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We establish estimates for the local and uniform moduli of continuity of the local time of multifractional
Brownian motion, BH = (BH(t)(t), t ∈ R

+). An analogue of Chung’s law of the iterated logarithm is stud-
ied for BH and used to obtain the pointwise Hölder exponent of the local time. A kind of local asymptotic
self-similarity is proved to be satisfied by the local time of BH .
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1. Introduction

Multifractional Brownian motion (mBm), BH = (BH(t)(t), t ∈ R
+), is a Gaussian process which

extends fractional Brownian motion (fBm) by allowing the Hurst function to vary with time. This
provides a tool to model systems whose regularity evolves over time, such as internet traffic or
images. Recently, Boufoussi et al. [6] have investigated, under mild regularity conditions on
H(·), the existence of jointly continuous local times of mBm. Their objective was to explore
the link between the pointwise regularity of the local time and the irregularity of the underling
process. This effect of inverse regularity was observed by Berman [5] for the case of uniform
regularity.

The first aim of this paper is to establish estimates for the local and uniform moduli of conti-
nuity for the local time of mBm. Upper bounds for the moduli of continuity of local times have
been obtained by Kôno [16] for Gaussian processes with stationary increments and, more re-
cently, Csörgö et al. [8] have proved upper bounds for the moduli of continuity of the maxima of
local times for stationary Gaussian processes and Gaussian processes with stationary increments.
However, contrary to classical results, the moduli of continuity obtained in this paper depend on
the point at which the regularity is studied. This is natural, since mBm has a regularity evolving
over time. The approach of the present paper seems to be useful for extending the results of Kôno
[16] and Csörgö et al. [8] to Gaussian processes without stationary increments.

Chung’s form of the law of iterated logarithm for mBm is established in Section 4. This result
is used to prove that the pointwise Hölder exponent of its local time with respect to time is equal
to 1 − H(t), uniformly in x.

The second main objective of the paper concerns the question of whether the sample path
properties of mBm can be transferred to its local time. If H(·) is not constant, the mBm is no
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longer self-similar. However, it is proved by Lévy-Véhel and Peltier ([17], Proposition 5) that if
H is β-Hölder continuous and supt∈R+ H(t) < β , then a property called local asymptotic self-
similarity remains, defined as follows:

lim
ρ−→0+ law

{
B(t + ρu) − B(t)

ρH(t)
, u ∈ R

}
= law

{
BH(t)(u),u ∈ R

}
, (1)

where BH(t) is fBm with Hurst parameter H(t). It is the purpose of Section 5 to prove that the
local time of mBm has a kind of local asymptotic self-similarity. Through this result, we obtain
some local limit theorems corresponding to the mBm.

We will use C,C1, . . . to denote unspecified positive finite constants which may not necessarily
be the same at each occurrence.

2. Preliminaries

In this section, we present some notation and collect facts about multifractional Brownian motion
and its local times.

2.1. Multifractional Brownian motion

mBm was introduced independently by Lévy-Véhel and Peltier [17] and Benassi et al. [3]. The
definition due to Lévy-Véhel and Peltier [17] is based on the moving average representation of
fBm, where the constant Hurst parameter H is replaced by a function H(t) as follows:

BH(t)(t) = 1

�(H(t) + 1/2)

(∫ 0

−∞
[
(t − u)H(t)−1/2 − (−u)H(t)−1/2]W(du)

+
∫ t

0
(t − u)H(t)−1/2W(du)

)
, t ≥ 0, (2)

where H(·) : [0,∞) −→ [µ,ν] ⊂ (0,1) is a Hölder continuous function and W is the standard
Brownian motion defined on (−∞,+∞). Benassi et al. [3] defined mBm by means of the har-
monizable representation of fBm as follows:

B̂H(t)(t) =
∫

R

eitξ − 1

|ξ |H(t)+1/2
dŴ (dξ), (3)

where Ŵ (ξ) is the Fourier transform of the series representation of white noise with respect to
an orthonormal basis of L2(R) (we refer to Cohen [7] for the precise definition and for the fact
that B̂H is real-valued).

Various properties of mBm have already been investigated in the literature, related, for in-
stance, to its pointwise and uniform Hölder regularity, as well as the local Hausdorff dimension
of its sample paths. More precisely, it is known from Lévy-Véhel and Peltier ([17], Proposition 8)



Sample path properties of the local time of multifractional Brownian motion 851

that with probability one, for each t0 ≥ 0, the Hölder exponent at t0 of mBm is H(t0). Recall that
the pointwise Hölder exponent of a stochastic process X at t0 is defined by

αX(t0,ω) = sup

{
α > 0, lim

ρ→0

X(t0 + ρ,ω) − X(t0,ω)

ρα
= 0

}
. (4)

In addition, according to the same authors, the local Hausdorff dimension of the graph is 2 −
mint∈[a,b] H(t) almost surely for each interval [a, b] ⊂ R

+.
According to the previous results, the regularity of mBm depends on the regularity of H .

Furthermore, by using Lemma 3.1 in Boufoussi et al. [6], we can easily prove that the irregularity
of H implies the irregularity of mBm. More precisely, the points of discontinuity of H are also
discontinuities of B (see Ayache [2], Proposition 1).

