],
this approximation remains valid outside the family of elliptical distributions, under geometric
assumptions on the level curves of the joint density function of (X,Y ). This suggests that these
methods may be useful outside the elliptical family. This is an ongoing research project.

Appendix

Proof of Theorem 2. Define U0 = arctan(ρ/
√

1 − ρ2). For x > 0 and y ∈ (0, x), we have

P(X > x,Y > y)

= P

(
R >

x

cosU
∨ y

ρ cosU + √
1 − ρ2 sinU

; −U0 ≤ U ≤ π

2

)

Let t0 = (y/x − ρ)/
√

1 − ρ2. Then −U0 < arctan(t0), and x/ cosu > y/(ρ cosu +√
1 − ρ2 sinu) if and only if u > arctan(t0). Hence,

P(X > x,Y > y)

=
∫ π/2

arctan(t0)

H̄

{
x

cosu

}
du

2π
+

∫ arctan(t0)

−U0

H̄

{
y

sin(u + U0)

}
du

2π
,

P(Y > y | X > x)

=
∫ π/2

arctan(t0)
H̄ (x/ cos(u))du + ∫ arctan(t0)

−U0
H̄ (y/ sin(u + U0))du

2
∫ π/2

0 H̄ (x/ cos(u))du
. (19)

If t0 ≥ 0, that is, y −ρx ≥ 0, the changes of variables v = 1/ cos(u) and v = 1/ sin(u+U0) yield

P(Y > y | X > x) = I1 + I2

I3
(20)

with

I1 =
∫ ∞

w1

H̄ (vx)

H̄ (x)

dv

v
√

v2 − 1
,
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I2 =
∫ ∞

w2

H̄ (vy)

H̄ (x)

dv

v
√

v2 − 1
,

I3 = 2
∫ ∞

1

H̄ (vx)

H̄ (x)

dv

v
√

v2 − 1
,

w1 =
√

1 + t2
0 =

√
1 + (y/x − ρ)2/(1 − ρ2) ,

w2 = xw1/y.

If t0 < 0, then

P(Y > y | X > x) = I3 − I1 + I2

I3
. (21)

Denote w0 = x(w1 − 1)/ψ(x). In I1 and I3, the change of variable v = 1 + ψ(x)
x

t yields

I1 =
√

ψ(x)

x

∫ ∞

w0

H̄ (x + tψ(x))

H̄ (x)

dt

(1 + t (ψ(x)/x))

√
1 + (t/2)(ψ(x)/x)

√
2t

,

I3 = 2

√
ψ(x)

x

∫ ∞

0

H̄ (x + tψ(x))

H̄ (x)

dt

(1 + t (ψ(x)/x))

√
1 + (t/2)(ψ(x)/x)

√
2t

.

In I2, the change of variable vy = x + tψ(x) yields

I2 = ψ(x)

x

∫ ∞

w0

H̄ (x + tψ(x))

H̄ (x)

(y/x)dt

(1 + t (ψ(x)/x))
√

1 − (y/x)2 + 2t (ψ(x)/x) + (ψ2(x)/x2)t2
.

Let Ji = √
x/ψ(x)Ii , i = 1,3, and J2 = (x/ψ(x))I2. We start with I1 and I3. We will use the

bound, valid for all B,C > 0,

0 ≤ 1 − 1

(1 + C)
√

1 + B
≤ B/2 + C, (22)

which follows from straightforward algebra and the concavity of the function x �→ √
1 + x. Ap-

plying this bound with B = ψ(x)
x

t
2 and C = ψ(x)

x
t yields

0 ≤ 1 − 1

(1 + t (ψ(x)/x))
√

1 + (t/2)(ψ(x)/x)
≤ 5

4

ψ(x)

x
t.

We thus have
∣∣J1 − √

2π�̄(
√

2w0)
∣∣ + ∣∣J3 − √

2π
∣∣

≤ 3χ(x)

∫ ∞

0

(t)

dt√
2t

+ 15

16

√
2π

ψ(x)

x
.
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Hence,

I1

I3
= �̄

(√
2w0

) + O

(
χ(x) + ψ(x)

x

)
. (23)

Now consider J2. Applying the bound (22) with C = tψ(x)/x and

B =
{

2t
ψ(x)

x
+ ψ2(x)

x2
t2

}/√
1 − (y/x)2,

and making use of Hypothesis 1, we obtain

∣∣∣∣J2 − (y/x)
√

2πϕ(
√

2w0)√
1 − (y/x)2

∣∣∣∣

≤ y/x√
1 − (y/x)2

χ(x)

∫ ∞

0

(t)dt + y/x

1 − (y/x)2

ψ(x)

x

(√
1 −

(y

x

)2 + 1 + ψ(x)

x

)
.

Choose y = ρx + √
1 − ρ2

√
xψ(x)z for some fixed z ∈ R. Then, for large enough x, we have

0 < y < x and

y/x√
1 − (y/x)2

= ρ√
1 − ρ2

+ O
(√

ψ(x)/x
)
.

Thus,

I2

I3
= ρ√

1 − ρ2

√
ψ(x)

x
ϕ
(√

2w0
) + O

(
χ(x) + ψ(x)

x

)
. (24)

For z ≥ 0 and large enough x, plugging (23) and (24) into (20) yields

θ(x, y) = �
(√

2w0
) − ρ√

1 − ρ2

√
ψ(x)

x
ϕ
(√

2w0
) + O

(
χ(x) + ψ(x)

x

)
.

For z < 0 and large enough x, plugging (23) and (24) into (21) yields

θ(x, y) = �̄
(√

2w0
) − ρ√

1 − ρ2

√
ψ(x)

x
ϕ
(√

2w0
) + O

(
χ(x) + ψ(x)

x

)
.

