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Let {Xn,n ≥ 1} be a sequence of independent and identically distributed random variables, taking non-
negative integer values, and call Xn a δ-record if Xn > max{X1, . . . ,Xn−1} + δ, where δ is an integer
constant. We use martingale arguments to show that the counting process of δ-records among the first n

observations, suitably centered and scaled, is asymptotically normally distributed for δ �= 0. In particular,
taking δ = −1 we obtain a central limit theorem for the number of weak records.
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1. Introduction

The theory of records is a well established branch of extreme value theory with interesting results
from both a theoretical and a practical point of view. See the books by Ahsanullah [1], Arnold
et al. [2] or Nevzorov [18] for the theory and applications of record and record-related statistics.
Given a sequence {Xn,n ≥ 1} of random variables, an observation Xi is called a record if it
is greater than all previous observations; that is, writing Mn for the maximum of the n first
observations, if Xi > Mi−1. If the random variables Xn are integer-valued, an observation is
called a weak record if it is greater than or equal to the previous maximum; that is, if Xi ≥ Mi−1

or, equivalently, Xi > Mi−1 − 1. This leads us to consider the following natural extension of the
concept of records: for δ ∈ R, an observation Xi is called a δ-record if Xi > Mi−1 + δ, that is,
if it is greater than the previous maximum plus a (negative or positive) fixed value δ. For δ < 0,
every record is a δ-record, while for δ > 0 this is not the case. Usual records are obtained by
taking δ = 0 and, for integer-valued random variables, δ = −1 yields weak records. In this paper
we focus attention on the process Nδ

n = ∑n
i=1 1{Xi>Mi−1+δ}, counting the number of δ-records

among the first n observations, where 1{·} stands for the indicator function. An arbitrary value
can be given to M0 because we are dealing with asymptotic results.

In addition to being a natural generalization of records and weak records, our concept of
δ-record and the study of the associated counting process Nδ

n can be relevant, among other
things, in insurance applications, where one is interested not only in record claims, but also
in claims that are close to being records; see, for instance, Balakrishnan et al. [5], Hashorva
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[12] or Hashorva and Hüsler [13]. In fact, the study of observations near the maximum has at-
tracted much attention in the past years, both in the case of fixed size samples (Li [16]; Pakes
[19]; Pakes and Steutel [20]) and when observations are considered sequentially (Balakrishnan
et al. [4,5] and Khmaladze et al. [15]), where we find concepts closely related to δ-records de-
fined in the present work. Khmaladze et al. [15] defined the ε-repeated records as the observa-
tions Xi which fall in the interval (Mn − ε,Mn] for i ranging from τn = inf{k :Xk = Mn} (the
moment when the maximum Mn is attained) to n. Khmaladze’s process Zn, counting ε-repeated
records, and our Nδ

n are related by the equation Zn = Nδ
n − Nδ

τn−1
, with δ = −ε. In Balakr-

ishnan and Stepanov [6] and Khmaladze et al. [15], the asymptotic behaviour of Zn for se-
quences of independent identically distributed continuous random variables is studied. On the
other hand, Balakrishnan et al. [5] defined, for fixed a > 0, the near-nth records as observations
Xi in (X(n) − a,X(n)] for i ∈ (L(n),L(n + 1)), where L(n) is the nth record time and X(n)

is the nth record value. The number ξn(a) of Balakrishnan’s near-nth records is related to the
number of δ-records through Nδ

L(n) = ∑n
k=1 ξk(a) + n, with δ = −a. The asymptotic behav-

iour of the number of near-nth records is considered in that paper for sequences of indepen-
dent and identically distributed continuous random variables. Finally, we mention δ-exceedance
records, defined in Balakrishnan et al. [4] for δ > 0, as observations that exceed the previous
δ-exceedance by at least δ; in other words, if XTk

is the kth exceedance, the following one is
XTk+1 , with Tk+1 = min{j > Tk|Xj > XTk

+ δ}. Clearly, δ exceedances and δ-records are not
equivalent concepts, because for δ > 0, a δ-record is always a δ exceedance but not conversely.

The behaviour of the number of usual records N0
n is well understood when the underlying

variables Xn are independent and identically distributed with continuous distribution function be-
cause, as shown in Renyi [21], the indicators In = 1{Xn>Mn−1} are independent, with E(In) = 1/n

and, consequently, many asymptotic results for N0
n are readily obtained. The study of records and

weak records in discrete distributions, where the independence of indicators is lost, was initiated
by Vervaat [22]. Asymptotic results for the number of records and weak records, including a
central limit theorem, for the geometric distribution have been obtained by Bai et al. [3]. Strong
laws of large numbers and central limit theorems for N0

n were given by Gouet et al. [9,10] for
large classes of discrete distributions classified in terms of their discrete failure rates. See also
Key [14] for a law of large numbers for weak records in heavy-tailed discrete distributions.

In this work we obtain central limit theorems for the number of δ-records Nδ
n , δ �= 0, when

the random variables Xn are independent and identically distributed with discrete distribution
function F on the non-negative integers. As a particular case, taking δ = −1, we obtain a central
limit theorem for the number of weak records. To the best of the authors’ knowledge, all the
results in this paper are new for δ �= −1; for δ = −1, they greatly extend the known results for
the geometric distribution to a wide class of discrete models.

Our proofs are based on a martingale approach whereby the counting process Nδ
n is centered

by a non-predictable process built from what we call discrete δ failure rates [see (2.1)]. Asymp-
totic normality is established using a martingale central limit theorem, requiring the convergence
of conditional variances and a Lyapunov-type condition. Both convergence problems are reduced
to the study of partial sums of minima of independent identically distributed random variables,
whose asymptotic behaviour has been investigated in detail, especially by Deheuvels [7]. Mar-
tingales have already proved to be useful in the study of extremes in discrete settings; see Gouet
et al. [9,10].
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Here we do not consider the case of continuous distributions, unlike the above cited works
on recordlike statistics (Balakrishnan et al. [4,5]; Balakrishnan and Stepanov [6]; Khmaladze
et al. [15]), which were concerned only with continuous distributions. The study of Nδ

n in the
continuous distribution setting is far from trivial for δ �= 0, because indicators 1{Xn>Mn−1+δ} are
neither independent nor distribution-free (see Remark 2.1). We center here on integer valued
random variables, thus including the especially interesting case of weak records.

The structure of the paper is as follows. Section 2 presents the notation and three preliminary
results. The central limit theorems for the number of δ-records, for δ < 0 and δ > 0, are shown in
Sections 3 and 4, respectively. Section 5 is devoted to the application of our results to well-known
discrete distributions. Finally, the martingale central limit theorem and Deheuvels’ theorem on
sums of partial minima are presented in the Appendix.

2. Notation and preliminary results

Let {Xn,n ≥ 1} be a sequence of non-negative, integer-valued, independent and identically dis-
tributed random variables, with common distribution function F , such that P [Xn = k] = pk > 0
for k ∈ Z+ = {0,1, . . .} and n ≥ 1 (pm = 0 for m ≤ −1). Clearly then, inf{x|F(x) ≥ 1} = ∞.
The inverse of any distribution function, say G, will be denoted G−(y) = inf{x|G(x) ≥ y} for
0 ≤ y ≤ 1.

For k ∈ Z+, let yk = 1 − F(k) = ∑
i>k pi be the discrete survival function (ym = 1 for

m ≤ −1) and let m(t) = min{j ∈ Z+|yj < 1/t}, t ≥ 0, be the quantile function. The discrete
failure rate or hazard rate rk is defined by rk = P [X1 = k|X1 ≥ k] = P [X1 = k]/P [X1 ≥ k] =
pk/yk−1, while, for δ ∈ Z, the δ failure rate is defined by

sδ
k = pk+δ

yk−1
= P [X1 = k + δ]

P [X1 ≥ k] . (2.1)

Finally, let the cumulative δ failure rate be given by θδ(k) = ∑k
i=0 sδ

i with θδ(∞) =∑∞
i=0 sδ

i ≤ ∞ and �δ(t) = max{k ∈ Z+ | θδ(k) ≤ t} for t ∈ [sδ
0, θδ(∞)) (from now on the

superscript δ is dropped for simplicity). Then t ∈ [θ(�(t)), θ(�(t) + 1)) and P [θ(Xn) > t] =
P [Xn > �(t)] = y�(t) for all t ∈ [s0, θ(∞)) and n ≥ 1.

It is easy to verify that rk = 1 − yk/yk−1, yk = ∏k
i=0(1 − ri) and, consequently,

sk = rk+δ

yk+δ−1

yk−1
=




rk+δ

k+δ−1∏
i=k

(1 − ri), for δ > 0,

rk+δ∏k−1
i=k+δ(1 − ri)

, for δ < 0.