2.2. Local times

We end this section by briefly recalling some aspects of the theory of local times. For a compre-
hensive survey on local times of both random and non-random vector fields, we refer to Geman
and Horowitz [12], Dozzi [10] and Xiao [21].

Let X = (X(t), t ∈ R
+) be a real-valued separable random process with Borel sample func-

tions. For any Borel set B ⊂ R
+, the occupation measure of X on B is defined as

µB(A) = λ{s ∈ B :X(s) ∈ A}, for all A ∈ B(R),

where λ is the one-dimensional Lebesgue measure on R
+. If µB is absolutely continuous with

respect to Lebesgue measure on R, we say that X has a local time on B and define its local time,
L(B, ·), to be the Radon–Nikodym derivative of µB. Here, x is the so-called space variable and
B is the time variable.

By standard monotone class arguments, one can deduce that the local times have a measurable
modification that satisfies the following occupation density formula: for every Borel set B ⊂ R

+
and every measurable function f : R → R+,∫

B

f (X(t))dt =
∫

R

f (x)L(B,x)dx.

Recently, Boufoussi et al. [6] have proved that if the Hurst function is Hölder continuous with
exponent β and if supt≥0 H(t) < β , then the mBm has a jointly continuous local time, that is,
the mapping (t, x) → L(t, x) is continuous. In addition, this local time has the following Hölder
continuities. It satisfies, for any compact U ⊂ R,

(i)

sup
x∈U

|L(t + h,x) − L(t, x)|
|h|γ < +∞ a.s., (5)

where γ < 1 − H(t) and |h| < η, η being a small random variable almost surely positive and
finite;
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(ii) for any I ⊂ [0, T ] with small length,

sup
x,y∈U,x �=y

|L(I, x) − L(I, y)|
|x − y|α < +∞ a.s., (6)

where α < ( 1
2 supI H(t)

− 1
2 ) ∧ 1.

These results have been used to obtain the local and pointwise Hausdorff dimension of the
level sets of mBm. We refer to Boufoussi et al. [6] for definitions and results.

3. Moduli of continuity of the local time

Throughout this section, the Hurst function H : R+ → [µ,ν] ⊂ (0,1) is assumed to be measur-
able. The notation B = (B(t), t ≥ 0) means that either representation, (2) or (3), can be chosen.
Moreover, we say that H satisfies the condition (Hβ) if

H is β-Hölder continuous with sup
s≥0

H(s) < β .

We give the following improvement of Theorem 3.1 of Boufoussi et al. [6]. Note that the first
part reproduces this theorem without assuming (Hβ).

Theorem 3.1. Consider a measurable function H(·) : R+ → [µ,ν] ⊂ (0,1). The mBm with
Hurst function H(·) given by (2) admits on any interval [a, b] ⊂ [0,∞) a square-integrable
local time. Moreover, for both representations (2) and (3), if (Hβ) holds, the existence of square-
integrable local times implies that H(t) < 1 for almost all t .

Proof. Let us write, for simplicity,

BH(t)(t) =
∫ t

−∞
KH(t)(t, u)dW(u),

where

KH(t)(t, u) = 1

�(H(t) + 1/2)

[
(t − u)

H(t)−1/2
+ − (−u)

H(t)−1/2
+

]
.

For any t > s, taking the variance of BH(t)(t) − BH(s)(s), we obtain

Var
(
BH(t)(t) − BH(s)(s)

) ≥ Var
(
BH(t)(t) − BH(s)(s)/W(u),u ≤ s

)
= Var

(
BH(t)(t)/W(u),u ≤ s

)
, (7)

where the last equality follows from the fact that BH(s)(s) is measurable with respect to
σ(W(u),u ≤ s). Moreover, we can write

BH(t)(t) =
∫ t

−∞
KH(t)(t, u)dW(u) =

∫ s

−∞
KH(t)(t, u)dW(u) +

∫ t

s

KH(t)(t, u)dW(u).
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Hence, by using the measurability of
∫ s

−∞ KH(t)(t, u)dW(u) with respect to σ(W(u)/u ≤ s),

we obtain

Var
(
BH(t)(t)/W(u),u ≤ s

) = Var

(∫ t

s

KH(t)(t, u)dW(u)/W(u),u ≤ s

)
= Var

(∫ t

s

KH(t)(t, u)dW(u)

)
, (8)

where, to obtain the last equality, we have used the fact that
∫ t

s
KH(t)(t, u)dW(u) is independent

of σ(W(u),u ≤ s) (by the independence of the increments of the Brownian motion). Combining
(7) and (8) and denoting C = supu∈[µ,ν] �(1/2 + u), we obtain

Var
(
BH(t)(t) − BH(s)(s)

) ≥ 1

�(1/2 + H(t))2

∫ t

s

(t − r)2H(t)−1 dr

≥ 1

2νC2
(t − s)2H(t).

