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We consider a one-dimensional diffusion process (Xt ) which is observed at n+1 discrete times with regular
sampling interval �. Assuming that (Xt ) is strictly stationary, we propose nonparametric estimators of the
drift and diffusion coefficients obtained by a penalized least squares approach. Our estimators belong to a
finite-dimensional function space whose dimension is selected by a data-driven method. We provide non-
asymptotic risk bounds for the estimators. When the sampling interval tends to zero while the number of
observations and the length of the observation time interval tend to infinity, we show that our estimators
reach the minimax optimal rates of convergence. Numerical results based on exact simulations of diffusion
processes are given for several examples of models and illustrate the qualities of our estimation algorithms.
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1. Introduction

In this paper, we consider the following problem. Let (Xt )t≥0 be a one-dimensional diffusion
process with dynamics described by the stochastic differential equation:

dXt = b(Xt )dt + σ(Xt )dWt, t ≥ 0, X0 = η, (1)

where (Wt ) is a standard Brownian motion and η is a random variable independent of (Wt ).
Assuming that the process is strictly stationary (and ergodic), and that a discrete observation
(Xk�)1≤k≤n+1 of the sample path is available, we wish to construct nonparametric estimators of
the drift function b and the (square of the) diffusion coefficient σ 2.

Our aim is twofold: to construct estimators that have optimal asymptotic properties and that
can be implemented through feasible algorithms. Our asymptotic framework is such that the
sampling interval � = �n tends to zero while n�n tends to infinity as n tends to infinity. Nev-
ertheless, the risk bounds obtained below are non-asymptotic in the sense that they are explicitly
given as functions of � or 1/(n�) and fixed constants.

Nonparametric estimation of the coefficients of diffusion processes has been widely investi-
gated in recent decades. The first estimators proposed and studied were based on a continuous
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time observation of the sample path. Asymptotic results were given for ergodic models as the
length of the observation time interval tends to infinity: see, for instance, the reference paper by
Banon [2], followed by more recent works by Prakasa Rao [30], Spokoiny [31], Kutoyants [28]
or Dalalyan [18].

Then discrete sampling of observations was considered, with different asymptotic frameworks,
implying different statistical strategies. It is now classical to distinguish between low-frequency
and high-frequency data. In the former case, observations are taken at regularly spaced instants
with fixed sampling interval � and the asymptotic framework is that the number of obser-
vations tends to infinity. Only ergodic models are usually considered. Parametric estimation
in this context was studied by Bibby and Sørensen [11], Kessler and Sørensen [27]; see also
Bibby et al. [12]. A nonparametric approach using spectral methods was investigated in Gobet
et al. [24], where non-standard nonparametric rates were exhibited.

In high-frequency data, the sampling interval � = �n between two successive observations is
assumed to tend to zero as the number of observations n tends to infinity. Taking �n = 1/n, so
that the length of the observation time interval n�n = 1 is fixed, can only lead to estimating the
diffusion coefficient consistently. This was done by Hoffmann [25] who generalized results by
Jacod [26], Florens-Zmirou [21] and Genon-Catalot et al. [22].

Now, estimating both drift and diffusion coefficients requires that the sampling interval �n

tends to zero while n�n tends to infinity. For ergodic diffusion models, Hoffmann [25] proposes
nonparametric estimators using projections on wavelet bases together with adaptive procedures.
He exhibits minimax rates and shows that his estimators automatically reach these optimal rates
up to logarithmic factors. Hoffmann’s estimators are based on computations of some random
times which make them difficult to implement.

In this paper, we propose simple nonparametric estimators based on a penalized mean square
approach. The method is investigated in detail in Comte and Rozenholc [16,17] for regression
models. We adapt it here to the case of discretized diffusion models. The estimators are chosen to
belong to finite-dimensional spaces that include trigonometric, wavelet-generated and piecewise
polynomial spaces. The space dimension is chosen by a data-driven method using a penalization
device. Due to the construction of our estimators, we measure the risk of an estimator f̂ of f

(with f = b,σ 2) by E(‖f̂ −f ‖2
n), where ‖f̂ −f ‖2

n = n−1 ∑n
k=1(f̂ (Xk�)−f (Xk�))2. We give

bounds for this risk (see Theorems 1 and 2). An examination of these bounds as � = �n → 0
and n�n → +∞ shows that our estimators achieve the optimal nonparametric asymptotic rates
obtained in Hoffmann [25] without logarithmic loss (when the unknown functions belong to
Besov balls). Then we proceed to numerical implementation on simulated data for several exam-
ples of models. We emphasize that our simulation method for diffusion processes is not based on
approximations (like Euler schemes). Instead, we use the exact retrospective simulation method
described in Beskos et al. [10] and Beskos and Roberts [9]. Then we apply the algorithms devel-
oped in Comte and Rozenholc [16,17] for nonparametric estimation using piecewise polynomi-
als. The results are convincing even when some of the theoretical assumptions are not fulfilled.