(2.2)

Martingales are defined relative to the natural filtration of the observations {Fn, n ≥ 0}, with
Fn = σ(X1, . . . ,Xn) for n ≥ 1 and F0 = {∅,�}. Convergence of a sequence of real numbers
{an,n ≥ 1} to a limit a, as n → ∞, is denoted limn an = a or an −→

n
a. We write an ∼

n
bn if

either an and bn both go to infinity or zero as n → ∞, with limn an/bn = 1, or both converge
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to non-zero finite limits as n → ∞. When an diverges increasingly to infinity as n → ∞, we
write an ↑ ∞. For convergence in probability and weak convergence, we use the superscripted

arrows
P−→
n

and
D−→
n

, respectively. The centered normal distribution with variance σ 2 is denoted

by N(0, σ 2).

Proposition 2.1. Let δ ∈ Z, let Nn = ∑n
k=1 Ik be the counting process of δ-records, with Ik =

1{Xk>Mk−1+δ}, and let θ(k) = ∑k
i=0 si , where si is defined in (2.1). Then

Nn − θ(Mn) = Nn −
Mn∑
k=0

sk, n ≥ 1, (2.3)

is a martingale. Moreover, the martingale is cubic integrable if (a) δ < 0 and lim supk rk < 1 or
(b) δ < 0, limk rk = 1 and limk(1 − rk)/(1 − rk−1) = 1 or (c) δ ≥ 0.

Proof. Clearly E[Ik|Fk−1] = P [Xk > Mk−1 + δ|Fk−1] = 1 − F(Mk−1 + δ) = yMk−1+δ . On the
other hand, letting 	θ(Mk) = θ(Mk) − θ(Mk−1), we get

E[	θ(Mk)|Fk−1] = E

[
Mk∑
i=0

si −
Mk−1∑
i=0

si

∣∣∣Fk−1

]

=
∞∑
i=1

i∑
j=1

sMk−1+jP [Xk = Mk−1 + i|Fk−1]

=
∞∑

j=1

sMk−1+jP [Xk > Mk−1 + j − 1|Fk−1]

=
∞∑

j=1

sMk−1+j yMk−1+j−1 =
∞∑

j=1

pMk−1+j+δ = yMk−1+δ.

Therefore, Nn − θ(Mn) is a martingale. For cubic integrability of (2.3), it suffices to check cubic
integrability of θ(Xn):

E[θ(Xn)
3] =

∞∑
k=0

(
k∑

i=0

si

)3

pk

=
∞∑

k=0

(
k∑

i=0

s3
i + 3

k−1∑
i=0

k∑
j=i+1

s2
i sj + 3

k−1∑
i=0

k∑
j=i+1

sis
2
j + 6

k−2∑
i=0

k−1∑
j=i+1

k∑
l=j+1

sisj sl

)
pk

=
∞∑
i=0

s3
i

∞∑
k=i

pk + 3
∞∑
i=0

s2
i

∞∑
j=i+1

sj

∞∑
k=j

pk + 3
∞∑
i=0

si

∞∑
j=i+1

s2
j

∞∑
k=j

pk
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+ 6
∞∑
i=0

si

∞∑
j=i+1

sj

∞∑
l=j+1

sl

∞∑
k=l

pk

=
∞∑
i=0

s3
i yi−1 + 3

∞∑
i=0

s2
i

∞∑
j=i+1

sj yj−1

+ 3
∞∑
i=0

si

∞∑
j=i+1

s2
j yj−1 + 6

∞∑
i=0

si

∞∑
j=i+1

sj

∞∑
l=j+1

slyl−1. (2.4)

We now show that (2.4) is finite under (a). From (2.2) and the hypothesis lim supk rk < 1, it
follows that

sk ≤ Ark+δ and yk ≤ yk−1 ≤ Byk (2.5)

for k ∈ Z+ and constants A,B > 0. Then (2.4) is bounded above by

A3

( ∞∑
i=0

ri+δyi+δ−1 + 3
∞∑
i=0

ri+δ

∞∑
j=i+1

rj+δyj+δ−1 + 3
∞∑
i=0

ri+δ

∞∑
j=i+1

rj+δyj+δ−1

+ 6
∞∑
i=0

ri+δ

∞∑
j=i+1

rj+δ

∞∑
l=j+1

rl+δyl+δ−1

)

≤ A3

(
1 + 6

∞∑
i=0

ri+δyi+δ−1 + 6
∞∑
i=0

ri+δ

∞∑
j=i+1

rj+δyj+δ−1

)
≤ 13A3.

We now consider (b). Let T1 = ∑∞
i=0 s3

i yi−1 and note that

s3
i yi−1 = p3

i+δ

y3
i−1

yi−1 = r3
i+δy

3
i+δ−1

y2
i−1

≤ y3
i+δ−1

y2
i−1

∼
i

yi+3δ−1 = pi+3δ

ri+3δ

∼
i

pi+3δ,

where the last two equivalences follow from limk(1 − rk)/(1 − rk−1) = 1 and limk rk = 1, re-
spectively. Hence, T1 < ∞.

Let T2 = ∑∞
i=0 s2

i

∑∞
j>i sj yj−1 and note that sj yj−1 = pj+δ yields T2 = ∑∞

i=0 s2
i yi+δ . How-

ever,

s2
i yi+δ = p2

i+δ

y2
i−1

yi+δ = r2
i+δy

2
i+δ−1yi+δ

y2
i−1

≤ y3
i+δ−1

y2
i−1

and clearly, T2 < ∞.
Let T3 = ∑∞

i=0 si
∑∞

j>i s
2
j yj−1 and observe that

s2
j yj−1 = p2

j+δ

y2
j−1

yj−1 = r2
j+δy

2
j+δ−1yj−1

y2
j−1

≤ y2
j+δ−1

yj−1
∼
j

yj+2δ−1 ∼
j

pj+2δ.
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Therefore, T3 ≤ C
∑∞

i=0 siyi+2δ for some constant C > 0, but

siyi+2δ = ri+δyi+δ−1yi+2δ

yi−1
≤ y2

i+2δ

yi−1
∼
i

pi+4δ+2

and, hence, T3 < ∞.
Last, T4 = ∑∞

i=0 si
∑∞

j>i sj
∑∞

l>j slyl−1 is similarly shown to be finite, noting that slyl−1 =
pl+δ and

sj yj+δ = rj+δyj+δ−1yj+δ

yj−1
≤ y2

j+δ−1

yj−1
∼
j

pj+2δ.

Finally, under condition (c), note that as δ ≥ 0, we have sk ≤ rk+δ for all k ∈ Z+,

E[θ(Xn)
3] =

∞∑
k=0

(
k∑

i=0

si

)3

pk ≤
∞∑

k=0

(
k+δ∑
i=0

ri

)3

pk ≤
∞∑

k=0

(
δ +

k∑
i=0

ri

)3

pk

and therefore it suffices to show that
∑∞

k=0(
∑k

i=0 ri)
3pk < ∞ or equivalently, that all terms

of (2.4) are finite, with the si replaced by the ri . Indeed,

∞∑
i=0

r3
i yi−1 =

∞∑
i=0

r2
i pi ≤ 1,

∞∑
i=0

r2
i

∑
j>i

rj yj−1 =
∞∑
i=0

r2
i yi ≤

∞∑
i=0

riyi−1 = 1,

∞∑
i=0

ri
∑
j>i

r2
j yj−1 ≤

∞∑
i=0

riyi ≤ 1

and
∞∑
i=0

ri
∑
j>i

rj
∑
l>j

rlyl−1 ≤
∞∑
i=0

ri
∑
j>i

rj yj−1 ≤
∞∑
i=0

riyi ≤ 1.
�

Remark 2.1. When the random variables Xn have common distribution function F with den-
sity f , it can be shown that the process

Nδ
n −

∫ Mn

0

f (x + δ)

1 − F(x)
dx

is a martingale. We believe that our methods can be applied in this case to obtain analogous
limiting results.

Proposition 2.2. Let ξk = Ik − 	θ(Mk), with Ik = 1{Xk>Mk−1+δ} and 	θ(Mk) = θ(Mk) −
θ(Mk−1), k ≥ 1. Then the increments of the process of conditional variances of martingale (2.3)
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are given by

E[ξ2
k |Fk−1] =

∑
i>Mk−1

si(yi+δ + yi+δ−1 − yi−1) for δ < 0

and

E[ξ2
k |Fk−1] = yMk−1+δ

(
1 − 2

δ∑
i=1

sMk−1+i

)
+ 2

∑
i>Mk−1

si

(
yi+δ + pi+δ

2

)

− 2yMk−1+2δ for δ > 0.