Therefore, ∫
[a,b]

∫
[a,b]

(
E
[
BH(t)(t) − BH(s)(s)

]2)−1/2 ds dt

≤ √
2νC

∫
[a,b]

∫
[a,b]

|t − s|− supr≥0 H(r) ds dt. (9)

The last integral is finite because supr≥0 H(r) < 1. By Theorem 22.1 in Geman and Horowitz
[12], BH has local time L([a, b], ·) ∈ L2(R).

We now prove the second point. According to Boufoussi et al. [6], we have, for any interval
[a, b] ⊂ [0,∞) with small length,

E
(
B(t) − B(s)

)2 ≤ Cµ,ν |t − s|2H(t), for s, t ∈ [a, b]. (10)

On the other hand, since the local time exists on the interval [a, b], then according to Geman and
Horowitz ([12], Theorem 22.1 expression (22.3)), the following integral is finite∫ b

a

∫ b

a

1

[E(B(t) − B(s))2]1/2
ds dt.

Then, (10) implies that ∫ b

a

∫ b

a

1

(t − s)H(t)
ds dt < ∞.

Consequently, H(t) < 1 for almost all t ∈ [a, b]. Since R+ is a countable union of small intervals,
the result is proved. �
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In what follows, we are interested in the local and pointwise oscillations (at each t) of the local
time of mBm.

Theorem 3.2. Let {BH(t)(t), t ≥ 0} be the mBm given in (2) with Hurst function H(·) satisfy-
ing the assumption (Hβ). Then, for every t ∈ R

+ and any x ∈ R, there exist positive and finite
constants C1 and C2 such that

lim sup
δ→0

L(t + δ,BH(t)(t)) − L(t,BH(t)(t))

δ1−H(t)(log log(δ−1))H(t)
≤ C1 a.s., (11)

lim sup
δ→0

L(t + δ, x) − L(t, x)

δ1−H(t)(log log(δ−1))H(t)
≤ C2 a.s. (12)

Proof. Let t ≥ 0 be a fixed point, suppose 0 < h < 1 and define Ht,t+h = sups∈[t,t+h] H(s).
According to the Fourier analytic approach of Berman [4] (see also Davies [9], expression (27)),
we have

E
[
L

(
t + h,BH(t)(t)

) − L
(
t,BH(t)(t)

)]m
= 1

(2π)m

∫
[t,t+h]m

∫
Rm

E
(
ei

∑m
j=1 uj (B

H(sj )
(sj )−BH(t)(t))

) m∏
j=1

duj

m∏
j=1

dsj .

Let B̃(s) = BH(s)(s) − BH(t)(t), s ≥ 0, and denote by R(s1, . . . , sm) the covariance matrix of
(B̃(s1), . . . , B̃(sm)) for distinct s1, . . . , sm. Let U = (u1, . . . , um) ∈ R

m and let UT denote the
transpose of U . According to (16) below, we have detR(s1, . . . , sm) > 0. Hence, the change of
variable V = R1/2U implies that∫

Rm

E
(
ei

∑m
j=1 uj B̃(sj )

)
du1 · · · dum = (2π)m/2

(detR(s1, . . . , sm))1/2
.

Therefore,

E
[
L

(
t + h,BH(t)(t)

) − L
(
t,BH(t)(t)

)]m
= 1

(2π)m/2

∫
[t,t+h]m

1

(detR(s1, . . . , sm))1/2
ds1 · · · dsm

= m!
(2π)m/2

∫
t<s1<···<sm<t+h

1

(detR(s1, . . . , sm))1/2
ds1 · · · dsm. (13)

In addition,

detR(s1, . . . , sm)

= Var(B̃(s1))Var
(
B̃(s2)/B̃(s1)

) · · ·Var
(
B̃(sm)/B̃(s1), . . . , B̃(sm−1)

)
. (14)
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Using arguments similar to those used in the proof of Theorem 3.1, we obtain, for any r, s ∈
[t, t + h] such that r < s,

Var
(
B̃(s)/B̃(u),u ∈ A,u ≤ r

) ≥ Var
(
B̃(s) − B̃(r)/W(u),u ≤ r

)
≥ Var

(
BH(s)(s)/W(u),u ≤ r

)
≥ 1

2νC2
(s − r)2H(s), (15)

where C = supx∈[µ,ν] �(x + 1/2). Combining (14) and (15), we obtain

detR(s1, . . . , sm) ≥ 1

(2νC2)m

m∏
j=1

(sj − sj−1)
2H(sj )

≥ 1

(2νC2)m

m∏
j=1

(sj − sj−1)
2Ht,t+h , (16)

where s0 = 0 and (sj − sj−1)
H(sj ) ≥ (sj − sj−1)

Ht,t+h , since (sj − sj−1) < 1.
According to (13), we have

E
[
L

(
t + h,BH(t)(t)

) − L
(
t,BH(t)(t)

)]m
≤

(
νC2

π

)m/2

m!
∫

t<s1<···<sm<t+h

m∏
j=1

1

(sj − sj−1)
Ht,t+h

ds1 · · · dsm.

Now, by an elementary calculation (cf. Ehm [11]), for all m ≥ 1, h > 0 and bj < 1,

∫
t<s1<···<sm<t+h

m∏
j=1

(sj − sj−1)
−bj ds1 · · · dsm = h

m−∑m
j=1 bj

∏m
j=1 �(1 − bj )

�(1 + m − ∑m
j=1 bj )

.

