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This paper concerns the use of sequential Monte Carlo methods (SMC) for smoothing in general state
space models. A well-known problem when applying the standard SMC technique in the smoothing mode
is that the resampling mechanism introduces degeneracy of the approximation in the path space. However,
when performing maximum likelihood estimation via the EM algorithm, all functionals involved are of
additive form for a large subclass of models. To cope with the problem in this case, a modification of the
standard method (based on a technique proposed by Kitagawa and Sato) is suggested. Our algorithm relies
on forgetting properties of the filtering dynamics and the quality of the estimates produced is investigated,
both theoretically and via simulations.

Keywords: EM algorithm; exponential family; particle filters; sequential Monte Carlo methods; state space
models; stochastic volatility model

1. Introduction

In this paper, we study SMC methods for smoothing in nonlinear state space models. We con-
sider a bivariate process (X,Y ), where X � {Xk; k ≥ 0} is a homogeneous discrete-time Markov
chain taking values in some state space (X,X ). We let (Qθ , θ ∈ � ⊆ R

d) and ν denote the
Markov transition kernel and the initial distribution of X, respectively. The family {Qθ(x, ·);
x ∈ X, θ ∈ �} is assumed to be dominated by the probability measure μ on (X,X ) and we
denote by qθ (x, ·) the corresponding Radon–Nikodym derivatives. In this framework, X is not
observed and measurements must be made through the process Y � {Yk; k ≥ 0} taking values in
some measurable space (Y,Y). These observed variables are conditionally independent, given
the sequence {Xk; k ≥ 0}, and the conditional distribution of Yk depends only on Xk . We denote
by Gk the σ -algebra generated by the observed process from time zero to k. Furthermore, there
exist, for all x ∈ X and θ ∈ �, a density function y �→ gθ (x, y) and a measure λ on (Y,Y) such
that, for k ≥ 0,

Pθ (Yk ∈ A|Xk = x) =
∫

A

gθ (x, y)λ(dy) for all A ∈ Y .
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Here, we have written Pθ for the law of the bivariate Markov chain {(Xk,Yk); k ≥ 0} under the
model parameterized by θ ∈ � and we denote by Eθ the associated expectation.

For i ≤ j , let Xi:j � (Xi, . . . ,Xj ); similar vector notation will be used for other quantities.
In many situations, it is required to compute expectation values of the form Eθ [tn(X0:n)|Gn],
where tn is a real-valued, measurable function. In this paper, we focus on the case where tn is an
additive functional given by

tn(x0:n) =
n−1∑
k=0

sk(xk:k+1), (1)

where {sk; k ≥ 0} is a sequence of measurable functions (which may depend on the observed
values Y0:n).

As an example of when smoothing of such additive functionals is important, consider the
case of maximum likelihood estimation via the EM algorithm. Having an initial estimate θ ′ of
the parameter vector available, an improved estimate is obtained (we refer to Cappé et al. [2],
Section 10.2.3) by means of computation and maximization of Q(θ; θ ′) with respect to θ , where
Q(θ; θ ′) is defined by

Q(θ; θ ′) � Eθ ′

[
n−1∑
k=0

logqθ (Xk,Xk+1)

∣∣∣Gn

]
+ Eθ ′

[
n∑

k=0

loggθ (Xk,Yk)

∣∣∣Gn

]
+ Eθ ′ [logν(X0)|Gn].

This procedure is recursively repeated in order to obtain convergence to a stationary point θ� of
the log-likelihood function �ν,n(θ;Y0:n) � log Lν,n(θ;Y0:n), where, for y0:n ∈ Yn+1,

Lν,n(θ;y0:n) �
∫

Xn+1
gθ (x0, y0)ν(x0)

n∏
k=1

qθ (xk−1, xk)gθ (xk, yk)μ
⊗(n+1)(dx0:n).

The computation of smoothed sum functionals of the above form will also be the key issue when
considering direct maximum likelihood estimation via the score function ∇θ �ν,n(θ;y0:n); again
see Cappé et al. ([2], Section 10.2.3) for details.

By applying Bayes’ formula, it is straightforward to derive recursive formulas for expectations
of the additive type discussed above. However, tractable closed form solutions are available only
if the state space X is finite or the model is linear and Gaussian.

SMC methods (also known as particle filtering methods) constitute a class of algorithms
that are well suited for providing approximate solutions of the smoothing and filtering re-
cursions. In recent years, SMC methods have been applied, sometimes very successfully,
in many different fields (see Doucet et al. [6] and Ristic et al. [14] and the references
therein). A well-known problem when applying SMC methods to sample the joint smooth-
ing distribution is that the resampling mechanism of the particle filter introduces degener-
acy of the particle trajectories. Doucet et al. [7] suggest a procedure where this is avoided
through an additional resampling pass in the time-reversed direction. The resulting algo-
rithm is well suited to sample from the joint smoothing distribution, but appears unnec-
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essarily complex, computationally, for approximating additive smoothing functionals of the
form (1).

In this paper, we study an SMC technique to smooth additive functionals based on a fixed-lag
smoother presented by Kitagawa and Sato [11]. The method exploits the forgetting properties
on the conditional hidden chain and is not affected by the degeneracy of the particle trajecto-
ries. Compared to Doucet et al. [7], computational requirements are marginal. Furthermore, we
perform, under suitable regularity assumptions on the latent chain, a theoretical analysis of the
behavior of the estimates obtained. It turns out that the Lp error and bias are upper bounded by
quantities proportional to n logn/

√
N and n logn/N , respectively, where N denotes the number

of particles and n the number of observations.
In comparison, applying the results of Del Moral and Doucet ([4], Theorem 4) to a functional

of type (1) provides a bound proportional to n2/
√

N on the Lp error for the standard trajectory-
based particle smoother. Finally, we apply, for a noisily observed autoregressive model and the
stochastic volatility model proposed by Hull and White [9], the technique to the Monte Carlo
EM (MCEM) algorithm (Wei and Tanner [15]).

2. Particle approximation of additive functionals

2.1. The smoothing recursion

The joint smoothing distribution φν,0:n|n is the probability measure defined, for A ∈ X⊗(n+1), by

φν,0:n|n[Y0:n](A; θ) � Pθ (X0:n ∈ A|Gn).

Under the assumptions above, the joint smoothing distribution has a density (for which we will
use the same symbol) with respect to μ⊗(n+1) satisfying, for all y0:k+1 ∈ Yk+2, the recursion

φν,0:k+1|k+1[y0:k+1](x0:k+1; θ)

= Lν,k(θ;y0:k)
Lν,k+1(θ;y0:k+1)

qθ (xk, xk+1)gθ (xk+1, yk+1)φν,0:k|k[y0:k](x0:k; θ). (2)

For notational conciseness, we will omit the explicit dependence on the observations from the
notation for the smoothing measure and replace φν,0:k|k[y0:k](·; θ) by φν,0:k|k(·; θ).

Particle filtering, in its most basic form, consists of approximating the exact smoothing rela-
tions by propagating particle trajectories in the state space of the hidden chain. Given a fixed
sequence of observations, this is done according to the following scheme. In order to keep the
notation simple, we fix the model parameters and omit θ from the notation throughout this part.

At time zero, N random variables {ξN,i
0 ;1 ≤ i ≤ N} are drawn from a common prob-

ability measure ς such that ν � ς . These initial particles are assigned the importance
weights ω

N,i
0 � W0(ξ

N,i
0 ), 1 ≤ i ≤ N , where, for x ∈ X, W0(x) � g(x, y0)dν/dς(x), providing∑N

i=1 ω
N,i
0 f (ξ

N,i
0 )/

∑N
i=1 ω

N,i
0 as an importance sampling estimate of φν,0|0f for f ∈ Bb(X).