Proof. We have E[ξ2
k |Fk−1] = E[Ik|Fk−1] − 2E[Ik	θ(Mk)|Fk−1] + E[	θ(Mk)

2|Fk−1] =
yMk−1+δ − 2E[Ik	θ(Mk)|Fk−1] + E[	θ(Mk)

2|Fk−1]. Writing m for Mk−1, we then have

E[	θ(Mk)
2|Fk−1] = E

[((
θ(Xk) − θ(Mk−1)

)+)2|Fk−1
] =

∞∑
i=1

(
i∑

j=1

sm+j

)2

pm+i

=
∞∑
i=1

(
i∑

j=1

s2
m+j + 2

∑
1≤j1<j2≤i

sm+j1sm+j2

)
pm+i

=
∞∑

j=1

s2
m+j

∞∑
i=j

pm+i + 2
∑

1≤j1<j2<∞
sm+j1sm+j2

∞∑
i=j2

pm+i

=
∞∑

j=1

sm+jpm+j+δ + 2
∑

1≤j1<j2<∞
sm+j1pm+j2+δ

=
∑
j>m

sjpj+δ + 2
∑
j>m

sj yj+δ = 2
∑
j>m

sj

(
yj+δ + pj+δ

2

)
. (2.6)

When δ < 0, we have Ik	θ(Mk) = 	θ(Mk) and

E[ξ2
k |Fk−1] = E[	θ(Mk)

2|Fk−1] − ym+δ

= 2
∑
i>m

si

(
yi+δ + pi+δ

2

)
− ym+δ

=
∑
i>m

(2siyi+δ + sipi+δ − pi+δ)

=
∑
i>m

si(yi+δ + yi+δ−1 − yi−1).
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Otherwise, when δ > 0, we obtain

E[Ik	θ(Mk)|Fk−1] =
∞∑

j=1

m+δ+j∑
i=m+1

sipm+δ+j

=
δ∑

i=1

sm+i

∞∑
j=1

pm+δ+j +
∞∑

i=δ+1

sm+i

∞∑
j=i−δ

pm+δ+j

= ym+δ

δ∑
i=1

sm+i + ym+2δ

and, finally, E[ξ2
k |Fk−1] = ym+δ + 2

∑
i>m si(yi+δ + 1

2pi+δ) − 2(ym+δ

∑δ
i=1 sm+i + ym+2δ). �

We now give bounds on E[|ξk|3|Fk−1] which will be useful for checking Lyapunov’s condition
in the central limit theorem.

Proposition 2.3. Let ξk = Ik − 	θ(Mk), k ≥ 1. For a positive constant C:

(a) If δ < 0 and lim supk rk < 1, then E[|ξk|3|Fk−1] ≤ CyMk−1 for all k ≥ 1.
(b) If δ < 0, limk rk = 1 and limk(1 − rk)/(1 − rk−1) = 1, then E[|ξk|3|Fk−1] ≤ CyMk−1+3δ ,

for all k ≥ 1.
(c) If δ > 0, then E[|ξk|3|Fk−1] ≤ CyMk−1+δ for all k ≥ 1.

Proof. Noting that Ik	θ(Mk) ≤ 	θ(Mk), we have

E[|ξk|3|Fk−1] ≤ E[Ik|Fk−1] + 3E[	θ(Mk)|Fk−1]
+ 3E[	θ(Mk)

2|Fk−1] + E[	θ(Mk)
3|Fk−1]

= 4E[	θ(Mk)|Fk−1] + 3E[	θ(Mk)
2|Fk−1] + E[	θ(Mk)

3|Fk−1]. (2.7)

We first make some calculations on the terms of (2.7) which are valid for all cases (a), (b) and (c).
From Proposition 2.1 and (2.6), writing m for Mk−1,

E[	θ(Mk)|Fk−1] = ym+δ, (2.8)

E[	θ(Mk)
2|Fk−1] = 2

∑
j>m

sj

(
yj+δ + pj+δ

2

)
≤ 2

∑
j>m

sj (yj+δ + pj+δ)

= 2
∑
j>m

sj yj+δ−1. (2.9)
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For the third moment, we proceed as in Proposition 2.2, calculating E[	θ(Mk)
2|Fk−1] (see

also the calculations for E[θ(Xn)
3] in (2.4)):

E[	θ(Mk)
3|Fk−1] = E

[((
θ(Xk) − θ(Mk−1)

)+)3|Fk−1
] =

∞∑
i=1

(
i∑

j=1

sm+j

)3

pm+i

=
∞∑
i=1

(
i∑

j=1

s3
m+j + 3

∑
1≤j1<j2≤i

s2
m+j1

sm+j2 + 3
∑

1≤j1<j2≤i

sm+j1s
2
m+j2

+ 6
∑

1≤j1<j2<j3≤i

sm+j1sm+j2sm+j3

)
pm+i

=
∑
j>m

s2
j pj+δ + 3

∑
j>m

s2
j yj+δ + 3

∑
j1>m

sj1

∑
j2>j1

sj2pj2+δ

+ 6
∑
j1>m

sj1

∑
j2>j1

sj2yj2+δ

= 3
∑
j>m

s2
j

(
yj+δ + 1

3pj+δ

) + 6
∑
j1>m

sj1

∑
j2>j1

sj2

(
yj2+δ + 1

2pj2+δ

)

≤ 3
∑
j>m

s2
j yj+δ−1 + 6

∑
j1>m

sj1

∑
j2>j1

sj2yj2+δ−1. (2.10)

Consider now (a). From (2.5) and (2.8), E[	θ(Mk)|Fk−1] ≤ B−δym. On the other hand, from
(2.5) and (2.9),

E[	θ(Mk)
2|Fk−1] ≤ 2B−δ

∑
j>m

sj yj−1 = 2B−δym+δ ≤ 2B−2δym.

Finally, from (2.5) and (2.10),

E[	θ(Mk)
3|Fk−1] ≤ 3B−δ

(∑
j>m

s2
j yj−1 + 2

∑
j1>m

sj1

∑
j2>j1

sj2yj2−1

)

= 3B−δ

(∑
j>m

sjpj+δ + 2
∑
j>m

sj yj+δ

)
≤ 6B−δ

∑
j>m

sj yj+δ−1

≤ 6B−2δ
∑
j>m

sj yj−1 = 6B−2δym+δ ≤ 6B−3δym.

For case (b), we have, from (2.8) and δ < 0, E[	θ(Mk)|Fk−1] ≤ ym+3δ .
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From (2.2), we have

si/si+δ = ri+δ

i+δ−1∏
j=i+2δ

(1 − rj )

/(
ri+2δ

i−1∏
j=i+δ

(1 − rj )

)
−→

i
1, (2.11)

so then

siyi+δ−1 ∼
i

si+δyi+δ−1 = pi+2δ. (2.12)

Therefore, from (2.9) and (2.12), E[	θ(Mk)
2|Fk−1] ≤ 2

∑
j>m sj yj+δ−1 ≤ Cym+2δ ≤

Cym+3δ . To bound (2.10), note from (2.11) and (2.12) that

∑
j>m

s2
j yj+δ−1 ∼

m

∑
j>m

sjpj+2δ ≤
∑
j>m

sj yj+2δ−1 ∼
m

∑
j>m

sj+2δyj+2δ−1 ∼
m

ym+3δ

and ∑
j1>m

sj1

∑
j2>j1

sj2yj2+δ−1 ∼
n

∑
j1>m

sj1

∑
j2>j1

sj2+δyj2+δ−1

∼
m

∑
j>m

sj yj+2δ ≤
∑
j>m

sj yj+2δ−1 ∼
m

ym+3δ.

Hence, E[	θ(Mk)
3|Fk−1] ≤ Cym+3δ .

For (c), we have to bound (2.9) and (2.10). For δ > 0, we have∑
j>m

sj yj+δ−1 ≤
∑
j>m

sj yj−1 = ym+δ,

∑
j>m

s2
j yj+δ−1 ≤

∑
j>m

s2
j yj−1 =

∑
j>m

sjpj+δ ≤
∑
j>m

sj yj+δ−1 ≤ ym+δ,

∑
j1>m

sj1

∑
j2>j1

sj2yj2+δ−1 ≤
∑
j1>m

sj1

∑
j2>j1

sj2yj2−1 =
∑
j>m

sj yj+δ ≤
∑
j>m

sj yj−1 = ym+δ.
�

3. Central limit theorems for δ < 0

We first show that (A.3) and (A.4) of Theorem A.2 in the Appendix hold under mild conditions on
the failure rates rk . We recall that Ik = 1{Xk>Mk−1+δ} and 	θ(Mk) = θ(Mk) − θ(Mk−1), k ≥ 1.

Proposition 3.1. Let δ < 0, ξk = Ik − 	θ(Mk) and

zk =
∑
i>k

si(yi+δ + yi+δ−1 − yi−1), k ≥ 1. (3.1)
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(a) If lim supk rk < 1, then (A.3) holds with

b2
n =

m(n)∑
k=0

zkrk/yk. (3.2)

(b) If limk rk = 1 and limk(1 − rk)/(1 − rk−1) = 1, then (A.3) holds with

b2
n =

m(n)∑
k=0

(1 − rk)
2δ. (3.3)

Proof. From Proposition 2.2,

E[ξ2
k |Fk−1] =

∑
i>Mk−1

si(yi+δ + yi+δ−1 − yi−1) = zMk−1 .