Therefore,

E
[
L

(
t + h,BH(t)(t)

) − L
(
t,BH(t)(t)

)]m
≤ m!

(
νC2

π

)m/2

hm(1−Ht,t+h) (�(1 − Ht,t+h))
m

�(1 + m(1 − Ht,t+h))
.

According to Stirling’s formula, we have (m!/�(1+m(1−Ht,t+h))) ≤ Mmm!Ht,t+h ,m ≥ 2, for
a suitable finite number M . Therefore,

E

[
L(t + h,BH(t)(t)) − L(t,BH(t)(t))

h1−Ht,t+h

]m

≤ Cmm!Ht,t+h . (17)
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We shall now prove that for any K > 0, there exists a positive and finite constant A > 0, depend-
ing on t , such that for sufficiently small u,

P

(
L

(
t + h,BH(t)(t)

) − L
(
t,BH(t)(t)

) ≥ Ah1−Ht,t+h

uHt,t+h

)
≤ exp(−K/u). (18)

First consider u of the form u = 1/m. Combining Chebyshev’s inequality and (17), we obtain

P

(
L(t + h,BH(t)(t)) − L(t,BH(t)(t))

h1−Ht,t+h
≥ AmHt,t+h

)
≤ E

[
L(t + h,BH(t)(t)) − L(t,BH(t)(t))

Ah(1−Ht,t+h)mHt,t+h

]m

≤ Cm

Am

(
1

m

)mHt,t+h

(m!)Ht,t+h .

Again using Stirling’s formula, the last expression is at most Cm

Am (2πm)Ht,t+h/2e−Ht,t+hm. This
can be written as

exp

(
m[log(C/A) − Ht,t+h] + Ht,t+h

2
[log(m) + log(2π)]

)
. (19)

Choose A > C and m0 large such that for any m ≥ m0, to dominate (19) by e−2Km. Moreover, for
u sufficiently small, there exists m ≥ m0 such that um+1 < u < um and since m ≥ 1, m

m+1 ≥ 1
2 .

This proves (18).
In addition, if we take u(h) = 1/ log log(1/h) and first consider hm of the form 2−m, then (18)

implies

P
(
L

(
t + hm,BH(t)(t)

) − L
(
t,BH(t)(t)

) ≥ Ah
1−Ht,t+hm
m

(
log log(1/hm)

)Ht,t+hm
) ≤ m−2

for large m. Consequently, by using the Borel–Cantelli lemma and monotonicity arguments, we
obtain

L(t + h,BH(t)(t)) − L(t,BH(t)(t))

h1−Ht,t+h
≤ A

(
log log(1/h)

)Ht,t+h a.s.

In addition, the Hölder regularity of H implies that

log log(1/h)Ht,t+h

log log(1/h)H(t)
= eKhβ log log log 1/h → 1 as h → 0+.

Therefore, (
log log(1/h)

)Ht,t+h ≤ K
(
log log(1/h)

)H(t)

for sufficiently small h. Moreover, using the same arguments (see Remark 3.7 in Boufoussi et al.
[6]), we obtain

h1−Ht,t+h ≤ Kh1−H(t). (20)
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This completes the proof of (11). Since (12) is proved in the same manner, the proof is omitted
here. �

Remark 3.3. The result of the previous theorem, with sups∈[t,t+h] H(s) instead of H(t), may be
proven even when (Hβ) is not satisfied.

We shall also prove the following uniform result.

Theorem 3.4. Let {BH(t)(t), t ∈ [0,1]} be the mBm in (2) with arbitrary Hurst function and
define H0,1 = sups∈[0,1] H(s). Then, for all x ∈ R, there exists C3 > 0 such that

lim sup
|t−s|↘0+
t,s∈[0,1]

|L(t, x) − L(s, x)|
|t − s|1−H0,1(log(1/|t − s|))H0,1

≤ C3 a.s. (21)

Proof. By using the same arguments as above, without using the Hölder continuity of H , we
show that with probability one, there exists m0(ω) such that for all m ≥ m0(ω) and k = 1, . . . ,2m,
we have

L(k2−m,x) − L
(
(k − 1)2−m,x

) ≤ A2−(1−H0,1)m(m log(2))H0,1 a.s.

By then proceeding essentially as in Kôno [16], we prove (21). �

Remark 3.5. The results in this section are based on the following property of the mBm:

Var
(
BH(t+h)(t + h)/BH(s)(s) : 0 ≤ s ≤ t

) ≥ Ch2Ht,t+h , (22)

for sufficiently small h. If H is constant, this property is called one-sided strong local nondeter-
minism; we refer to Monrad and Rootzén [20], expression (2.2), and the references therein for
definition and applications. Property (22) is satisfied by many other processes with multifractal
behavior, such as the Riemann–Liouville mBm {X(t), t ≥ 0} introduced in Lim [18] by replac-
ing, in the definition of the Riemann–Liouville fBm, the constant Hurst parameter H by a regular
function as follows:

X(t) = 1

�(H(t) + 1/2)

∫ t

0
(t − u)H(t)−1/2 dWu.