Henceforth, the particle paths ξ
N,i
0:m � [ξN,i

0:m (0), . . . , ξ
N,i
0:m(m)], 1 ≤ i ≤ N , are recursively updated

according to the following procedure.
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At time k, let {(ξN,i
0:k ,ω

N,i
k );1 ≤ i ≤ N} be a set of weighted particles approximating φν,0:k|k , in

the sense that
∑N

i=1 ω
N,i
k f (ξ

N,i
0:k )/
N

k , with 
N
k �

∑N
i=1 ω

N,i
k and f ∈ Bb(Xk+1), is an estimate

of the expectation φν,0:k|kf . Then, an updated weighted sample {(ξN,i
0:k+1,ω

N,i
k+1);1 ≤ i ≤ N}, ap-

proximating the distribution φν,0:k+1|k+1, is obtained by, first, simulating ξ
N,i
0:k+1 ∼ R

p
k (ξ

N,i
0:k , ·),

where the kernel R
p
k is of type R

p
k (x0:k, f ) = ∫

X f (x0:k, xk+1)Rk(xk,dxk+1), with f ∈ Bb(Xk+2)

and each Rk being a Markov transition kernel. The new particles are simulated independently of
each other and the special form of R

p
k implies that past particle trajectories are kept unchanged

throughout this mutation step. A popular choice is to set Rk ≡ Q, yielding the so-called boot-
strap filter; more sophisticated techniques involve proposals depending on the observed val-
ues (see Example 4.2). Second, when the observation Yk+1 = yk+1 is available, the importance
weights are updated according to ω

N,i
k+1 = ω

N,i
k Wk+1[ξN,i

0:k+1(k : k + 1)], where, for (x, x ′) ∈ X2,

Wk(x, x′) � g(x′, yk)dQ(x, ·)/dRk−1(x, ·)(x′). Now, for f ∈ Bb(Xk+2), the self-normalized es-
timate φN

ν,0:k+1|k+1f �
∑N

j=1 ω
N,j

k+1f (ξ
N,j

0:k+1)/
N
k+1 provides an approximation of φν,0:k+1|k+1.

To prevent degeneracy, a resampling mechanism is introduced. In its simpler form, resam-
pling amounts to drawing, conditionally independently, indices I

N,1
k , . . . , I

N,N
k from the set

{1, . . . ,N}, multinomially with respect to the normalized weights ω
N,j
k /
N

k , 1 ≤ j ≤ N . Now,

a new equally weighted sample {ξ̂N,i
0:k ;1 ≤ i ≤ N} is constructed by setting ξ̂

N,j

0:k = ξ
N,I

N,j
k

0:k . After

the resampling procedure, the weights are all reset as ω
N,i
k = 1/N , yielding another estimate,

φ̂N
ν,0:k|kf �

∑N
i=1 f (ξ̂

N,i
0:k )/N , of φν,0:k|k . Note that the resampling mechanism might modify the

whole trajectory of a certain particle, implying that, in general, for m ≤ n, ξ
N,i
0:n (m) �= ξ

N,i
0:n+1(m).

The multinomial resampling method is not the only conceivable way to carry out the selection
step (see e.g. Doucet et al. [6]).

Using the weighted samples {(ξN,j

0:k ,ω
N,j
k );1 ≤ j ≤ N}, 0 ≤ k ≤ n, produced under the para-

meter θ ∈ �, an approximation of γθ,n � Eθ [tn(X0:n)|Gn] is obtained by constructing the esti-
mators

γ N
θ,n = 1


N
n

N∑
j=1

ω
N,j
n tn(ξ

N,j

0:n ) or γ̂ N
θ,n = 1

N

N∑
j=1

tn(ξ̂
N,j

0:n ). (3)

When the functional {tn} has the form given in (1), it is straightforward to verify that recording
all of the particle trajectories is indeed not required to evaluate (3): upon defining t

N,i
k � tk(ξ

N,j

0:k ),
we have, for k ≥ 1,

t
N,i
k+1 =

{
t
N,i
k + sk[ξN,i

0:k+1(k : k + 1)], if no resampling occurs,

t
N,I i

k+1
k + sk[ξ̂N,i

0:k+1(k : k + 1)], if resampling occurs.
(4)

The recursion is initialized by t
N,i
1 = t1(ξ

N,i
0:1 ). In accordance with (3), γ N

n is obtained as∑N
i=1 ω

N,i
n t

N,i
n /
N

n . Hence, for each particle ξ
N,i
0:k , we need only record its current position

ξ
N,i
0:k (k), weight ω

N,i
k and associated functional value t

N,i
k . Thus, the method necessitates only

minor adaptations once the particle filter has been implemented.
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Figure 1. Typical particle trajectories for N = 50; see Section 4 for details regarding model and algorithm.

As illustrated in Figure 1, as n increases, the path trajectories system collapses, and the esti-
mators (3) are not reliable for sensible N values (see Doucet et al. [6], Kitagawa and Sato [11]
and Andrieu and Doucet [1] for a discussion).

To cope with this drawback, we suggest the following method, based on a technique proposed
by Kitagawa and Sato [11]. By the forgetting property of the time-reversed conditional hidden
chain (Theorem 3.1), we expect that, for a large enough integer �n ≤ n − k,

Eθ [sk(Xk:k+1)|Gn] ≈ Eθ [sk(Xk:k+1)|Gk+�n ], (5)

yielding, with k(�n) � (k + �n) ∧ n,

γθ,n = Eθ

[
n−1∑
k=0

sk(Xk:k+1)

∣∣∣Gn

]
≈

n−1∑
k=0

Eθ

[
sk(Xk:k+1)|Gk(�n)

]
.

The above relation suggests that waiting for all of the trajectories to collapse – as (4) implies –
is not convenient. Instead, when the particle population N is sufficiently large so that (5) is valid
for a lag �n which may be far smaller than the typical collapsing time, one should apply the two
approximations

γ
N,�n

θ,n �
n−1∑
k=0

N∑
j=1

ω
N,j

k(�n)


N
k(�n)

sk
[
ξ

N,j

0:k(�n)(k :k + 1)
]
, (6)

γ̂
N,�n

θ,n � 1

N

n−1∑
k=0

N∑
j=1

sk
[
ξ

N,j

0:k(�n)
(k :k + 1)

]
(7)
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of γθ,n. Although somewhat more involved than the standard approximation (3), the above
lag-based approximation may be updated recursively by recording the recent history of the
particles as well as the accumulated contribution of terms that will no longer get updated.
Thus, apart from increased storage requirements, computing the lag-based approximation
γ̂

N,�n

θ,n is clearly not, from a computational point of view, more demanding than comput-

ing γ̂ N
θ,n.

3. Theoretical evaluation of the fixed-lag technique

To accomplish the robustification above, we need to specify the lag �n and how this lag should
depend on n. This is done by examining the quality of the estimates produced by the algorithm
in terms of bias and Lp error. Of particular interest is how these errors are affected by the lag and
whether it makes their dependence on n and N more favorable in comparison with the standard
trajectory-based approach.

The validity of 5 is based on the assumption that the conditional hidden chains – in the for-
ward as well as the backward directions – have forgetting properties, that is, the distributions of
two versions of each chain starting at different initial distributions approach each other as time
increases. This property depends on the following uniform ergodicity conditions on the model,
which imply that forgetting occurs at a geometrical rate:

(A1) (i) σ− � infθ∈� infx,x′∈X qθ (x, x′) > 0, σ+ � supθ∈� supx,x′∈X qθ (x, x′) < ∞;
(ii) for all y ∈ Y, supθ∈� ‖gθ (·, y)‖X,∞ < ∞, infθ∈�

∫
X gθ (x, y)μ(dx) > 0.