Note that because δ < 0, then yi+δ−1 ≥ yi−1 and, consequently, zk is decreasing. Thus, zMk−1 =
min{zX1 , . . . , zXk−1} for k ≥ 2, where the random variables zXk

are independent, identically dis-
tributed and take values zj with probabilities pj . Their common distribution function is given
by G(z) = ∑

i≥j pi = yj−1 for zj ≤ z < zj−1 and its inverse is given by G−(t) = zj for
yj < t ≤ yj−1. Equivalently, G−(1/t) = zm(t), where m(t) is the quantile function defined at
the beginning of Section 2.

We obtain (a) and (b) if we show

n∑
k=1

zMk−1/b
2
n

P−→
n

1. (3.4)

To get (3.4), we apply Deheuvels’ theorem (Theorem A.1 herein). We first determine the nor-
malizing sequence H(logn) as follows. Let t ≥ 1. Then

H(log t) =
∫ t

1
G−(1/u)du =

∫ t

1
zm(u) du =

m(t)∑
j=0

∫ y−1
j

y−1
j−1

zm(u) du −
∫ y−1

m(t)

t

zm(u) du

=
m(t)∑
j=0

zj (y
−1
j − y−1

j−1) − zm(t)

(
y−1
m(t)

− t
) =

m(t)∑
j=0

zj rj

yj

− ρ(t), (3.5)

where ρ(t) = zm(t)(y
−1
m(t) − t).

Consider (a). From (2.5) we obtain

zk ≤
∑
i>k

si(yi+δ + yi+δ−1) ≤ 2
∑
i>k

siyi+δ−1

≤ 2A
∑
i>k

ri+δyi+δ−1 = 2Ayk+δ ≤ Cyk, (3.6)
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with C = 2AB−δ .
The above upper bound for zk yields immediately ρ(t) ≤ zm(t)(y

−1
m(t) − y−1

m(t)−1) = zm(t)rm(t)/

ym(t) ≤ C and we have H(logn) ∼ b2
n. It remains to check hypotheses (A.1) and (A.2) of Theo-

rem A.1. To this end, consider the inequality

zm(t)/ym(t)−1 ≤ tG−(1/t) < zm(t)/ym(t), (3.7)

which is an easy consequence of the definitions of m(t) and G−. On the other hand, from (2.2)
and because yi+δ ≥ yi−1, it is clear that

zk ≥
∑
i>k

siyi+δ−1 ≥
∑
i>k

ri+δyi+δ−1 =
∑
i>k

pi+δ = yk+δ ≥ yk−1. (3.8)

Hence, from (3.6), (3.7) and (3.8),

1/t ≤ G−(1/t) ≤ C/t (3.9)

for all t > 1 and, clearly, H(log t) has a logarithmic growth to infinity as t → ∞.
Finally, from the definition of H and (3.9) we get

0 ≤ (
H(xn + logn) − H(logn)

)
/H(logn) ≤ Cxn/ logn

for n ≥ 2 and (A.1) follows by taking xn = log(logn + 3). Also, (A.2) is readily obtained
from (3.9) because

n∑
k=1

k(G−(1/k))2

(
n∑

k=1

G−(1/k)

)−2

≤ C2
n∑

k=1

(1/k)

(
n∑

k=1

(1/k)

)−2

−→
n

0.

Therefore, (3.4) follows from Theorem A.1.
For (b), observe that

zk =
∑
i>k

siyi+δ−1(yi+δ/yi+δ−1 + 1 − yi−1/yi+δ−1)∼
k

∑
i>k

siyi+δ−1

and, from (2.12), we have zk ∼
k

∑
i>k pi+2δ = yk+2δ. Also, as in part (a),

ρ(t) ≤ zm(t)rm(t)/ym(t) ∼
t

ym(t)+2δ/ym(t) ∼
t

(
1 − rm(t)

)2δ
.

On the other hand,
∑m(n)

k=0 zkrk/yk ∼
n

∑m(n)
k=0 (1 − rk)

2δ −→
n

∞, and it is clear from Lemma A.1

that (1 − rn)
2δ/

∑n
k=0(1 − rk)

2δ −→
n

0 and, hence, b2
n ∼

n
H(logn). Next we check hypothesis

(A.1) of Theorem A.1, which is clearly equivalent to

m(nun)∑
k=0

(1 − rk)
2δ

/m(n)∑
k=0

(1 − rk)
2δ −→

n
1 (3.10)
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for some sequence un ↑ ∞. It can be shown that m(nun) − m(n) − 1 < C logun for some C > 0
and all n ≥ 1. In fact, because limk rk = 1, there exists a constant a > 0 such that 1 − rk < a < 1
for all k ≥ 0. Next we consider the inequalities

1

nun

≤ ym(nun)−1 = ym(n)

m(nun)−1∏
i=m(n)+1

(1 − ri) <
1

n
am(nun)−m(n)−1

for all n such that m(nun) − m(n) ≥ 1, which implies the desired inequality. Therefore,

m(nun)∑
k=m(n)+1

(1 − rk)
2δ ≤

m(n)+	C logun
+1∑
k=m(n)+1

(1 − rk)
2δ

and (3.10) is proved if we establish

m(n)+vn∑
k=m(n)+1

(1 − rk)
2δ

/m(n)∑
k=0

(1 − rk)
2δ −→

n
0

for some vn ↑ ∞ or, equivalently, because m(n) is increasing,

n+wn∑
k=n+1

(1 − rk)
2δ

/ n∑
k=0

(1 − rk)
2δ −→

n
0 (3.11)

for some wn ↑ ∞.
To prove (3.11), let c

(k)
n = (1 − rn+k)

2δ/
∑n

i=0(1 − ri)
2δ and for each l ≥ 1, let nl be such

that max{c(k)
n |k = 1, . . . , l} ≤ 1/l2 for all n ≥ nl . This can be done for each l, choosing the nl’s

strictly increasing because c
(k)
n −→

n
0 for all k. We can now define the sequence {wn,n ≥ 1} as

wn = l if nl ≤ n < nl+1.
Consider next ε > 0 arbitrary and choose l such that 1/l < ε. Let n ≥ nl . Then n ∈

[nl+k, nl+k+1) for some k ≥ 0 and wn = l + k, so c
(j)
n < 1/(l + k)2 for j = 1, . . . , l + k. Thus,∑wn

j=1 c
(j)
n = ∑l+k

j=1 c
(j)
n < 1/(l + k) ≤ 1/l < ε and (3.11) follows.

For condition (A.2) in Theorem A.1, note that

n∑
i=1

iG−(1/i)2 =
m(n)∑
k=1

∑
i≤n,m(i)=k

iG−(1/i)2 ≤
m(n)∑
k=1

∑
m(i)=k

iz2
k =

m(n)∑
k=1

z2
kh(k),

with

h(k) =
∑

m(i)=k

i =
∑

y−1
k−1≤i<y−1

k

i = 	1/yk
2 − 	1/yk−1
2

2
− 	1/yk
 − 	1/yk−1


2

∼
k

(	1/yk
2 − 	1/yk−1
2)/2∼
k
(y−2

k − y−2
k−1)/2,
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where the last equivalence follows from 1/yk − 1/yk−1 −→
k

∞, because limk rk = 1. Hence,

m(n)∑
k=1

z2
kh(k) ∼

n

m(n)∑
k=1

z2
k(y

−2
k − y−2

k−1)/2∼
n

m(n)∑
k=1

y2
k+2δ(y

−2
k − y−2

k−1)/2

∼
n

m(n)∑
k=1

(1 − rk)
4δrk(2 − rk)/2∼

n

1
2

m(n)∑
k=1

(1 − rk)
4δ.

It is easy to see that
∑n

k=1 G−(1/k)∼
n

H(logn)∼
n

b2
n and we have, from Lemma A.1,

H(logn)−2
n∑

i=1

iG−(1/i)2 ≤ C

m(n)∑
k=1

(1 − rk)
4δ

(
m(n)∑
k=1

(1 − rk)
2δ

)−2

−→
n

0.

Hence, (3.4) follows. �

Proposition 3.2. Let δ < 0 and ξk = Ik − 	θ(Mk).

(a) If lim supk rk < 1, then (A.4) holds with bn defined by (3.2).
(b) If limk rk = 1 and limk(1 − rk)/(1 − rk−1) = 1, then (A.4) holds with bn defined by (3.3).

Proof. (a) From Proposition 2.3(a) we have E[|ξk|3|Fk−1] ≤ CyMk−1 , where C is a positive
constant. On the other hand, yMk−1 = 1 − F(Mk−1) is a decreasing function of Mk−1 so that
the sum in Lyapunov’s condition (A.4) is bounded by C times the sum of partial minima of
independent identically distributed random variables taking values yj with probabilities pj . Their
common distribution function is denoted by G, with G(y) = ∑

i≥j pi = yj−1 for yj ≤ y < yj−1,
and its inverse is denoted by G−(t) = yj for yj < t ≤ yj−1.