Thus our results extend those of Kôno [16] to Gaussian processes without the stationary incre-
ments property.

Remark 3.6. A closer examination of the proof of Theorem 2.1 in Csörgö et al. [8] shows that
the property of stationarity of increments is only used to prove two main ingredients presented
in their Lemmas 3.1 and 3.3 and which can, in our case, be easily replaced by the following
properties:
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1. Let An be the covariance matrix of a Gaussian vector {ζi;1 ≤ i ≤ n}. It is then known that
the conditional variance can be written as

Var(ζi/ζl, l �= i,1 ≤ l ≤ n) = |An|
|A(i)

n |
,

where A
(i)
n is the submatrix of An obtained by deleting the ith row and column.

2. If a stochastic process has the property (22), with H constant, then, according to (14), its
covariance matrix satisfies

detR(t1, . . . , tm) ≥ Cm
m∏

j=1

(tj − tj−1)
2H , for t < t1 < · · · < tm < t + h and t0 = 0.

The arguments of Csörgö et al. ([8], Theorem 2.1) can then be adapted to prove that the class of
processes satisfying (22) satisfies

lim sup
T →∞

sup
0≤t≤bT

L(t + aT , x) − L(t, x)

a1−H
T (log(bT /aT ) + log log(aT + 1/aT ))H

< C < ∞ a.s., (23)

where aT and bT are non-negative functions in T ≥ 0 such that 1+bT

aT
−→ +∞ as T → +∞.

4. Chung’s law of the iterated logarithm

The following theorem establishes an analogue of Chung’s law of the iterated logarithm for
mBm. The result for fBm has been obtained by Monrad and Rootzén [20].

Theorem 4.1. Let B be a multifractional Brownian motion and assume that H satisfies condi-
tion (Hβ). Then the following Chung-type law of iterated logarithm holds:

lim inf
δ→0

sup
s∈[t0,t0+δ]

|B(s) − B(t0)|
(δ/ log | log(δ)|)H(t0)

= CH(t0) a.s., (24)

where the constant CH(t0) is the one appearing in Chung’s law for the fBm of Hurst parameter
H(t0).

Proof. We first introduce the process {B̃(t) = B(t) − BH(t0)(t), t ≥ 0}, where BH(t0) denotes a
fBm with Hurst parameter H(t0). According to Theorem 3.3 of Monrad and Rootzén [20], the
fBm with Hurst exponent H(t0) satisfies (24). Furthermore,

B(t) − B(t0) = (
B(t) − BH(t0)(t)

) + (
BH(t0)(t) − BH(t0)(t0)

)
,

= B̃(t) + (
BH(t0)(t) − BH(t0)(t0)

)
.
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(24) will then be proven if we show that

lim
δ→0

sup
t∈[t0,t0+δ]

|B̃(t)|
(δ/ log | log(δ)|)H(t0)

= 0 a.s.

On the other hand, Lemma 3.1 in Boufoussi et al. [6] implies that there exists a positive constant
K such that

sup
t∈[t0,t0+δ]

E(B̃(t))2 ≤ Kδ2β .

Hence, according to Theorem 2.1 in Adler ([1], page 43) and a symmetry argument, we have

P

(
sup

t∈[t0,t0+δ]
|B̃(t)| ≥ u

)
≤ 2P

(
sup

t∈[t0,t0+δ]
B̃(t) ≥ u

)

≤ 4 exp

(
− (u − E(supt∈[t0,t0+δ] B̃(t)))2

Kδ2β

)
. (25)

For the sake of simplicity, let � = supt∈[t0,t0+δ] B̃(t). By (25), we obtain

E(�) ≤
∫ +∞

0
P

(
sup

t∈[t0,t0+δ]
|B̃(t)| > x

)
dx

≤ 4
∫ +∞

0
exp

(
−[x − E�]2

Kδ2β

)
dx

= 4
√

Kδβ

√
2

∫ ∞

−√
2/KE�/δβ

e−y2/2 dy

≤ 4
√

Kπδβ.

It follows that

(u − E�)2 ≥ 1
2u2 − (E�)2 ≥ 1

2u2 − 16Kπδ2β .

Consequently, (25) becomes

P

(
sup

t∈[t0,t0+δ]
|B̃(t)| ≥ u

)
≤ C exp

(
− u2

Kδ2β

)
. (26)

Since H(t0) < β , there exists 0 < ξ < β − H(t0). Consider δn = n1/(2(ξ+H(t0)−β)) and un =
δ
H(t0)+ξ
n . Therefore, according to (26), we have

∞∑
n=1

P

(
sup

t∈[t0,t0+δn]
|B̃(t)| ≥ un

)
≤

∞∑
n=1

exp

(
− 1

K
n

)
< ∞.
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It follows from the Borel–Cantelli lemma that there exists n0 = n0(ω) such that for all n ≥ n0,
sups∈[t0,t0+δn] |B̃(s)| ≤ δ

H(t0)+ξ
n almost surely. Furthermore, for δn+1 ≤ δ ≤ δn, we have

sup
s∈[t0,t0+δ]

|B̃(s)| ≤ sup
s∈[t0,t0+δn]

|B̃(s)|

≤ δH(t0)+ξ
n ≤ δH(t0)+ξ

(
δn

δn+1

)H(t0)+ξ

≤ 2θ δH(t0)+ξ a.s.,

where θ = H(t0)+ξ
2(β−H(t0)−ξ)

. Hence,

lim
δ→0

sup
t∈[t0,t0+δ]

|B̃(t)|
(δ/ log | log(δ)|)H(t0)

≤ lim
δ→0

δξ (log | log(δ)|)H(t0) = 0 a.s.