Under (A1), we define

ρ � 1 − σ−
σ+

. (1)

We now define the Markov transition kernels that generate the conditional hidden chains. For
any two transition kernels K and T from (E1,E1) to (E2,E2) and (E2,E2) to (E3,E3), respec-
tively, we define the product transition kernel by KT (x,A) �

∫
E2

T (z,A)K(x,dz) for x ∈ E1

and A ∈ E3.
Introduce, for f ∈ Bb(Xk+2), x0:k ∈ Xk+1 and yk+1 ∈ Y, the unnormalized pathwise transition

kernel Lk(x0:k, f ; θ) �
∫

X f (x0:k+1)gθ (xk+1, yk+1)Qθ (xk,dxk+1). Assumption (A1) makes this
integral well defined for all k ≥ 0. We will often consider compositions

Lk · · ·Lm(x0:k, f ; θ) =
∫

Xm−k+1
f (x0:m+1)

m∏
i=k

[gθ (xi+1, yi+1)Qθ (xi,dxi+1)]

with f ∈ Bb(Xm+2), x0:k ∈ Xk+1 and y0:k ∈ Ym−k+1, and it is clear that, for all k ≤ m, the function
Lk · · ·Lm(x0:k,Xm+2; θ) depends only on xk . Thus, a version of this function comprising only
the last component is well defined and we write Lk · · ·Lm(xk,Xm+2; θ) in this case. For k > m,
we set Lk · · ·Lm ≡ Id. Using this notation and given n ≥ 0, the forward smoothing kernels given
by, for k ≥ 0, xk ∈ X and A ∈ X , Fk|n(xk,A; θ) � Pθ (Xk+1 ∈ A|Xk = xk,Gn), can, for indices



Sequential Monte Carlo smoothing 161

0 ≤ k < n and yk+1 ∈ Y, be written as

Fk|n(xk,A; θ)
(2)

=

⎧⎪⎨⎪⎩
∫

A

gθ (xk+1, yk+1)Lk+1 · · ·Ln−1(xk+1,Xn+1; θ)Qθ(xk,dxk+1)

Lk · · ·Ln−1(xk,Xn+1; θ)
,

for 0 ≤ k < n,

Qθ(xk,A), for k ≥ n.

Analogously, for the time-reversed conditional hidden chain, we consider the backward smooth-
ing kernels defined by Bν,k|n(xk+1,A; θ) � Pθ (Xk ∈ A|Xk+1 = xk+1,Gn), where k ≥ 0, xk+1 ∈
X and A ∈ X . Note that Bν,k|n depends on the initial distribution of the latent chain. The back-
ward kernel can be expressed as

Bν,k|n(xk+1,A; θ)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫
A

qθ (xk, xk+1)φν,k(dxk; θ)∫
X qθ (x

′
k, xk+1)φν,k(dx′

k; θ)
, for 0 ≤ k ≤ n,∫

A

∫
X qθ (xk, xk+1)q

k−n
θ (xn, xk)φν,n(dxn; θ)μ(dxk)∫

X qk−n+1
θ (x′

n, xk+1)φν,n(dx′
n; θ)

, for k > n,

where, for m ≥ 1, qm
θ denotes the density of the m-step kernel Qm

θ .
The following theorem (see Del Moral [3], page 143), stating geometrical ergodicity of the

forward and backward chains, is instrumental for the developments which are to follow.

Theorem 3.1. Assume (A1) and let ρ be defined in (1). Then, for all k ≥ m ≥ 0, all θ ∈ �, all
probability measures ν1, ν2 on X and all y0:n ∈ Yn+1,

‖ν1Fm|n · · ·Fk|n(·; θ) − ν2Fm|n · · ·Fk|n(·; θ)‖TV ≤ ρk−m+1,

‖ν1Bν,k|n · · ·Bν,m|n(·; θ) − ν2Bν,k|n · · ·Bν,m|n(·; θ)‖TV ≤ ρk−m+1.

Assumption (A1) typically requires that X is a compact set, but some very recent papers
(Douc et al. [5], Kleptsyna and Veretennikov [12]) provide results that establish geometric for-
getting under considerably weaker assumptions. Applying these results within our framework
would, however, make the analysis far more complicated since the provided bounds are uniform
neither in the observations nor the initial distributions.

3.1. Main results

For the sake of simplicity, let us assume that multinomial resampling is applied at every iter-
ation. Moreover, let the observations used by the particle filter be generated by a state space
model with kernel, measurement density and initial distribution Q̄, ḡ and ν̄, respectively. We
stress that Q̄ and ḡ are not assumed to belong to the parametric family {(Qθ , gθ ); θ ∈ �}. Using
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these observed values as input, the evolution of the particle cloud follows the usual dynam-
ics (Qθ ,gθ ,ν, θ ∈ �) and, in this setting, it is easily verified that the process {Zk; k ≥ 0}, with
Zk � [ξN,1

0:k (k − 1 : k), . . . , ξ
N,N
0:k (k − 1 : k),Xk,Yk], is a Markov chain on X2N+1 × Y. We denote

by P̄
N
θ and Ē

N
θ the law of this chain and the associated expectation, respectively, and define the

filtration {FN
k ; k ≥ 0} by FN

k+1 � FN
k ∨ σ(ξ

N,1
0:k+1, . . . , ξ

N,N
0:k+1) with FN

0 � σ(ξ
N,1
0 , . . . , ξ

N,N
0 ).

The marginal of P̄
N
θ with respect to {(Xk,Yk); k ≥ 0} and the associated expectation are denoted

by P̄ and Ē, respectively. For any integer p ≥ 1, random variable V ∈ Lp(P̄N
θ ) and sub-σ -algebra

A ⊆ σ({Zk; k ≥ 0}) we define the conditional Lp norm ‖V ‖p|A � (ĒN
θ [|V |p|A])1/p .

(A2) For all k ≥ 0, θ ∈ � and yk ∈ Y, ‖Wk(·; θ)‖X2,∞ < ∞.

Remark 3.2. In case of the bootstrap particle filter, for which Rθ,k ≡ Qθ , assumption (A2) is im-
plied by assumption (A1). The same is true for the so-called optimal kernel used in Example 4.2.

Theorem 3.3. Assume (A1) and (A2). There then exist universal constants Bp and B , Bp de-
pending only on p, such that the following holds true for all n ≥ 0, θ ∈ �, �n ≥ 0 and N ≥ 1:

(i) for all p ≥ 2,

‖γ̂ N,�n

θ,n − γθ,n‖p|Gn

≤ 2ρ�n

n−�n∑
k=0

‖sk‖X2,∞

+ Bp√
N(1 − ρ)

n−1∑
k=0

‖sk‖X2,∞

[
1

σ−

k(�n)∑
m=1

‖Wm(·; θ)‖X2,∞ρ0∨(k−m)

μgθ (Ym)

+ ‖W0(·; θ)‖X,∞ρk

νgθ (Y0)
+ 1

]
;

(ii) ∣∣ĒN
θ [γ̂ N,�n

θ,n |Gn] − γθ,n

∣∣
≤ 2ρ�n

n−�n∑
k=0

‖sk‖X2,∞

+ B

N(1 − ρ)2

n−1∑
k=0

‖sk‖X2,∞

[
1

σ 2−

k(�n)∑
m=1

‖Wm(·; θ)‖2
X2,∞ρ0∨(k−m)

{μgθ (Ym)}2

+ ‖W0(·; θ)‖2
X,∞ρk

{νgθ (Y0)}2

]
.
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For the purpose of illustrating these bounds, assume that we are given a set {yk; k ≥ 0} of
fixed observations and that all ‖sk‖X2,∞, as well as all fractions ‖Wk(·; θ)‖X2,∞/μgθ (yk), are
uniformly bounded in k. We then conclude that increasing the lag with n as �n = �c logn�,
c > −1/ logρ, will imply that nρ�n tends to zero as n goes to infinity, leading to an error which
is dominated by the variability due to the particle filter (the second term of the bound in Theo-
rem 3.3(i)) and upper bounded by a quantity proportional to

1√
N

n−1∑
k=0

[
k+�c logn�∑

m=1

ρ0∨(k−m) + 1

]
≤ n√

N

(
1

1 − ρ
+ 1 + �c logn�

)
,

that is, of order n logn/
√

N . Note the dependence on the mixing coefficient ρ of this rate. In con-
trast, setting �n = n, that is, using the direct full-path approximation, would result in a stochastic
error which is upper bounded by a quantity proportional to n2/

√
N .