Reasoning as in Proposition 3.1(a), we obtain
∑n

k=1 min{yX1, . . . , yXk
}/c2

n

P−→
n

1, with c2
n =∑m(n)

k=0 ykrk/yk = ∑m(n)
k=0 rk . For details, see Propositions 3.2 and 3.3 in Gouet et al. [9]. To con-

clude, note that c2
n = ∑m(n)

j=0 rj <
∑m(n)

j=0 rj yj−1/yj ≤ b2
n, where the second inequality comes

from (3.8). Therefore, c2
n/b

3
n −→

n
0 and Lyapunov’s condition (A.4) follows.

(b) From Proposition 2.3(b) we have E[|ξk|3|Fk−1] ≤ CyMk−1+3δ and (A.4) will follow by
studying the sum of partial minima

n∑
k=1

yMk−1+3δ. (3.12)

As before, we use Theorem A.1, where calculations follow closely those in Proposition 3.1(b).
We find that the scaling sequence for (3.12), denoted b̂n, is given by b̂2

n = ∑m(n)
k=0 (1 − rk)

3δ and it

can be shown, denoting Ĥ the corresponding function H , that Ĥ (logn)∼
n

∑m(n)
k=0 rkyk+3δ/yk ∼

n
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b̂2
n. Conditions (A.1) and (A.2) are analogously checked and we conclude that

∑n
k=0 E[	θ(Mk)

3|
Fk−1]/b̂2

n

P−→
n

1. Lyapunov’s condition follows if b̂2
n/b

3
n −→

n
0 or, equivalently, if

(
n∑

k=0

(1 − rk)
3δ

)2( n∑
k=0

(1 − rk)
2δ

)−3

−→
n

0,

but this convergence follows from Cauchy–Schwarz inequality and Lemma A.1 because

(
∑n

k=0(1 − rk)
3δ)2

(
∑n

k=0(1 − rk)2δ)3
≤

∑n
k=0(1 − rk)

2δ∑n
k=0(1 − rk)2δ

∑n
k=0(1 − rk)

4δ

(
∑n

k=0(1 − rk)2δ)2
−→

n
0. �

We now state and prove the central limit theorem for δ < 0.

Theorem 3.1. Let δ < 0 and let zk be as defined in (3.1).

(a) If lim supk rk < 1, then

Nn − θ(m(n))√∑m(n)
k=0 zkrk/yk

D−→
n

N(0,1). (3.13)

(b) If limk rk = 1 and limk(1 − rk)/(1 − rk−1) = 1, then

Nn − θ(m(n))√∑m(n)
k=0 (1 − rk)2δ

D−→
n

N(0,1). (3.14)

Proof. (a) Using results in Propositions 3.1(a) and 3.2(a) and Theorem A.2, we have (Nn −
θ(Mn))/bn

D−→
n

N(0,1), with bn defined in (3.2), so (3.13) follows if we show

(
θ(Mn) − θ(m(n))

)
/bn

P−→
n

0. (3.15)

This will be done by comparison with the analogous result for usual records (δ = 0) contained in
Proposition 3 of Gouet et al. [10]. From (2.5) we get

|θ(Mn) − θ(m(n))| =
Mn∨m(n)∑

i=(Mn∧m(n))+1

si ≤ A

Mn∨m(n)∑
i=(Mn∧m(n))+1

ri+δ

≤ A

Mn∨m(n)∑
i=(Mn∧m(n))+1+δ

ri ≤ A

Mn∨m(n)∑
i=(Mn∧m(n))+1

ri − Aδ. (3.16)

Let θ0(k) = ∑k
i=0 ri be the centering function θ of the martingale for 0 records and let b0n be

the corresponding scaling sequence defined by (3.6) in Gouet et al. [10]. Then, from (3.16),
|θ(Mn) − θ(m(n))| ≤ A(|θ0(Mn) − θ0(m(n))| − δ). In Propositions 2 and 3 of Gouet et al. [10]
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we find, respectively, that b2
0n has logarithmic growth and that (θ0(Mn) − θ0(m(n)))/b0n

P−→
n

0.

Now, it is clear that (3.15) follows because, by (3.9), b2
n has logarithmic growth as well.

(b) From Propositions 3.1(b) and 3.2(b) and Theorem A.2, we obtain

(
Nn − θ(Mn)

)
/bn

D−→
n

N(0,1),

where bn is defined in (3.3). The result will follow if we show that

(
θ(Mn) − θ(m(n))

)
/bn

P−→
n

0.

To that end, define c2
n = ∑m(n)

k=0 s2
k and note that bn ∼

n
cn. Therefore, according to Corollary A.1,

we have to establish

ny�(εcn+θ(m(n))) −→
n

0 and ny�(−εcn+θ(m(n))) −→
n

∞

for every ε > 0. Let then ε > 0. Noting that sk+1/sk −→
k

1, from Lemma A.1 we have

s2
m(n)+1/

∑m(n)
k=0 s2

k −→
n

0 and this implies the existence of N ∈ N such that ε2 ∑m(n)
k=0 s2

k ≥ s2
m(n)+1

for all n > N . Therefore, because � is increasing, we obtain

�
(
εcn + θ(m(n))

) = �

(
ε

(
m(n)∑
k=0

s2
k

)1/2

+
m(n)∑
k=0

sk

)
≥ �

(
m(n)+1∑

k=0

sk

)
= m(n) + 1. (3.17)

Moreover, using Lemma A.1 it is also possible to find N ′ ∈ N such that ε2 ∑m(n)
k=0 s2

k > 4(sm(n) ∨
sm(n)−1)

2 for all n > N ′, implying ε2 ∑m(n)
k=0 s2

k > (sm(n) + sm(n)−1)
2. It follows from the previous

inequality that

�
(−εcn + θ(m(n))

) = �

(
− ε

(
m(n)∑
k=0

s2
k

)1/2

+
m(n)∑
k=0

sk

)
≤ �

(
m(n)−2∑

k=0

sk

)
= m(n) − 2. (3.18)

From (3.17) and (3.18), and recalling that ym(n) < 1/n ≤ ym(n)−1, we obtain

ny�(εcn+θ(m(n))) ≤ nym(n)+1 < 1 − rm(n)+1 −→
n

0,

ny�(−εcn+θ(m(n))) ≥ nym(n)−2 ≥ nym(n)−1

1 − rm(n)−1
≥ 1

1 − rm(n)−1
−→

n
∞,

and (3.14) is proved. �

The case of converging failure rates is detailed in the following corollary.
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Corollary 3.1. Let δ < 0. If limk rk = r ∈ [0,1), then

(logn)−1/2(Nn − θ(m(n))
) D−→

n
N(0, σ 2

r ),

where σ 2
r = −r(1 − r)δ((1 − r)δ+1 + (1 − r)δ − 1)/ log(1 − r) if r �= 0 and σ0 = 1. Moreover:

(a) If r > 0 and
∑n

i=0 |ri − r|/√n−→
n

0, then

(logn)−1/2(Nn + r(1 − r)δ logn/ log(1 − r)
) D−→

n
N(0, σ 2

r ).

(b) If r = 0 and
∑n

i=0 r2
i /

√
n−→

n
0, then

(logn)−1/2(Nn − logn)
D−→
n

N(0,1).

Proof. Let us show that b2
n/ logn−→

n
σ 2

r . First note that, from identity yk = ∏k
i=0(1 − ri) and

the definition of m(t), we have ym(n) < 1/n ≤ ym(n)−1 and

−
m(n)−1∑

k=0

log(1 − rk) ≤ logn < −
m(n)∑
k=0

log(1 − rk). (3.19)

For r ∈ (0,1), let L = (1 − r)δ((1 − r)δ+1 + (1 − r)δ − 1). We study the asymptotic behaviour
of the three sums in the definition of zk in (3.1), for limk rk = r . For the first sum we obtain∑

i>k siyi+δ ∼
k
(1 − r)δ+1 ∑

i>k siyi−1 = (1 − r)δ+1yk+δ ∼
k
(1 − r)2δ+1yk . For the next, we get∑

i>k siyi+δ−1 ∼
k
(1 − r)2δyk , and for the last,

∑
i>k siyi−1 = yk+δ ∼

k
(1 − r)δyk. Collecting the

above results, we find that zk/yk −→
k

L and b2
n ∼

n
L

∑m(n)
j=0 rj ∼

n
rLm(n). Finally, dividing (3.19)

by m(n) and taking limits, we get logn/m(n)−→
n

− log(1 − r) and the conclusion follows.

Consider now the case r = 0. Clearly zk = ∑
i>k si(yi+δ + yi+δ−1 − yi−1)∼

k

∑
i>k siyi−1 =

yk+δ ∼
k

yk . Then b2
n = ∑m(n)

j=0 zj rj /yj ∼
n

∑m(n)
j=0 rj . Therefore, by (3.19), b2

n ∼
n

∑m(n)
k=0 rk ∼

n

−∑m(n)
k=0 log(1 − rk)∼

n
logn.