This completes the proof of the theorem. �

Remark 4.2. Observe that by the ideas used to prove the previous theorem, many laws of iterated
logarithm (LIL) proved for fBm can now be obtained for mBm and with the same constants. For
example, we have the LIL (cf. Li and Shao [19], equation (7.5) for the fBm)

lim sup
δ→0

sup
s∈[t0,t0+δ]

|B(s) − B(t0)|
δH(t0)(log | log(δ)|)1/2

= √
2VH(t0)(B) a.s., (27)

where

VH(t0)(B̂) =
√

π

H(t0)�(2H(t0)) sin(πH(t0))

and

VH(t0)(B
H ) = (

∫ 0
−∞[(1 − s)H(t0)−1/2 − (−s)H(t0)−1/2]2 ds)1/2 + 1/(2H(t0))

�(H(t0) + 1/2)
.

Other laws of iterated logarithm and uniform moduli of continuity have been obtained for B̂ by
Benassi et al. [3], Theorem 1.7, via wavelet techniques.

Since the local time is a two-parameter process, we make precise the meaning of the pointwise
Hölder exponent in time, uniformly in space. The pointwise Hölder exponent of supx∈R L(·, x)

is defined by

αL(t) = sup

{
α > 0, lim sup

δ→0
sup
x∈R

L(t0 + δ, x) − L(t0, x)

δα
= 0

}
. (28)

Since the fraction above is positive, the lim sup may be replaced by lim or lim inf.
We are now able to prove the following.
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Proposition 4.3. Let B be a multifractional Brownian motion and assume that H satisfies the
condition (Hβ). The pointwise Hölder exponent αL of supx∈R L(·, x) at t satisfies

αL(t) = 1 − H(t) a.s.

Proof. The lower bound was already given in Boufoussi et al. [6], Corollary 3.6. The upper
bound is a consequence of Chung’s law of the mBm. Indeed, since the local time vanishes outside
the range of B , we obtain

δ =
∫

R

L([t0, t0 + δ], x)dx

≤ sup
x∈R

L([t0, t0 + δ], x) sup
s,t∈[t0,t0+δ]

|B(s) − B(t)|

≤ 2 sup
x∈R

L([t0, t0 + δ], x) sup
s∈[t0,t0+δ]

|B(s) − B(t0)|. (29)

Combining (24) and (29), we obtain that there exists a positive constant C such that

lim sup
δ→0

sup
x∈R

L(t0 + δ, x) − L(t0, x)

δ1−H(t0)(log log(δ−1))H(t0)
≥ C a.s.,

which, together with the definition of the pointwise Hölder exponent, proves the result. �

5. Asymptotic results

It is well known that techniques for proving limit theorems related to self-similar processes use
the self-similarity of their local times. It is natural to expect the same when dealing with locally
asymptotically self-similar processes (LASS for short). Thus it will be of some interest to know
if the local times satisfy a kind of LASS property.

5.1. LASS for local times

The answer to the preceding question is affirmative in the case of the mBm and the result is given
by the following theorem.

Theorem 5.1. Let B be a multifractional Brownian motion and assume that H satisfies the
condition (Hβ). Then, for any fixed t0, the local time of mBm is locally asymptotically self-
similar with parameter 1 − H(t0), in the sense that for every x ∈ R, the processes {Yρ(t, x), t ∈
[0,1]}ρ>0, defined by

Yρ(t, x) = L(t0 + ρt, ρH(t0)x + B(t0)) − L(t0, ρ
H(t0)x + B(t0))

ρ1−H(t0)
,



862 B. Boufoussi, M. Dozzi and R. Guerbaz

converge in law to the local time, {�(t, x), t ∈ [0,1]}, of the fBm BH(t0) with Hurst parameter
H(t0), that is,

lim
ρ→0

law{Yρ(t, x), t ∈ [0,1]} = law{�(t, x), t ∈ [0,1]}, (30)

where the convergence is in the space of continuous functions endowed with the norm of uniform
convergence.

The motivation for considering the processes Yρ follows from the occupation density formula
and the LASS property (1) of mBm. Indeed, according to the occupation density formula, the
local time has the following representation:

L(t, x) = 1

2π

∫ +∞

−∞
e−iux

(∫ t

0
eiuB(s) ds

)
du.

Consequently,

Yρ(t, x) = 1

2πρ1−H(t0)

∫
R

e−iy(ρH(t0)x+B(t0))

∫ t0+ρt

t0

eiyB(s) ds dy.