3.2. Extension to randomly varying observations

As mentioned, all results presented above concern smoothing distribution approximations pro-
duced by the particle filter algorithm conditionally on a given sequence of observations. In this
section, we extend these results to the case of a randomly varying observation sequence.

For the bounds presented in Theorem 3.3, the conditioning on Gn can be removed by introduc-
ing additional model assumptions. In the following, we suppose that ν � μ and that the resulting
Radon–Nikodým derivative satisfies (dν/dμ)− � infx∈X dν/dμ(x) > 0.

(A3) Let tn be given by (1). For p ≥ 2, � ≥ 1 and θ ∈ �, there exists a constant ap,�(tn; θ) ∈
R

+ such that

max

{
Ē

[‖Wk(·; θ)‖p
X,∞‖si‖�

X2,∞
{μgθ(Yk)}p

]
, Ē[‖si‖�

Xn+1,∞];0 ≤ k ≤ n,0 ≤ i ≤ n − 1

}
≤ ap,�(tn; θ).

Proposition 3.4. Assume (A1) and (A2). There then exist universal constants Bp and B , Bp

depending only on p, such that the following holds true for all N ≥ 1:

(i) if assumption (A3) is satisfied for � = p ≥ 2 and θ ∈ �, then

‖γ̂ N,�n

θ,n − γθ,n‖p ≤ 2a
1/p
p,p(tn; θ)ρ�n(n − �n + 1)

+ Bpa
1/p
p,p(tn; θ)√

N(1 − ρ)

{
�n(n + 1)

σ−
+ n

[
1

σ−(1 − ρ)
+ 1

(dν/dμ)2−
+ 1

]}
;

(ii) if assumption (A3) is satisfied for p = 2, � = 1 and θ ∈ �, then

|ĒN
θ [γ̂ N,�n

θ,n − γθ,n]| ≤ 2a2,1(tn; θ)ρ�n(n − �n + 1)
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+ Ba2,1(tn; θ)

N(1 − ρ)2

{
�n(n + 1)

σ 2−
+ n

[
1

σ 2−(1 − ρ)
+ 1

(dν/dμ)2−

]}
.

The proof of this result is given in Section A.2.

Remark 3.5. In the case of a compact state space X, assumption (A3) implies only limited addi-
tional restrictions on the state space model. In fact, for a large class of models, assumption (A3)
follows as a direct consequence of assumption (A1).

4. Applications to maximum likelihood estimation

We now return to the computation of the maximum likelihood estimator. In the following,
we consider models for which the set of complete data likelihood functions is an exponen-
tial family, that is, for all θ ∈ � and n ≥ 0, the joint density of (X0:n,Y0:n) is of the form
exp[〈ψ(θ), Sn(x0:n)〉− c(θ)]h(x0:n). Here, ψ and the sufficient statistics Sn are R

ds -valued func-
tions on � and Xn+1, respectively, c is a real-valued function on θ and h is a real-valued non-
negative function on Xn+1. By 〈·, ·〉 we denote the scalar product. All of these functions may
depend on the observed values y0:n, even though this is expunged from the notation.

If the complete data likelihood function is of the particular form above and the expectation
φν,0:n|n(Sn; θ) is finite for all θ ∈ �, then the intermediate quantity of EM can be written as (up
to quantities which do not depend on θ ) Q(θ; θ ′) = 〈ψ(θ),φν,0:n|n(Sn; θ ′)〉 − c(θ). Note, finally
that, as mentioned in the Introduction, a typical element Sn,m(x0:n), 1 ≤ m ≤ ds , of the vector
Sn(x0:n) is an additive functional Sn,m(x0:n) = ∑n−1

k=0 s
(k)
n,m(xk:k+1) so that φν,0:n|n(Sn; θ ′) can be

estimated using either (6) or (7). Denoting by Ŝn such an estimate, we may approximate the
intermediate quantity by

Q̂N(θ; θ ′) = 〈ψ(θ), Ŝn〉 − c(θ).

In the next step – referred to as the M-step – Q̂N(θ; θ ′) is maximized with respect to θ , providing
a new parameter estimate. This procedure is repeated recursively given an initial guess θ̂0.

As an illustration, we consider the problem of inference in a noisily observed AR(1) model and
the stochastic volatility (SV) model. None of these examples satisfy assumption (A1); however,
geometric ergodicity for the models in question can be established using bounds presented by
Douc et al. [5]. Although these bounds are somewhat more involved than those presented in
Theorem 3.1 (e.g., the former depend on the initial distributions and the observations), we may,
nevertheless, expect that the conclusion reached in Section 3, that is, that the error of the fixed-
lag approximation is controlled by a lag of order logn, still applies. The situation is complicated,
however, by the fact that the mixing rates depend on the observations and are uniform only under
the expectation operator. In other words, there may be occasional outcomes for which mixing is
poor, even if the average performance of the system is satisfactory.

Example 4.1 (SMCEM for noisily observed AR(1) model). We consider the state space model

Xk+1 = aXk + σwWk+1,
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Yk = Xk + σvVk

with {Wk; k ≥ 1} and {Vk; k ≥ 0} being mutually independent sets of standard normal dis-
tributed variables such that Wk+1 is independent of (Xi, Yi), 0 ≤ i ≤ k, and Vk is indepen-
dent of Xk , (Xi, Yi), 0 ≤ i ≤ k − 1. The initial distribution is chosen to be a diffuse prior so
that φν,0|0 is N (y0, σ

2
v ). Throughout the experiment, we use a fixed sequence of observations

produced by simulation under the parameters a∗ = 0.98, σ ∗
w = 0.2 and σ ∗

v = 1. In this case,
ψ(θ) = [1/2σ 2

w,−a/σ 2
w,a2/(2σ 2

w),1/(2σ 2
v )] and the components of the R

4-valued function
x0:n �→ Sn(x0:n) are given by Sn,1(x0:n) �

∑n−1
k=1 x2

k , Sn,2(x0:n) �
∑n−1

k=0 xkxk+1, Sn,3(x0:n) �∑n
k=0 x2

k and Sn,4(x0:n) �
∑n

k=0(yk − xk)
2. Furthermore, up to terms not depending on parame-

ters, c(θ) = n log(σ 2
w)/2 + (n + 1) log(σ 2

v )/2. In this setting, one step of the MCEM algorithm
is carried out in the following way. Having produced an estimate θ̂ i−1 of the parameters θ =
(a, σ 2

w,σ 2
v ) at the previous iteration, we compute an approximation Ŝn = (Ŝn,1, Ŝn,2, Ŝn,3, Ŝn,4)

of φν,0:n|n(Sn; θ̂ i−1) using the particle filter and update the parameters according to

âi = Ŝn,2

Ŝn,1
, (̂σ i

w)2 = 1

n
(Ŝn,3 − âi Ŝn,2), (̂σ i

v)
2 = Ŝn,4

n + 1
.