Now note that w0 = z2/2 + O(ψ(x)/x), hence
√

2w0 = |z| + O(ψ(x)/x). Thus, in both the
cases z ≥ 0 and z < 0, (4) holds. Let z = z′ + ρ

√
ψ(x)/x/

√
1 − ρ2. A Taylor expansion of �

and ϕ around z′ yields (5). �
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Proof of Lemma 1.

H̄ {x + tψ(x)}
H̄ (x)

− e−t = exp

{
−

∫ x+tψ(x)

x

ds

ψ(s)

}
− e−t

= exp

[
−

∫ t

0

ψ(x)

ψ{x + sψ(x)} ds

]
− e−t .

Applying the inequality |e−a − e−b| ≤ |a − b|e−a∧b valid for all a, b ≥ 0 yields
∣∣∣∣ H̄ {x + tψ(x)}

H̄ (x)
− e−t

∣∣∣∣
≤

∣∣∣∣
∫ t

0

ψ{x + sψ(x)} − ψ(x)

ψ{x + sψ(x)} ds

∣∣∣∣ exp

[
−t ∧

∫ t

0

ψ(x)

ψ{x + sψ(x)} ds

]
.

Let ∫ t

0

|ψ{x + sψ(x)} − ψ(x)|
ψ{x + sψ(x)} ds = I (x, t)

and

exp

[
−t ∧

∫ t

0

ψ(x)

ψ{x + sψ(x)} ds

]
= E(x, t).

Case ψ increasing. If ψ is non-decreasing, then ψ ′ ≥ 0 and ψ ′ is decreasing. Thus, for any δ > 0
and large enough x, ψ ′(x) ≤ δ and

∫ t

0

ψ(x)

ψ{x + sψ(x)} ds ≥
∫ t

0

ψ(x)

ψ(x) + sψ ′(x)ψ(x)
ds

=
∫ t

0

ds

1 + sψ ′(x)
≥

∫ t

0

ds

1 + sδ
= 1

δ
log(1 + δt).

This implies that E(x, t) ≤ (1 + δt)−1/δ for large enough x. Since ψ is increasing and ψ ′ is
decreasing, we also have

I (x, t) ≤ ψ ′(x)

∫ t

0

sψ(x)

ψ{x + sψ(x)} ds ≤ ψ ′(x)
t2

2
.

Thus, for any δ > 0, I (x, t)E(x, t) = O(|ψ ′(x)|t2(1 + δt)−1/δ).
Case ψ decreasing. If ψ is monotone non-increasing, then

∫ t

0

ψ(x)

ψ{x + sψ(x)} ds ≥ t

and E(x, t) ≤ e−t . Also, since |ψ ′| is decreasing,

I (x, t) ≤ |ψ ′(x)|
∫ t

0

sψ(x)

ψ{x + sψ(x)} ds.
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If ψ has a positive limit at infinity, then I (x, t) = O(ψ ′(x)t2). Otherwise, limx→∞ ψ(x) = 0
and (8) holds. This yields, for large enough x,

I (x, t) ≤ |ψ ′(x)|
∫ t

0

sψ(x)

ψ{x + sψ(x)} ds

≤ c1|ψ ′(x)|
∫ t

0
sec2sψ(x) ds ≤ c1|ψ ′(x)|

∫ t

0
ses/2 ds.

Thus, I (x, t) = O(|ψ ′(x)|t2et/2) and I (x, t)E(x, t) = O(|ψ ′(x)|t2e−t/2). This concludes the
proof. �

Proof of Lemma 2. Write
∣∣∣∣ H̄ {x + tψ(x)}

H̄ (x)
− e−t

∣∣∣∣ ≤
∣∣∣∣ H̄ {x + tψ(x)}
H̄ {x + tψH (x)} − 1

∣∣∣∣ e−t

(25)

+ H̄ {x + tψ(x)}
H̄ {x + tψH (x)}

∣∣∣∣ H̄ {x + tψH (x)}
H̄ (x)

− e−t

∣∣∣∣,
H̄ {x + tψ(x)}
H̄ {x + tψH (x)} = exp

[
−

∫ tψ(x)/ψH (x)

t

ψH (x)

ψ{x + sψH (x)} ds

]
. (26)

If ψH is increasing, then

∣∣∣∣
∫ tψ(x)/ψH (x)

t

ψH (x)

ψH {x + sψH (x)} ds

∣∣∣∣ ≤ tξ(x), (27)

exp

[
−

∫ tψ(x)/ψH (x)

t

ψH (x)

ψH {x + sψH (x)} ds

]
≤ etξ(x). (28)

Since ξ(x) → 0, gathering (27) and (28) yields, for large enough x,

∣∣∣∣ H̄ {x + tψ(x)}
H̄ {x + tψH (x)} − 1

∣∣∣∣e−t ≤ tξ(x)e−t/2. (29)

If ψH is decreasing and limx→∞ ψH (x) > 0, then the ratio ψH (x)/ψH {x + sψ(x)} is bounded
above and away from 0, so

∣∣∣∣
∫ tψ(x)/ψH (x)

t

ψH (x)

ψ{x + sψH (x)} ds

∣∣∣∣ ≤ Ctξ(x),

and (29) still holds.
If ψH is decreasing and limx→∞ ψH (x) = 0, then applying (8) gives that the left-hand side of

the previous equation is bounded by Ctξ(x) exp{2c2ψ(x)t}. Thus, for large enough x, (29) still
holds.

This provides a bound for the right-hand side of (25). The term (26) is bounded by Lemma 1. �
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