We now prove (a) and (b) about the simplification of the centering sequences.

(a) When 0 < r < 1, we have to show

(logn)−1/2(θ(m(n)) + r(1 − r)δ logn/ log(1 − r)
)−→

n
0.

From (3.19), we have m(n)∼
n

− logn/ log(1− r). On the other hand, from the definition of m(n),

we get ym(n) < 1/n ≤ ym(n)−1 and

−1 −
∑m(n)

i=0 log(1 − Ri)

log(1 − r)
< m(n) + logn

log(1 − r)
≤ −∑m(n)

i=0 log(1 − Ri)

log(1 − r)
+ log(1 − Rm(n))

log(1 − r)
,
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where Ri = (ri − r)/(1− r). Dividing by
√

m(n), we find that the left and right terms above tend
to 0 as n → ∞, obtaining thus

(logn)−1/2(m(n) + logn/ log(1 − r)
)−→

n
0. (3.20)

Finally, it remains to check that (logn)−1/2(θ(m(n)) − r(1 − r)δm(n))−→
n

0, or, equivalently,∑n
k=0(sk − r(1 − r)δ)/

√
n−→

n
0. This last convergence is obtained from an inductive argument

on −δ as follows (we write the superscript δ on sk to avoid confusion). Recalling that sδ
k =

rk+δ/
∏k−1

i=k+δ(1 − ri) for δ < 0, define D
(δ)
k = sδ

k − r(1 − r)δ . Then, for δ = −1, we have

D
(−1)
k = rk−1

1 − rk−1
− r

1 − r
= rk−1 − r

(1 − r)(1 − rk−1)
,

which, together with the hypothesis on the rk’s, implies
∑n

k=0 D
(−1)
k /

√
n−→

n
0.

Let us assume now that convergence holds for δ ∈ Z− and consider D
(δ−1)
k . It is easy to see

that D
(δ−1)
k = sδ

k−1/(1 − rk−1) − r(1 − r)δ/(1 − r), which, after some algebraic manipulation,
yields

D
(δ−1)
k = (1 − r)D

(δ)
k−1 + r(1 − r)δ(rk−1 − r)

(1 − r)(1 − rk−1)
= D

(δ)
k−1

1 − rk−1
+ r(1 − r)δD

(−1)
k . (3.21)

From the inductive hypothesis and (3.21), we finally obtain
∑n

k=0 D
(δ−1)
k /

√
n−→

n
0.

(b) For r = 0, we have to show |θ(m(n)) − logn|/√logn−→
n

0, provided that
∑n

i=1 r2
i /√

n−→
n

0. To that end we write

|θ(m(n)) − logn| ≤
∣∣∣∣∣θ(m(n)) −

m(n)∑
k=0

rk+δ

∣∣∣∣∣ +
∣∣∣∣∣
m(n)∑
k=0

rk −
m(n)∑
k=0

rk+δ

∣∣∣∣∣ +
∣∣∣∣∣ logn −

m(n)∑
k=0

rk

∣∣∣∣∣ (3.22)

and show that all terms on the right of (3.22) divided by
√

m(n) tend to 0 as n → ∞.
Note that | logyn + ∑n

k=0 rk| ≤ C
∑n

k=0 r2
k . Then | logn − ∑m(n)

k=0 rk|/√m(n)−→
n

0. For the

second term we have
∑n

k=0 rk −∑n
k=0 rk+δ = ∑n

k=n+δ+1 rk ≤ −δ. Furthermore, for the first term

we use an inductive reasoning as done for r > 0 above. Let D
(δ)
k = sδ

k − rk+δ . Then, for δ = −1,

D
(−1)
k = rk−1/(1 − rk−1) − rk−1 = r2

k−1/(1 − rk−1) and clearly
∑n

k=0 |D(−1)
k |/√n−→

n
0. Let us

assume
∑n

k=0 |D(δ)
k |/√n−→

n
0. Then

∣∣D(δ−1)
k

∣∣ ≤ ∣∣D(δ)
k−1

∣∣/(1 − rk−1) + rk−1rk+δ−1/(1 − rk−1). (3.23)

The Cauchy–Schwarz inequality applied to (the sum over k of) the last term of (3.23) and the
inductive hypothesis yields, finally,

∑n
k=0 |D(δ−1)

k |/√n−→
n

0. �
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4. Central limit theorems for δ > 0

In the following two propositions we check conditions (A.3) and (A.4) of the martingale central
limit theorem for positive δ-records. Attention is restricted to converging failure rates rk to reduce
the study of conditional variances to sums of minima. We recall again that Ik = 1{Xk>Mk−1+δ} and
	θ(Mk) = θ(Mk) − θ(Mk−1), k ≥ 1.

Proposition 4.1. Let δ > 0, limk rk = r ∈ [0,1] and ξk = Ik − 	θ(Mk).

(a) If r < 1, (A.3) holds with b2
n = σ 2

r logn, where σ0 = 1 and

σ 2
r = −r(1 − r)δ[(1 − r)δ+1 − (1 + 2δr)(1 − r)δ + 1]/ log(1 − r), for r �= 0.

(b) If r = 1 and
∑∞

k=1 ek = ∞, with ek = (1 − rk) · · · (1 − rk+δ−1), (A.3) holds with b2
n =∑m(n)

k=1 ek . When
∑∞

k=1 ek < ∞, limn Nn < ∞ almost surely.

Proof. (a) From Proposition 2.2,

E[ξ2
k |Fk−1] =

∑
i>Mk−1

(
si(yi+δ + yi+δ−1 + yi−1) − 2pi+2δ

) − 2yMk−1+δ

Mk−1+δ∑
i=Mk−1+1

si . (4.1)

We first show that∑
i>m(si(yi+δ + yi+δ−1 + yi−1)) − 2

∑
i>m pi+2δ − 2ym+δ

∑m+δ
i=m+1 si

ym

−→
m

L, (4.2)

where L = (1 − r)δ((1 − r)δ+1 − (1 + 2δr)(1 − r)δ + 1) for r > 0 and L = 1 for r = 0. Note
that as yi/yi−1 −→

i
1 − r , we have

si(yi+δ + yi+δ−1 + yi−1) = siyi−1(yi+δ/yi−1 + yi+δ−1/yi−1 + 1)

∼
i

siyi−1
(
(1 − r)δ+1 + (1 − r)δ + 1

)
= pi+δ

(
(1 − r)δ+1 + (1 − r)δ + 1

)
.

Then ∑
i>m

si(yi+δ + yi+δ−1 + yi−1) ∼
m

ym+δ

(
(1 − r)δ+1 + (1 − r)δ + 1

)

∼
m

ym(1 − r)δ
(
(1 − r)δ+1 + (1 − r)δ + 1

)
.

Also,
∑

i>m pi+2δ = ym+2δ ∼
m

(1 − r)2δym. Finally,

ym+δ

m+δ∑
i=m+1

si ∼
m

(1 − r)δym

m+δ∑
i=m+1

ri+δ

i+δ−1∏
k=i

(1 − rk)∼
m

(1 − r)2δδrym
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and (4.2) is proved.
On the other hand, by Propositions 3.2 and 3.3 of Gouet et al. [9], we have

n∑
k=1

yMk−1/ logn
P−→
n

−r/ log(1 − r) (4.3)

for r ∈ [0,1), with −0/ log 1 = 1, and (a) is proved.

(b) Recalling expression (4.1), we first show that

∑
i>m(si(yi+δ + yi+δ−1 + yi−1)) − 2

∑
i>m pi+2δ − 2ym+δ

∑m+δ
i=m+1 si

ym+δ

−→
m

1. (4.4)

Note that

∑
i>m

si(yi+δ + yi+δ−1 + yi−1) =
∑
i>m

siyi−1

(
yi+δ

yi−1
+ yi+δ−1

yi−1
+ 1

)

∼
m

∑
i>m

siyi−1 = ym+δ,

∑
i>m

pi+2δ

ym+δ

= ym+2δ

ym+δ

−→
m

0 and ym+δ

m+δ∑
i=m+1

si

ym+δ

=
m+δ∑

i=m+1

ri+δei −→
m

0.