We simulated, for each n = 100, 1000, 10,000 observations, 1000 SMC estimates of φν,0:n|nS1

using the fixed-lag smoothing technique for the parameter values a = 0.8, σw = 0.5 and
σv = 2. Here, the standard bootstrap particle filter with systematic resampling was used,
with Rk ≡ Q for all k ≥ 0. The dotted lines indicate the exact expected values, obtained
by means of disturbance smoothing. To study the bias-variance trade-off – discussed in de-
tail in the previous section – of the method, we used six different lags for each n and a
constant particle population size N = 1000. The result is displayed in Figure 2, from which
it is evident that the bias is controlled for a size of lag that increases approximately log-
arithmically with n. In particular, from the plot, we deduce that an optimal outcome is
gained when lags of size 24, 24 and 25 are used for n being 100, 1000 and 10,000, respec-
tively.

When the lag is sufficiently large so that we can ignore the term of the bias which is deduced
from forgetting arguments (being roughly of magnitude nρ�n ), increasing the lag further exclu-
sively leads to an increase of variance, as well as bias, of the estimates; compare the two last
boxes of each plot. This is completely in accordance with the theoretical results of Section 2.
Note that the scale on the y-axis is the same for the three panels, although the y-axis has been
shifted in each panel due to the fact that the value of the normalized smoothed statistic evolves
as the number of observations increases.

In Figure 3, we again report the cases n = 100, 1000, 10,000 observations and compare the
basic approximation strategy (4) with the one based on fixed-lag smoothing with suitable lags.
Guided by the plots of Figure 2 and the theory developed in the previous section, we choose the
lags 24, 24 and 25, respectively. The number of particles was set to 1000 for all n. It is obvious
that fixed-lag smoothing drastically reduces the variance without significantly raising the bias.
As in the previous figure, dotted lines indicate exact values. As expected, the bias of the two
techniques increases with n since the number of particles is held constant.



166 J. Olsson et al.

Figure 2. Boxplots of estimates of φν,0:n|nSn,1/n, produced with the fixed-lag technique, for the noisily
observed AR(1) model in Example 4.1.

Figure 3. Boxplots of estimates of φν,0:n|nSn,1/n, produced by means of both the fixed-lag technique and
standard trajectory-based smoothing, for the noisily observed AR(1) model in Example 4.1. Each box is
based on 200 estimates, and the size of the particle population was N = 1000 for all cases.
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Example 4.2 (SMCEM for the stochastic volatility (SV) model). In the discrete-time case, the
canonical version of the SV model (Hull and White [9], Jacquier et al. [10]) is given by the two
relations

Xk+1 = αXk + σεk+1,

Yk = β exp(Xk/2)εk

with {εk; k ≥ 1} and {εk; k ≥ 0} being mutually independent sets of standard normal distributed
variables such that Wk+1 is independent of (Xi, Yi), 0 ≤ i ≤ k, and Vk is independent of Xk ,
(Xi, Yi), 0 ≤ i ≤ k − 1.

To use the SV model in practice, we need to estimate the parameters θ = (β,α,σ ).
Throughout this example, we will use a sequence of data obtained by simulation under
the parameters β∗ = 0.63, α∗ = 0.975 and σ ∗ = 0.16. These parameters are consistent
with empirical estimates for daily equity return series and are often used in simulation
studies. In conformity with Example 4.1, we assume that the latent chain is initialized
by an improper diffuse prior. The SV model is within the scope of exponential families,
with ψ(θ) = [−α2/(2σ 2),−1/(2σ 2), α/σ 2,−1/(2β2)] and components of Sn(x0:n) given
by Sn,1(x0:n) �

∑n−1
k=0 x2

k , Sn,2(x0:n) �
∑n

k=1 x2
k , Sn,3(x0:n) �

∑n
k=1 xkxk−1 and Sn,4(x0:n) �∑n

k=0 yk exp(−xk). In addition, up to terms not depending on parameters, c(θ) = (n +
1) log(β2)/2 + (n + 1) log(σ 2)/2.

Let Ŝn = (Ŝn,1, Ŝn,2, Ŝn,3, Ŝn,4) be a particle approximation of φν,0:n|n(Sn; θ̂ i−1). To apply the
Monte Carlo EM algorithm to the SV model is not more involved than for the autoregressive
model in Example 4.1. In fact, the updating formulas appear to be completely analogous:

α̂i = Ŝn,3

Ŝn,1
, (̂σ i)2 = 1

n
(Ŝn,2 − α̂i Ŝn,3), (β̂i)2 = Ŝn,4

n + 1
.

As proposal kernel Rk , we use an approximation, used by Cappé et al. ([2], Example 7.2.5)
and inspired by Pitt and Shepard [13], of the so-called optimal kernel, that is, the conditional
density of Xk+1 given both Xk and Yk+1.

We repeat the numerical investigations of Example 4.1. The resulting approximation of
φν,0:n|nSn,1, displayed in Figure 4, behaves similarly. Here, again, we observe that moderate
values of the lag � are sufficient to suppress the bias.

We finally compare the SMCEM parameter estimates obtained with the fixed-lag approxi-
mation and with the standard trajectory-based approximation on a simulated dataset of length
n = 5000. Note that for the SMCEM procedure to converge to the MLE, it is necessary to in-
crease the number of simulations that are performed as we progress through the EM iterations.
We follow the recommendation of Fort and Moulines [8] and start by running 150 iterations of
the Monte Carlo EM procedure with the number of particles set at N = 100. For the subsequent
100 iterations, the number of particles increases at a quadratic rate with a final value (for the
250th Monte Carlo EM iteration) equal to N = 1600. The cumulative number of simulations
performed during the 250 SMCEM iterations is equal to 75,000 (times the length of the ob-
servation sequence), which is quite moderate for a Monte Carlo-based optimization method. In
Figures 5 and 6, we display the superimposed trajectories of parameter estimates for 50 realiza-
tions of the particles, together with histograms of the final estimates (at iteration 250) when using,



168 J. Olsson et al.

Figure 4. Boxplots of estimates of φν,0:n|nSn,1/n, produced with the fixed-lag technique, for the SV model
in Example 4.2. Each box is based on 200 estimates and the size of the particle population was set to
N = 1000 in all cases.

Figure 5. SMCEM parameter estimates of β , α and σ from n = 5000 observations using the standard
trajectory-based smoothing approximation. Each plot overlays 50 realizations of the particle simulations;
the histograms pertain to the final (250th) SMCEM iteration.
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Figure 6. SMCEM parameter estimates of β , α and σ from n = 5000 observations using the fixed-lag
smoothing approximation with � = 40. Each plot overlays 50 realizations of the particle simulations; the
histograms pertain to the final (250th) SMCEM iteration.

respectively, the trajectory-based approximation (in Figure 5) and the fixed-lag approximation
with � = 40 (in Figure 6). Not surprisingly, the fact that the particle simulations are iterated
for several successive values of the parameter estimates only amplifies the differences observed
so far. With the fixed-lag approximation, the standard deviation of the final SMCEM parameter
estimate is divided by a factor of seven for β , and three for α and σ , which is quite impressive
in the context of Monte Carlo methods: to achieve the same accuracy with the trajectory-based
approximation, one would need about ten times more particles to compensate for the higher
simulation variance. Table 1 shows that the fixed-lag approximation (third row) indeed remains
more reliable than the trajectory-based approximation, even when the latter is computed from

Table 1. Mean and standard deviation of SMCEM parameter estimates at the 250th iteration (estimated
from 50 independent runs)

Smoothing algorithm β̂ α̂ σ̂

Trajectory-based, 0.5991 0.9742 0.1659
with 75,000 total simulations std. 0.0136 std. 0.0019 std. 0.0070
Trajectory-based, 0.5990 0.9739 0.1666
with 750,000 total simulations std. 0.0045 std. 0.0011 std. 0.0043
Fixed-lag, 0.5962 0.9735 0.1682
with 75,000 total simulations std. 0.0019 std. 0.0006 std. 0.0024
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ten times more particles (second row). Note that, for the trajectory-based approximation, multi-
plying the number of particles by ten does not reduce the standard deviation of the estimates as
much as expected from the asymptotic theory. This is certainly due to the moderate number of
particles used in the baseline setting, as we start from N = 100 particles during the first SMCEM
iterations and terminate with N = 1600.