Using the change of variables r = s−t0
ρ

and ρH(t0)y = v, the right-hand side of the previous
expression becomes

1

2π

∫
R

e−ivx

∫ t

0
exp

(
iv

B(t0 + ρr) − B(t0)

ρH(t0)

)
dr dv,

which is the local time of the Gaussian process {Bρ(r) = B(t0+ρr)−B(t0)

ρH(t0) , r ∈ [0,1]}. We need the

following lemma for the proof of finite-dimensional convergence.

Lemma 5.1. Let {X(t), t ∈ [0,1]} be a stochastic process in the Skorohod space D([0,1]) and
define, for a fixed interval I = [a, b] ⊂ R, the map

φI (X)(t) =
∫ t

0
1{X(s)∈I } ds.

If {Xn(t), t ∈ [0,1]}n≥1 is a family of processes which converges in law in D([0,1]) to X, then
φI (Xn) converges in law to φI (X).

Proof. The lemma is a consequence of the continuity of the map X(·) → φI (X(·)) in J1 topol-
ogy on D([0,1]) at almost all sample points of the process X, which is proved on page 11 in
Kesten and Spitzer [15]. �

Proof of Theorem 5.1. To prove the convergence in law, we proceed in two steps. First, we
prove the tightness of the family {Yρ(t, x), t ∈ [0,1]}ρ>0 in the space of continuous functions.
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By using (17) and (20), for sufficiently small ρ, we obtain

E|Yρ(t, x) − Yρ(s, x)|m

= E[L(t0 + ρt, ρH(t0)x + B(t0)) − L(t0 + ρs,ρH(t0)x + B(t0))]m
ρ(1−H(t0))m

≤ Cm|t − s|(1−H(t0))m.

We can take m > 1
1−H(t0)

to prove the tightness.
Now, we prove the convergence of the finite-dimensional distributions of Yρ , as ρ tends to 0,

to those of the local time � of the fBm BH(t0) with Hurst parameter H(t0). We need to show that
for any d ≥ 1, a1, . . . , ad ∈ R and t1, . . . , td ∈ [0,1], the following convergence holds:

d∑
j=1

ajYρ(tj , x)
W�⇒

d∑
j=1

aj �(tj , x) as ρ → 0.

We will show the convergence of the corresponding characteristic function. More precisely, we
will prove that∣∣∣∣∣E exp

[
iλ

d∑
j=1

ajYρ(tj , x)

]
− E exp

[
iλ

d∑
j=1

aj�(tj , x)

]∣∣∣∣∣ −→ 0 as ρ → 0.

We introduce the following notation:

φε,x(X)(t) = 1

ε

∫ t

0
1[x,x+ε](X(s))ds,

I
ε,ρ
1 =

∣∣∣∣∣E exp

[
iλ

d∑
j=1

ajYρ(tj , x)

]
− E exp

[
iλ

d∑
j=1

ajφε,x(B
ρ)(tj )

]∣∣∣∣∣,
I

ε,ρ
2 =

∣∣∣∣∣E exp

[
iλ

d∑
j=1

ajφε,x

(
BH(t0)

)
(tj )

]
− E exp

[
iλ

d∑
j=1

ajφε,x(B
ρ)(tj )

]∣∣∣∣∣
and

I ε
3 =

∣∣∣∣∣E exp

[
iλ

d∑
j=1

ajφε,x

(
BH(t0)

)
(tj )

]
− E exp

[
iλ

d∑
j=1

aj �(tj , x)

]∣∣∣∣∣.
Therefore,∣∣∣∣∣E exp

[
iλ

d∑
j=1

ajYρ(tj , x)

]
− E exp

[
iλ

d∑
j=1

aj�(tj , x)

]∣∣∣∣∣ ≤ I
ε,ρ
1 + I

ε,ρ
2 + I

ε,ρ
3 . (31)
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On the other hand, Yρ is the local time of Bρ and by using the mean value theorem and the
occupation density formula, we obtain

I
ε,ρ
1 ≤ C max

1≤j≤d
E|Yρ(tj , x) − φε,x(B

ρ)(tj )|

= C max
1≤j≤d

E

∣∣∣∣1

ε

∫ x+ε

x

Yρ(tj , y)dy − Yρ(tj , x)

∣∣∣∣. (32)

Moreover, since the stochastic process {Yρ(t, y), y ∈ R} is almost surely continuous in y for
every t , according to the dominated convergence theorem, (32) converges to zero as ε tends to
zero independently of ρ.

We now deal with I
ε,ρ
2 . Since the family of processes {Bρ(t), t ∈ [0,1]}ρ>0 converges in distri-

bution to the fBm {BH(t0)(t), t ∈ [0,1]} with Hurst parameter H(t0), the second term converges
to zero as ρ tends to 0 by Lemma 5.1.

The last term in (31) is treated in a similar way as the first and the proof of the finite-
dimensional convergence is complete. �

5.2. Limit theorems

The following result is an immediate consequence of the LASS property of mBm.