Then (4.4) is proved.
Therefore,

∑n
k=1 E[ξ2

k |Fk−1]∼
n

∑n
k=1 yMk−1+δ almost surely. Define the decreasing sequence

zk = yk+δ , k ≥ 1. Then
∑n

k=1 yMk−1+δ = ∑n
k=1 min{zX1, . . . , zXk

}, where the random vari-
ables zXk

are independent, identically distributed and take values zj with probabilities pj .
Their common distribution function is G(z) = ∑

i≥j pi = yj−1, zj ≤ z < zj−1, and its inverse
G−(t) = zj , yj < t ≤ yj−1. We now apply Theorem A.1 to the sum of minima. From (3.5), we

have H(log t) = ∑m(t)
j=0 zj rj /yj − ρ(t). In this case,

m(t)∑
j=0

zj rj

yj

∼
t

m(t)∑
j=0

ej+1

and |ρ(t)| ≤ ym(t)+δ/ym(t) ≤ 1, so H(logn)∼
n

b2
n. Then, from Theorem A.1, if

∑∞
n=1 en < ∞,

we have
∑∞

k=1 yMk−1+δ < ∞ almost surely. Thus,
∑∞

k=1 E[Ik|Fk−1] = ∑∞
k=1 yMk−1+δ < ∞ and

from the conditional Borel–Cantelli lemma (see Neveu [17], Corollary VII-2-6), we conclude
that limn Nn < ∞.



774 R. Gouet, F. López and G. Sanz

Let now
∑∞

n=1 en = ∞. We check hypotheses (A.1) and (A.2) of Theorem A.1. As in the proof
of (A.1) in Proposition 3.1(b), it suffices to show in this case that

m(nvn)∑
i=m(n)+1

ei

/m(n)∑
i=1

ei −→
n

0 (4.5)

for some vn ↑ ∞. Because en < 1 and m(nvn) − m(n) − 1 < C logvn for some C > 0 and every
n ≥ 1, (4.5) holds taking vn = ∑m(n)

i=1 ei .
We now study (A.2) and again, as in the proof of Proposition 3.1(b), we have

m(n)∑
k=1

z2
kh(k)∼

n

1
2

m(n)∑
k=1

y2
k+δ(y

−2
k − y−2

k−1)∼
n

1
2

m(n)∑
k=1

e2
k+1 ∼

n

1
2

m(n)∑
k=1

e2
k .

Therefore, because ek < 1,

H(logn)−2
n∑

i=1

iG−(1/i)2 ≤ C

m(n)∑
k=1

e2
k

/(
m(n)∑
k=1

ek

)2

−→
n

0.

Hence, (A.3) holds because

n∑
k=1

yMk−1+δ

/m(n)∑
k=1

ek
P−→
n

1. (4.6)

�

Proposition 4.2. Let δ > 0, limk rk = r ∈ [0,1] and ξk = Ik − 	θ(Mk).

(a) If r < 1, then (A.4) holds with b2
n = logn.

(b) If r = 1 and
∑∞

k=1 ek = ∞, with ek = (1 − rk) · · · (1 − rk+δ−1), then (A.4) holds with

b2
n = ∑m(n)

k=1 ek .

Proof. (a) From Proposition 2.3, we have E[|ξk|3|Fk−1] ≤ CyMk−1+δ ≤ CyMk−1 for some C > 0.
From (4.3),

∑n
k=1 yMk−1 has logarithmic growth and (A.4) holds.

(b) From Proposition 2.3, E[|ξk|3|Fk−1] ≤ CyMk−1+δ for some C > 0. Then (A.4) holds
by (4.6). �

We now state and prove the central limit theorem for δ > 0.

Theorem 4.1. Let δ > 0 and limk rk = r ∈ [0,1].
(a) If r < 1, then

(logn)−1/2(Nn − θ(m(n))
) D−→

n
N(0, σ 2

r ),

where σ 2
r = −r(1 − r)δ((1 − r)δ+1 − (1 + 2δr)(1 − r)δ + 1)/ log(1 − r) for r �= 0 and σ0 = 1.
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(b) If r = 1, then, defining ek = (1 − rk) · · · (1 − rk+δ−1), we have

Nn − θ(m(n))√∑m(n)
k=0 ek

D−→
n

N(0,1)

whenever
∑∞

k=0 ek = ∞ and limn Nn < ∞ almost surely when
∑∞

k=0 ek < ∞.

Proof. (a) By Propositions 4.1(a) and 4.2(a) and Theorem A.2, it only remains to show

(logn)−1/2(θ(Mn) − θ(m(n))
) P−→

n
0. (4.7)

We have

|θ(Mn) − θ(m(n))| =
Mn∨m(n)∑

i=(Mn∧m(n))+1

si ≤
Mn∨m(n)∑

i=(Mn∧m(n))+1

ri+δ ≤ δ +
Mn∨m(n)∑

i=(Mn∧m(n))+1

ri ,

so |θ(Mn) − θ(m(n))| ≤ |θ0(Mn) − θ0(m(n))| + δ, with θ0(k) = ∑k
i=0 ri and, as in the proof of

Theorem 3.1(a), (θ0(Mn) − θ0(m(n)))/
√

logn
P−→
n

0. Then (4.7) holds.

(b) By Propositions 4.1(b) and 4.2(b) and Theorem A.2, we have to prove that (θ(Mn) −
θ(m(n)))/(

∑n
k=1 ek)

1/2 P−→
n

0 when
∑∞

n=1 en = ∞. This follows from inequality |θ(Mn) −
θ(m(n))| ≤ |Mn − m(n)| and the tightness of Mn − m(n) when limk rk → 1 (see the proof of
Theorem 1 in Gouet et al. [10]). �

Corollary 4.1. Under the hypotheses of Theorem 4.1(a) we have

(a) If r > 0 and
∑n

i=0 |ri − r|/√n−→
n

0, then

(logn)−1/2
(

Nn + r(1 − r)δ logn

log(1 − r)

)
D−→
n

N(0, σ 2
r ).

(b) If r = 0 and
∑n

i=0 r2
i /

√
n−→

n
0, then

(logn)−1/2(Nn − logn)
D−→
n

N(0,1).

Proof. The proof is very similar to the proof of Corollary 3.1 except for some changes in our
inductive arguments.

(a) Recalling that sδ
k = rk+δ

∏k+δ−1
i=k (1 − ri), define D

(δ)
k = sδ

k − r(1 − r)δ . From (3.20), we

have to prove that
∑n

i=0 |ri − r|/√n−→
n

0 implies
∑n

k=0 D
(δ)
k /

√
n−→

n
0 for δ = 1,2, . . . . For

δ = 1, we have

D
(1)
k = rk+1 − r + r2 − rkrk+1 = rk+1 − r + r(r − rk) + rk(r − rk+1)
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and
∑n

k=0 D
(1)
k /

√
n−→

n
0.

Assume
∑n

k=0 D
(δ)
k /

√
n−→

n
0 and note that

D
(δ+1)
k = sδ+1

k − r(1 − r)δ+1 = rk+δ+1

k+δ∏
i=k

(1 − ri) − r(1 − r)δ+1

= sδ
k+1(1 − rk) − r(1 − r)δ+1 = (1 − rk)D

(δ)
k+1 + r(1 − r)δ(r − rk).

Then, clearly,
∑n

k=0 D
(δ+1)
k /

√
n−→

n
0.

(b) We prove that
∑n

k=1 |D(δ)
k |/√n−→

n
0 under

∑n
i=1 r2

i /
√

n−→
n

0, where D
(δ)
k = sδ

k −rk+δ .

For δ = 1, we have D
(1)
k = rk+1(1 − rk) − rk+1 = −rkrk+1, and

∑n
k=1 |D(1)

k |/√n−→
n

0 fol-

lows from the Cauchy–Schwarz inequality. Consider the inductive hypothesis
∑n

k=1 |D(δ)
k |/√

n−→
n

0. Then D
(δ+1)
k = sδ+1

k − rk+δ+1 = sδ
k+1(1 − rk) − rk+δ+1 = D

(δ)
k+1 − rks

δ
k+1 and

n∑
k=1

∣∣D(δ+1)
k

∣∣ ≤
n∑

k=1

∣∣D(δ)
k

∣∣ +
n∑

k=1

rks
δ
k+1,

which tends to 0 divided by
√

n from the inductive hypothesis and the Cauchy–Schwarz inequal-

ity, because sδ
k+1 ≤ rk+1+δ .

�

Remark 4.1. Notice that Theorem 4.1(a) is more restrictive than Theorem 3.1(a), concerning the
behaviour of the failure rates rk . This is because the process of conditional variances (A.3) can be
written as partial sums of minima only when δ < 0 (see Proposition 2.2). For positive δ, we were
able to analyze the case of converging rk’s, where conditional variances behave asymptotically
as sums of minima.

On the other hand, comparing Theorem 3.1(b) and Theorem 4.1(b) about distributions with
light tails (limk rk = 1), we find more generality in the positive case because we do not impose
any condition on the rate of convergence of rk to 1. This is not surprising in view of the structure
of the δ failure rates sk , with 1 − rk’s in the denominator when δ is negative. In this case, it
can be shown that, for the martingale central limit theorem, Theorem A.2, it is enough to have
(1 − rk)/(1 − rk−1) bounded away from zero and infinity; however, the change of the centering
sequence θ(Mn) by a deterministic one needs some extra hypothesis on the convergence of rk
to 1.