Appendix A: Proofs

A.1. Proof of Theorem 3.3

The proof of Theorem 3.3 partly comprises the geometric ergodicity of the time-reversed condi-
tional hidden chain (Theorem 3.1), partly the next proposition. In the following, we omit θ from
the notation for brevity. Moreover, let Ci (Xn+1) be the set of bounded measurable functions f on
Xn+1, possibly depending on Y0:n, of type f (x0:n) = f̄ (xi:n) for some function f̄ : Xn−i+1 → R.

Proposition A.1. Assume (A1) and (A2), and let f ∈ Ci (Xn+1), 0 ≤ i ≤ n. There then exist
universal constants Bp and B , Bp depending only on p, such that the following holds for all
N ≥ 1:

(i) for all p ≥ 2,

‖φ̂N
ν,0:n|nfi − φν,0:n|nfi‖p|Gn

≤ Bp‖fi‖Xn+1,∞√
N(1 − ρ)

[
1

σ−

n∑
k=1

‖Wk‖X2,∞ρ0∨(i−k)

μg(Yk)
+ ‖W0‖X,∞ρi

νg0
+ 1

]
;

(ii) ∣∣ĒN [φ̂N
ν,0:n|nfi |Gn] − φν,0:n|nfi

∣∣
≤ B‖fi‖Xn+1,∞

N(1 − ρ)2

[
1

σ 2−

n∑
k=1

‖Wk‖2
X2,∞ρ0∨(i−k)

{μg(Yk)}2
+ ‖W0‖2

X,∞ρi

{νg(Y0)}2

]
.

To prove Proposition A.1, we need some preparatory lemmas and definitions. In accordance
with the mutation-selection procedure presented in Section 2, we have, for k ≥ 1, A ∈ X⊗(k+1)

and i ∈ {1, . . . ,N}, that

P̄
N(ξ

N,j

0:k ∈ A|Gk ∨FN
k−1)

=
N∑

j=1

P̄
N(I

N,i
k−1 = j |Gk ∨FN

k−1)P̄
N(ξ

N,j

0:k ∈ A|IN,i
k−1 = j,Gk ∨FN

k−1)

=
N∑

j=1

ω
N,j

k−1


N
k−1

R
p
k−1(ξ

N,j

0:k−1A).
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That is, conditional on FN
k−1, the swarm {ξN,i

0:k ;1 ≤ i ≤ N} of mutated particles at time k is
obtained by sampling N independent and identically distributed particles from the measure

ηN
k � φN

ν,0:k−1|k−1R
p
k−1. (A.1)

Using this, define, for A ∈X⊗(k+1),

μN
k|n(A) �

∫
A

dμN
k|n

dηN
k

(x0:k)ηN
k (dx0:k), (A.2)

where the Radon–Nikodým derivative is given by, for x0:k ∈ Xk+1,

dμN
k|n

dηN
k

(x0:k) � Wk(xk−1:k)Lk · · ·Ln−1(x0:k,Xn+1)

φN
ν,0:k−1|k−1Lk−1 · · ·Ln−1(Xn+1)

.

In addition, for A ∈X , let

μ0|n(A) �
∫

A

μ0|n
dς

(x0)ς(dx0)

with, for x0 ∈ X and y0 ∈ Y,

μ0|n
dς

(x0) � W0(x0)L0 · · ·Ln−1(x0,Xn+1)

ν[g(·, y0)L0 · · ·Ln−1(Xn+1)] .

Lemma A.2. Let f ∈ Bb(Xn+1). Then, for all n ≥ 0 and N ≥ 1,

φN
ν,0:n|nf − φν,0:n|nf =

n∑
k=0

ϕN
k (f ),

where, for k ≥ 1,

ϕN
k (f ) �

∑N
i=1 dμN

k|n/dηN
k (ξ

N,i
0:k )�k,n[f ](ξN,i

0:k )∑N
j=1 dμN

k|n/dηN
k (ξ

N,j

0:k )
− μN

k|n�k,n[f ], (A.3)

ϕN
0 (f ) �

∑N
i=1 dμ0|n/dς(ξ

N,i
0 )�0,n[f ](ξN,i

0 )∑N
j=1 dμ0|n/dς(ξ

N,j

0 )
− μ0|n�0,n[f ]

and the operators �k,n :Bb(Xk+1) → Bb(Xk+1), 0 ≤ k ≤ n + 1, are, for fixed points x̂0:k ∈ Xk+1,
defined by

�k,n[f ](x0:k) � Lk · · ·Ln−1f (x0:k)
Lk · · ·Ln−1(x0:k,Xn+1)

− Lk · · ·Ln−1f (̂x0:k)
Lk · · ·Ln−1(̂x0:k,Xn+1)

. (A.4)
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Proof. As a starting point, consider the decomposition

φN
ν,0:n|nf − φν,0:n|nf

= φN
ν,0L0 · · ·Ln−1f

φN
ν,0L0 · · ·Ln−1(Xn+1)

− φν,0:n|nf

+
n∑

k=1

[
φN

ν,0:k|kLk · · ·Ln−1f

φN
ν,0:k|kLk · · ·Ln−1(Xn+1)

− φN
ν,0:k−1|k−1Lk−1 · · ·Ln−1f

φN
ν,0:k−1|k−1Lk−1 · · ·Ln−1(Xn+1)

]
.

Using the definitions (A.1) and (A.2) of ηN
k and μN

k|n, respectively, we may write, for k ≥ 1,

φN
ν,0:k−1|k−1Lk−1 · · ·Ln−1f

φN
ν,0:k−1|k−1Lk−1 · · ·Ln−1(Xn+1)

= ηN
k

[
Wk(·)Lk · · ·Ln−1f (·)

φN
ν,0:k−1|k−1Lk−1 · · ·Ln−1(Xn+1)

]

= ηN
k

[
Wk(·)Lk · · ·Ln−1(·,Xn+1)

φN
ν,0:k−1|k−1Lk−1 · · ·Ln−1(Xn+1)

{
�k,n[f ](·) + Lk · · ·Ln−1f (̂x0:k)

Lk · · ·Ln−1(̂x0:k,Xn+1)

}]

= μN
k|n

[
�k,n[f ](·) + Lk · · ·Ln−1f (̂x0:k)

Lk · · ·Ln−1(̂x0:k,Xn+1)

]
= μN

k|n�k,n[f ] + Lk · · ·Ln−1f (̂x0:k)
Lk · · ·Ln−1(̂x0:k,Xn+1)

.

On the other hand,

φN
ν,0:k|kLk · · ·Ln−1f

φN
ν,0:k|kLk · · ·Ln−1(Xn+1)

=
∑N

i=1 dμN
k|n/dηN

k (ξ
N,i
0:k )�k,n[f ](ξN,i

0:k )∑N
j=1 dμN

k|n/dηN
k (ξ

N,j

0:k )
+ Lk · · ·Ln−1f (̂x0:k)

Lk · · ·Ln−1(̂x0:k,Xn+1)

and, by combining the two latter identities, it follows from the definition (A.3) of ϕN
k (f ) that,

for k ≥ 1,

ϕN
k (f ) = φN

ν,0:k|kLk · · ·Ln−1f

φN
ν,0:k|kLk · · ·Ln−1(Xn+1)

− φN
ν,0:k−1|k−1Lk−1 · · ·Ln−1f

φN
ν,0:k−1|k−1Lk−1 · · ·Ln−1(Xn+1)

.