Proposition 5.2. Let B be a multifractional Brownian motion, assume that H satisfies the con-
dition (Hβ) and denote by �(t, x) the local time of the fBm with Hurst parameter H(t0). Then,
for every f ∈ L1(R) which is locally Riemann integrable, with compact support and such that∫

R
f (x)dx �= 0, the following convergence in law holds:

lim
λ→∞ lim

ρ→0+
1

λ1−H(t0)

∫ λt

0
f

(
B(ρs + t0) − B(t0)

ρH(t0)

)
ds =

∫
R

f (x)dx · �(t,0).

If H is constant, then B is fBm. Being self-similar with stationary increments, the term in the
left-hand side of the previous formula is identical in law to 1

λ1−H

∫ λt

0 f (B(s))ds. We retrieve the
result of Kasahara and Kosugi [14] for the fBm.

Proof of Proposition 5.2. The proof relies on the LASS property and the self-similarity of fBm.
We sketch it for the sake of completeness.

Combining the fact that f is locally Riemann integrable, the LASS property of mBm and
Theorem VI.4.2 in Gihman and Skorohod [13], we obtain∫ λt

0
f

(
B(ρs + t0) − B(t0)

ρH(t0)

)
ds

(d)−→
∫ λt

0
f

(
BH(t0)(s)

)
ds as ρ → 0+.

Moreover, using the occupation density formula and the self-similarity of fBm, we obtain

1

λ1−H(t0)

∫ λt

0
f

(
BH(t0)(s)

)
ds

(d)=
∫

R

f (x)�
(
t, λ−H(t0)x

)
dx,
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where
(d)= denotes equality in distribution. The result of the theorem then follows from the conti-

nuity of �(t, x,ω) with respect to the space variable. �

However, the presence of a double limit may be not convenient and the result may be better if
λ and ρ are dependent. We prove the following local limit theorem.

Theorem 5.3. Let B be a multifractional Brownian motion and assume that H satisfies the
condition (Hβ). Denote by �(t, x) the local time of the fBm with Hurst parameter H(t0) and
consider f ∈ L1(R) such that∫

R

|f (x)||x|ξ dx < ∞ for some 0 < ξ <
1

2 supt≥0 H(t)
− 1

2
and

∫
R

f (x)dx �= 0. (33)

The following convergence in law then holds

1

ψ(ρ)

∫ ρt+t0

t0

f

(
B(s) − B(t0) − ρH(t0)y

θ(ρ)

)
ds

(d)−→
∫

R

f (x)dx · �(t, y), as ρ → 0+,

where θ(·) and ψ(·) satisfy ψ(ρ)
θ(ρ)

= ρ1−H(t0) and θ(ρ)

ρH(t0) = o(1).

Proof. Using the occupation density formula, we obtain

1

ψ(ρ)

∫ ρt+t0

t0

f

(
B(s) − B(t0) − ρH(t0)y

θ(ρ)

)
ds

=
∫

R

f (x)
L(ρt + t0, θ(ρ)x + ρH(t0)y + B(t0)) − L(t0, θ(ρ)x + ρH(t0)y + B(t0))

ρ1−H(t0)
dx

= L(ρt + t0, ρ
H(t0)y + B(t0)) − L(t0, ρ

H(t0)y + B(t0))

ρ1−H(t0)
×

∫
R

f (x)dx (34)

+
∫

R

f (x)
L(I0, θ(ρ)x + ρH(t0)y + B(t0)) − L(I0, ρ

H(t0)y + B(t0))

ρ1−H(t0)
dx, (35)

where, in the last expression, we let I0 = [t0, t0 + ρt] for simplicity. According to Theorem 5.1,
the expression (34) converges in distribution to �(t, y)× ∫

R
f (x)dx. It now suffices to prove that

(35) converges to 0 in some strong sense. We have

E

∣∣∣∣ ∫
R

f (x)
L(I0, θ(ρ)x + ρH(t0)y + B(t0)) − L(I0, ρ

H(t0)y + B(t0))

ρ1−H(t0)
dx

∣∣∣∣
≤

∫
R

|f (x)|
∥∥∥∥L(I0, θ(ρ)x + ρH(t0)y + B(t0)) − L(I0, ρ

H(t0)y + B(t0))

ρ1−H(t0)

∥∥∥∥
L2(�)

dx. (36)
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Using essentially the same arguments as those used in proving expression (22) and Remark 3.7
in Boufoussi et al. [6], but for the process X(t) = B(t) − B(t0) instead of the mBm, we obtain∥∥∥∥L(I0, θ(ρ)x + ρH(t0)y + B(t0)) − L(I0, ρ

H(t0)y + B(t0))

ρ1−H(t0)

∥∥∥∥
L2(�)

≤ Ct1−H(t0)(1+ξ)|x|ξ
(

θ(ρ)

ρH(t0)

)ξ

,

for sufficently small ρ and all 0 < ξ < 1
2 supt≥0 H(t)

− 1
2 . Hence, (36) is dominated by

Ct1−H(t0)(1+ξ)

∫
R

|f (x)||x|ξ dx ×
(

θ(ρ)

ρH(t0)

)ξ

. (37)

This last integral is finite by assumption (33) and then (37) tends to zero as ρ tends to zero. This
completes the proof. �
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