Remark 4.2. When δ > 0, unlike the negative case, it is not guaranteed that the number of δ-
records is infinite. Nevertheless, when this happens, this number is always asymptotically nor-
mal in contrast to the situation of usual records, which can grow to infinity without having an
asymptotically normal distribution; see Gouet et al. ([10], Theorem 1(b)).
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5. Examples

Example 5.1 (Geometric). We consider independent identically distributed random variables
with geometric distribution on Z+, that is, pk = pqk, k ≥ 0, n ≥ 1, with p ∈ (0,1) and
q = 1 − p. Clearly, yk−1 = qk and rk = pk/yk−1 = p. For δ < 0, we have sk = pk+δ/yk−1 =
pqk+δ/qk = pqδ when k ≥ −δ and sk = 0 otherwise. Also θ(k) = (k + δ + 1)+pqδ and
m(n) = �− logn/ logq�. From Corollary 3.1, we obtain

(logn)−1/2(Nn + pqδ logn/ logq)
D−→
n

N
(
0,−pqδ(qδ+1 + qδ − 1)/ logq

)
.

Weak records are observations such that Xn ≥ Mn−1. In our context, they correspond to δ-records
with δ = −1 and we have

(logn)−1/2(Nn + (p/q) logn/ logq
) D−→

n
N

(
0,−(p/q2)/ logq

)
.

The above result was obtained by Bai et al. [3], using generating function methods. With some
extra effort, our results could be extended to functional central limit theorems such as

(logn)−1/2(N�nt � + t (p/q) logn/ logq
) D−→

n

√
−(p/q2)/ logqW(t)

for the number of weak records of geometric random variables. The limit W(t) is the standard

Wiener process and
D−→
n

is understood as weak convergence on the Skorohod space D[0,∞).

For positive δ, we apply Corollary 4.1 to obtain

(logn)−1/2(Nn + pqδ logn/ logq)
D−→
n

N
(
0,−pqδ

(
qδ+1 − (1 + 2δp)qδ + 1

)
/ logq

)
.

Example 5.2 (Negative binomial). Here, pk = (−1)k
(−a

k

)
paqk for k ≥ 0,0 < p < 1, q = 1 − p

and a > 1. From Vervaat ([22], Example 3.1), we have p − (a − 1)q/k ≤ rk ≤ p and we obtain
the same limiting distributions as the geometric example above.

Example 5.3 (Zeta). The zeta distribution has pk = (k + 1)−a/ζ(a) for k ∈ Z+ and a > 1, with
ζ(a) = ∑∞

j=0(j + 1)−a . Here, rk = (k + 1)−a/
∑∞

j=k(j + 1)−a ∼
k
(a − 1)/k. From Corollaries

3.1(b) and 4.1(b), we obtain

(logn)−1/2(Nn − logn)
D−→
n

N(0,1).

Note that the normalizing sequences in this example do not depend on the value of δ, positive
or negative. This can be intuitively explained because samples from heavy-tailed distributions
show, with high probability, values that are ‘big’ records.

Example 5.4 (Poisson). Let pk = e−λλk/k!, k ∈ Z+, λ > 0. The following approximation of the
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failure rates rk can be found in Vervaat ([22], page 328):

λ

k + 1
−

(
λ

k + 1

)2

≤ 1 − rk ≤ λ

k + 1
.

Let δ < 0. Then it is easy to see that
∑m(n)

k=0 (1 − rk)
2δ ∼

n
λ2δ

∑m(n)
k=0 k−2δ ∼

n
λ2δm(n)1−2δ/(1 − 2δ)

and m(n)δ−1/2(
∑m(n)

k=0 sδ
k − λδm(n)1−δ/(1 − δ))−→

n
0, obtaining, from Theorem 3.1(b),

m(n)δ−1/2(Nn − λδ(m(n))1−δ/(1 − δ)
) D−→

n
N

(
0, λ2δ/(1 − 2δ)

)
,

where m(n)∼
n

logn/ log logn.

When δ > 0, we see, from Theorem 4.1(b), that the situation is quite different because
given that

∑n
k=1 ek ∼

n
λδ

∑n
k=1 k−δ , the number of δ-records is finite if δ > 1. For δ = 1,

we have
∑n

k=1 ek ∼
n

λ logn and it is easy to see that
∑∞

n=1 |θ(n) − λ/(n + 1)| < ∞. Also,

m(n)∼
n

logn/ log logn. Therefore,

(log logn)−1/2(Nn − λ logm(n)
) D−→

n
N(0, λ).

6. Concluding remarks

A referee suggested we consider the extension of our results to the case of kth upper order statis-
tics, introducing the random quantity Sn,k = ∑n

i=k+1 1{Xi>Xi−1 : i−k+δ}, where Xi−1 : i−k denotes
the kth upper order statistic of X1, . . . ,Xi−1. It is easy to see that replacing Mn = Xn : n by
Xn : n−k+1 in (2.3) does not yield a martingale. However, the modification

Sn,k −
k−1∑
j=0

θ(Xn : n−j )

is a martingale. It is not clear, though, how to handle this process to get results analogous to those
obtained in this paper.

Appendix: Sums of minima and martingale central limit
theorem

A.1. Sums of partial minima

The martingale approach we use depends on asymptotic results for sums of partial minima of
independent identically distributed random variables. The following weak law of large numbers
from Deheuvels [7] is quite useful here.

Let {Zn,n ≥ 1} be a sequence of independent identically distributed non-negative random
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variables, with common distribution function G, such that G(z) > 0 for all z > 0 and let
Sn = ∑n

i=1 min{Z1, . . . ,Zi}. Let also G−(t) = inf{z ≥ 0 | G(z) ≥ t}, for 0 ≤ t < 1 and H(x) =∫ ex

1 G−(1/u)du for x ≥ 0.

Theorem A.1 (Deheuvels [7], Theorem 7 and Corollary 4). If limx→∞ H(x) is finite, then Sn

grows almost surely to a finite limit as n → ∞. Otherwise, if there is a sequence xn ↑ ∞ such
that

H(xn + logn)/H(logn)−→
n

1 (A.1)

and

n∑
k=1

kG−(1/k)2
/(

n∑
k=1

G−(1/k)

)2

−→
n

0, (A.2)

then

Sn/H(logn)
P−→
n

1.

A.2. A martingale central limit theorem

We use the martingale central limit theorem given by Hall and Heyde ([11], page 58), replacing
the Lindeberg-type condition by the stronger Lyapunov-type condition (A.4).

Theorem A.2. Let {ξi, i ≥ 1} such that E[|ξi |3] < ∞ and E[ξi |Fi−1] = 0, for all i ≥ 1. For a
sequence bn ↑ ∞, if the conditions

1

b2
n

n∑
i=1

E[ξ2
i |Fi−1] P−→

n
1 (A.3)

and

1

b3
n

n∑
i=1

E[|ξi |3|Fi−1] P−→
n

0, (A.4)

hold, then
∑n

i=1 ξi/bn
D−→
n

N(0,1).

Lemma A.1. Let {an,n ≥ 1} be a sequence of positive terms such that an −→
n

∞ and

an/an−1 −→
n

1. Then an/Sn −→
n

0 and S2,n/(Sn)
2 −→

n
0, where Sn = ∑n

i=1 ai and S2,n =∑n
i=1 a2

i .
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Proof. The proof is a simple exercise. Let ε > 0 and take N ∈ N such that an − an−1 < εan for
all n ≥ N . Then, for n ≥ N ,

an − a0 =
n∑

i=1

(ai − ai−1) ≤ aN − a0 + ε

n∑
i=N+1

ai ≤ aN − a0 + εSn,

which implies an/Sn −→
n

0. Analogously, if an < εSn for n > N , then S2,n ≤ S2,N +ε
∑n

i=1 aiSi ≤
S2,N + ε(Sn)

2, implying S2,n/(Sn)
2 −→

n
0. �

Lemma A.2 (Embrechts et al. [8], Proposition 3.1.1). For 0 ≤ τ ≤ ∞ and a sequence
{un,n ≥ 1}, n(1 − F(un))−→

n
τ is equivalent to P [Mn ≤ un]−→

n
e−τ .

Corollary A.1. We have (
θ(Mn) − θ(m(n))

)
/bn

P−→
n

0 (A.5)

if and only if ny�(εbn+θ(m(n))) −→
n

0 and ny�(−εbn+θ(m(n))) −→
n

∞ for all ε > 0.

Proof. Convergence in (A.5) is equivalent to P [θ(Mn) ≤ εbn + θ(m(n))]−→
n

1 and

P [θ(Mn) ≤ −εbn + θ(m(n))]−→
n

0 for all ε > 0. From Lemma A.2, these conditions are, re-

spectively, equivalent to nP [θ(Xn) > εbn +θ(m(n))] = ny�(εbn+θ(m(n))) −→
n

0 and nP [θ(Xn) >

−εbn + θ(m(n))] = ny�(−εbn+θ(m(n))) −→
n

∞. �
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