The identity

ϕN
0 (f ) = φN

ν,0L0 · · ·Ln−1f

φN
ν,0L0 · · ·Ln−1(Xn+1)

− φν,0:n|nf
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can be verified in a similar manner. �

Note that, conditional on FN
k−1, the first term on the right-hand side of (A.3) is nothing but an

importance sampling estimate of μN
k|n�k,n[f ], based on N independent ηN

k -distributed variables.

Lemma A.3. Assume (A1) and let, for n ≥ 0 and 0 ≤ i ≤ n, fi ∈ Ci (Xn+1). Furthermore, let, for
k ≥ 0, the operator �k,n be defined via (A.4). Then,

‖�k,n[fi]‖Xk+1,∞ ≤ 2ρ0∨(i−k)‖fi‖Xn+1,∞.

Proof. For k ≥ i, we bound �k,n[fi] from above by 2‖fi‖Xn+1,∞; however, for k < i, a geo-
metrically decreasing bound of the function can be obtained by using the forgetting property of
the conditional latent chain. Hence, by the Markov property of the posterior chain and using the
definition of the forward kernels (see (2)),

Lk · · ·Ln−1fi(x0:k)
Lk · · ·Ln−1(x0:k,Xn+1)

= E[fi(Xi:n)|X0:k = x0:k,Gn]

= E
[
E[fi(Xi:n)|Xi = xi,Gn]|Xk = xk,Gn

]
= Fk|n · · ·Fi−1|n{xk,E[fi(Xi:n)|Xi = ·,Gn]}

with x0:k ∈ Xk+1. Therefore, we may, for k < i, rewrite �k,n[fi](x0:k) as

�k,n[fi](x0:k)

=
∫

X
{Fk|n · · ·Fi−1|n(xk,dxi) − Fk|n · · ·Fi−1|n(x̂k,dxi)}E[fi(Xi:n)|Xi = xi,Gn].

Applying Theorem 3.1 to this difference yields

|�k,n[fi](x0:k)|
≤ 2‖E[fi(Xi:n)|Xi = ·,Gn]‖X,∞‖Fk|n · · ·Fi−1|n(xk, ·) − Fk|n · · ·Fi−1|n(̂xk, ·)‖TV

≤ 2‖E[fi(Xi:n)|Xi = ·,Gn]‖X,∞ρi−k ≤ 2‖fi‖Xn+1,∞ρi−k.

�

Lemma A.4. Assume (A1) and let n ≥ 0. Then, for all 1 ≤ k ≤ n, x0:k ∈ Xk+1, yk ∈ Y and N ≥ 1,

dμN
k|n

dηN
k

(x0:k) ≤ ‖Wk‖X2,∞
μg(yk)(1 − ρ)σ−

,

where ηN
k and μN

k|n are defined in (A.1) and (A.2), respectively.
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Proof. First write, for x0:k ∈ Xk+1 and yk+1 ∈ Y,

Lk · · ·Ln−1(x0:k,Xn+1)

=
∫

X
q(xk, xk+1)Lk+1 · · ·Ln−1(x0:k+1,Xn+1)g(xk+1, yk+1)μ(dxk+1)

≤ σ+
∫

X
Lk+1 · · ·Ln−1(x0:k+1,Xn+1)g(xk+1, yk+1)μ(dxk+1). (A.5)

Now, since the function Lk+1 · · ·Ln−1(·,Xn+1) is constant in all but the last component of the
argument,

Lk−1 · · ·Ln−1(x0:k−1,Xn+1)

=
∫

X
q(xk−1, xk)g(xk, yk)

∫
X
q(xk, xk+1)Lk+1 · · ·Ln−1(x0:k+1,Xn+1)

× g(xk+1, yk+1)μ
⊗2(dxk:k+1)

≥ μg(yk)σ
2−
∫

X
Lk+1 · · ·Ln−1(x0:k+1,Xn+1)g(xk+1, yk+1)μ(dxk+1). (A.6)

Since the integrals in (A.5) and (A.6) are equal, the bound of the lemma follows. �

Proof of Proposition A.1. We start with (i). Since, conditional on FN
n , the random variables

fi(ξ̂
N,j

0:n ), 1 ≤ j ≤ N , are independent and identically distributed with expectations

Ē
N
θ [fi(ξ̂

N,j

0:n )|Gn ∨FN
n ] = 1


N
n

N∑
j=1

ω
N,j
n fi(ξ

N,j

0:n ), (A.7)

applying the Marcinkiewicz–Zygmund inequality provides the bound

Np/2
Ē

N
θ

[∣∣∣∣∣ 1

N

N∑
j=1

fi(ξ̂
N,j

0:n ) − 1


N
n

N∑
j=1

ω
N,j
n fi(ξ

N,j

0:n )

∣∣∣∣∣
p∣∣∣Gn ∨FN

n

]
≤ Cp‖fi‖p

Xn+1,∞, (A.8)

where Cp is a universal constant depending only on p. Having control of this discrepancy, we
focus instead on the Lp error associated with the weighted empirical measure φN

ν,0:n|n. We make
use of the identity

a/b − c = (a/b)(1 − b) + a − c

on each term of the decomposition provided by Lemma A.2. This, together with Minkowski’s
inequality, gives us the bound

‖ϕN
k (fi)‖p|Gn∨FN

k
≤

∥∥∥∥∥ 1

N

N∑
j=1

dμN
k|n

dηN
k

(ξ
N,j

0:k )�k,n[fi](ξN,j

0:k )(k) − μN
k|n�k,n[fi]

∥∥∥∥∥
p|Gn∨FN

k−1
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+ ‖�k,n[fi]‖Xk+1,∞

∥∥∥∥∥ 1

N

N∑
j=1

dμN
k|n

dηN
k

(ξ
N,j

0:k ) − 1

∥∥∥∥∥
p|Gn∨FN

k−1

. (A.9)

Applying the Marcinkiewicz–Zygmund inequality to the first term of this bound gives

Np/2
Ē

N

[∣∣∣∣∣ 1

N

N∑
j=1

dμN
k|n

dηN
k

(ξ
N,j

0:k )�k,n[fi](ξN,j

0:k ) − μN
k|n�k,n[fi]

∣∣∣∣∣
p∣∣∣Gn ∨FN

k−1

]

≤ Cp

∥∥∥∥dμN
k|n

dηN
k

∥∥∥∥p

Xk+1,∞
‖�k,n[fi]‖p

Xk+1,∞ (A.10)

and treating the second term in a similar manner yields

Np/2
Ē

N

[∣∣∣∣∣ 1

N

N∑
j=1

dμN
k|n

dηN
k

(ξ
N,j

0:k ) − 1

∣∣∣∣∣
p∣∣∣Gn ∨FN

k−1

]
≤ Cp

∥∥∥∥dμN
k|n

dηN
k

∥∥∥∥p

Xk+1,∞
. (A.11)

Thus, we obtain, by inserting these bounds into (A.9) and applying Lemmas A.3 and A.4,

√
N‖ϕN

k (fi)‖p|Gn∨FN
k−1

≤ 4C
1/p
p ρ0∨(i−k)

‖Wk‖X2,∞‖fi‖Xn+1,∞
μg(yk)(1 − ρ)σ−

. (A.12)

For the first term of the decomposition provided by Lemma (A.2), we have, using the same
decomposition technique as in (A.9) and repeating the arguments of Lemma A.4,

√
N‖ϕN

0 (fi)‖p|Gn
≤ 2C

1/p
p

∥∥∥∥μ0|n
dς

∥∥∥∥
X,∞

‖�0:n[fi]‖X,∞
(A.13)

≤ 4C
1/p
p ρi

‖W0‖X,∞‖fi‖Xn+1,∞
νg(y0)(1 − ρ)

.

Now, (i) follows by a straightforward application of Minkowski’s inequality together with
(A.8), (A.12) and (A.13).

We turn to (ii). By means of the identity

a/b − c = (a/b)(1 − b)2 + (a − c)(1 − b) + c(1 − b) + a − c

applied to (A.3), we obtain the bound∣∣ĒN [ϕN
k (fi)|Gn ∨FN

k−1]
∣∣

≤ ‖�k,n[fi]‖Xk+1,∞

∥∥∥∥∥ 1

N

N∑
j=1

dμN
k|n

dηN
k

(ξ
N,j

0:k ) − 1

∥∥∥∥∥
2

2|Gn∨FN
k−1
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+
∥∥∥∥∥ 1

N

N∑
j=1

dμN
k|n

dηN
k

(ξ
N,j

0:k )�k,n[fi](ξN,j

0:k ) − μN
k|n�k,n[fi]

∥∥∥∥∥
2|Gn∨FN

k−1

×
∥∥∥∥∥ 1

N

N∑
j=1

dμN
k|n

dηN
k

(ξ
N,j

0:k ) − 1

∥∥∥∥∥
2|Gn∨FN

k−1

.

Thus, we get, by reusing (A.10) and (A.11),∣∣ĒN [ϕN
k (fi)|Gn]

∣∣ ≤ Ē
N

[∣∣ĒN
θ [ϕN

k (fi)|Gn ∨FN
k−1]

∣∣|Gn

]
(A.14)

≤ 4C2ρ
0∨(i−k)

‖Wk‖2
X2,∞‖fi‖Xn+1,∞

N{μg(yk)}2(1 − ρ)2σ 2−

and treating the last term of the decomposition in a completely similar manner yields

∣∣ĒN [ϕN
0 (fi)|Gn]

∣∣ ≤ 4C2ρ
i
‖W0‖2

X,∞‖fi‖Xn+1,∞
N{νg(y0)}2(1 − ρ)2

. (A.15)

Finally, from (A.7), we conclude that the multinomial selection mechanism does not introduce
any additional bias and, consequently, (ii) follows from the triangle inequality, together with
(A.14) and (A.15). �

Having established Proposition A.1, we are now ready to proceed with the proof of Theo-
rem 3.3.

Proof of Theorem 3.3. Decomposing the difference in question yields the bound

‖γ̂ N,�n
n − γn‖p|Gn

≤
n−1∑
k=0

∥∥φ̂N
ν,0:k(�n)|k(�n)sk − φν,0:k(�n)|k(�n)sk

∥∥
p|Gn

(A.16)

+
n−�n∑
k=0

|φν,0:k+�n|k+�nsk − φν,0:n|nsk|,

where we have set k(�n) = (k + �n) ∧ n. By writing

E[sk(Xk,Xk+1)|Xk+�n+1 = xk+�n+1,Gk+�n ]
= E

[
E[sk(Xk,Xk+1)|Xk+1 = xk+1,Gk+�n ]|Xk+�n+1 = xk+�n+1,Gk+�n

]
= Bν,k+�n|k+�n · · ·Bν,k+1|k+�n(xk+�n+1, ŝk|k+�n)

with, for x ∈ X,

ŝk|k+�n(x) � E[sk(Xk,Xk+1)|Xk+1 = x,Gk+�n ],
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we get that

φν,0:k+�n|k+�nsk − φν,0:n|nsk
= ψk+�n+1|k+�nBν,k+�n|k+�n · · ·Bν,k+1|k+�n (̂sk|k+�n)

− ψk+�n+1|nBν,k+�n|k+�n · · ·Bν,k+1|k+�n (̂sk|k+�n),

where we have defined, for �,m ≥ 0, ψ�|m � P(X� ∈ ·|Gm). Hence, we obtain, using the expo-
nential forgetting property (see Theorem 3.1) of the time-reversed conditional hidden chain,

|φν,0:k+�n|k+�nsk − φν,0:n|nsk|
≤ 2‖̂sk|k+�n‖X,∞‖ψk+�n+1|k+�nBν,k+�n|k+�n · · ·Bν,k+1|k+�n(·)

(A.17)
− ψk+�n+1|nBν,k+�n|k+�n · · ·Bν,k+1|k+�n(·)‖TV

≤ 2ρ�n‖sk‖X2,∞.

Substituting (A.17) and the bound of Proposition A.1(i) into the decomposition (A.16) completes
the proof of (i). The proof of part (ii) is entirely analogous and is omitted for brevity. �

A.2. Proof of Proposition 3.4

(A4) Let fi be the function of Proposition A.1. For p ≥ 2, � ≥ 1, there exists a constant
α

(n)
p,�(fi) ∈ R

+ such that

max

{
Ē

[‖Wk‖p
X,∞‖fi‖�

Xn+1,∞
{μg(Yk)}p

]
, Ē[‖fi‖�

Xn+1,∞];0 ≤ k ≤ n

}
≤ α

(n)
p,�(fi).

Under assumption (A4), we have the following result.

Proposition A.5. Assume (A1) and (A2). There then exist universal constants Bp and B , Bp

depending only on p, such that the following holds true for all N ≥ 1:

(i) if assumption (A4) is satisfied for � = p ≥ 2, then

‖φ̂N
ν,0:n|nfi − φν,0:n|nfi‖p ≤ Bp[α(n)

p,p(fi)]1/p

√
N(1 − ρ)

[
1 − ρi

σ−(1 − ρ)
+ n − i

σ−
+ ρi

(dν/dμ)−
+ 1

]
;

(ii) if assumption (A4) is satisfied for p = 2, � = 1, then

|ĒN [φ̂N
ν,0:n|nfi − φν,0:n|nfi]| ≤

Bα
(n)
2,1(fi)

N(1 − ρ)2

[
1 − ρi

σ 2−(1 − ρ)
+ n − i

σ 2−
+ ρi

(dν/dμ)2−

]
.
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Proof. The proof of the first part is straightforward: combining Proposition A.1 and Minkowski’s
inequality provides the bound

‖φ̂N
ν,0:n|nfi − φν,0:n|nfi‖p

= Ē
1/p[‖φ̂N

ν,0:n|nfi − φν,0:n|nfi‖p

p|Gn
]

≤ Bp√
N(1 − ρ)

{
1

σ−

n∑
k=1

Ē
1/p

[‖Wk‖p
X,∞‖fi‖p

Xn+1,∞
{μg(Yk)}p

]
ρ0∨(i−k)

+ 1

(dν/dμ)−
Ē

1/p

[‖W0‖p
X,∞‖fi‖p

Xn+1,∞
{μg(Y0)}p

]
+ Ē

1/p[‖fi‖p

Xn+1,∞]
}

.

We finish the proof by substituting the bounds of assumption (A4) into the expression above and
summing up. The proof of the second part follows similarly. �

Proof of Proposition 3.4. The proof of the first part follows by applying Proposition A.5 and
the bound (A.17) to the decomposition

‖γ̂ N,�n
n − γn‖p ≤

n−1∑
k=0

‖φ̂N
ν,0:k(�n)|k(�n)sk − φν,0:k(�n)|k(�n)sk‖p

+
n−�n∑
k=0

‖φν,0:k+�n|k+�nsk − φν,0:n|nsk‖p.

The second part is proved in a similar manner. �
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