The paper is organized as follows. In Section 2 we describe our framework (model, assump-
tions and spaces of approximation). Section 3 is devoted to drift estimation, and Section 4 to
diffusion coefficient estimation. In Section 5 we study examples and present numerical simula-
tion results that illustrate the performance of estimators. Section 6 contains proofs. In Section 7
a technical lemma is proved.
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2. Framework and assumptions

2.1. Model assumptions

Let (Xt )t≥0 be a solution of (1) and assume that n + 1 observations Xk�, k = 1, . . . , n + 1, with
sampling interval � are available. Throughout the paper, we assume that � = �n tends to 0
and n�n tends to infinity as n tends to infinity. To simplify notation, we write � without the
subscript n. Nevertheless, when speaking of constants, we mean quantities that depend neither
on n nor on �. We wish to estimate the drift function b and the diffusion coefficient σ 2 when
X is stationary and geometrically β-mixing. To this end, we consider the following assumptions:

Assumption 1.

(i) b ∈ C1(R) and there exists γ ≥ 0 such that, for all x ∈ R, |b′(x)| ≤ γ (1 + |x|γ ).
(ii) There exists b0 such that, for all x, |b(x)| ≤ b0(1 + |x|).

(iii) There exist d ≥ 0, r > 0 and R > 0 such that, for all |x| ≥ R, sgn(x)b(x) ≤ −r|x|d .

Assumption 2.

(i) There exist σ 2
0 and σ 2

1 such that, for all x,0 < σ 2
0 ≤ σ 2(x) ≤ σ 2

1 and there exists L such
that, for all (x, y) ∈ R

2, |σ(x) − σ(y)| ≤ L|x − y|1/2.
(ii) σ ∈ C2(R) and there exists γ ≥ 0 such that, for all x ∈ R, |σ ′(x)|+|σ ′′(x)| ≤ γ (1+|x|γ ).

Under Assumptions 1 and 2, equation (1) has a unique strong solution. Note that Assump-
tion 2(ii) is only used for the estimation of σ 2 and not for b. Elementary computations show that
the scale density

s(x) = exp

{
−2

∫ x

0

b(u)

σ 2(u)
du

}
satisfies

∫
−∞ s(x)dx = +∞ = ∫ +∞

s(x)dx, and the speed density m(x) = 1/(σ 2(x)s(x)) satis-

fies
∫ +∞
−∞ m(x)dx = M < +∞. Hence, model (1) admits a unique invariant probability π(x)dx

with π(x) = M−1m(x). Now we assume the following:

Assumption 3. X0 = η has distribution π .

Under the additional Assumption 3, (Xt ) is strictly stationary and ergodic. Moreover, it follows
from Proposition 1 in Pardoux and Veretennikov [29] that there exist constants K > 0, ν > 0 and
θ > 0 such that

E(exp(ν|X0|)) < +∞ and βX(t) ≤ Ke−θt , (2)

where βX(t) denotes the β-mixing coefficient of (Xt ) and is given by

βX(t) =
∫ +∞

−∞
π(x)dx‖Pt (x,dx′) − π(x′)dx′‖TV.
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The norm ‖·‖TV is the total variation norm and Pt denotes the transition probability. In particular,
X0 has moments of any (positive) order. Now, Assumption 1(i) ensures that, for all t ≥ 0, h > 0
and k ≥ 1, there exists c = c(k, γ ) such that

E

(
sup

s∈[t,t+h]
|b(Xs) − b(Xt )|k

∣∣Ft

)
≤ chk/2(1 + |Xt |c),

where Ft = σ(Xs, s ≤ t); for example, Gloter ([23], Proposition A). Thus, taking expectations,
there exists c′ such that

E

(
sup

s∈[t,t+h]
|b(Xs) − b(Xt )|k

)
≤ c′hk/2. (3)

The functions b and σ 2 are estimated only on a compact set A. For simplicity and without loss
of generality, we assume from now on that

A = [0,1]. (4)

It follows from Assumptions 1, 2(i) and 3 that the stationary density π is bounded from below
and above on any compact subset of R, and we denote by π0, π1 two positive real numbers such
that

0 < π0 ≤ π(x) ≤ π1 ∀x ∈ A = [0,1]. (5)

2.2. Spaces of approximation: piecewise polynomials

We aim to estimate the functions b and σ 2 of model (1) on [0,1] using a data-driven proce-
dure. For that purpose, we consider families of finite-dimensional linear subspaces of L

2([0,1])
and compute for each space an associated least squares estimator. Then an adaptive procedure
chooses among the resulting collection of estimators the ‘best’ one, in a sense that will be speci-
fied later, through a penalization device.

Several possible collections of spaces are available and discussed in Section 2.3. Now, to be
consistent with the algorithm implemented in Section 5, we focus on a specific collection, namely
the collection of dyadic regular piecewise polynomial spaces, henceforth denoted by [DP].

We fix an integer r ≥ 0. Let p ≥ 0 also be an integer. On each subinterval Ij = [(j −
1)/2p, j/2p], j = 1, . . . ,2p , consider r + 1 polynomials of degree 	, ϕj,	(x), 	 = 0,1, . . . , r ,
and set ϕj,	(x) = 0 outside Ij . The space Sm, m = (p, r), is defined as generated by the
Dm = 2p(r + 1) functions (ϕj,	). A function t in Sm may be written as

t (x) =
2p∑

j=1

r∑
	=0

tj,	ϕj,	(x).

The collection of spaces (Sm,m ∈Mn) is such that

Mn = {
m = (p, r),p ∈ N, r ∈ {0,1, . . . , rmax},2p(rmax + 1) ≤ Nn

}
. (6)
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In other words, Dm ≤ Nn, where Nn ≤ n. The maximal dimension Nn is subject to additional
constraints given below. The role of Nn is to bound all dimensions Dm, even when m is random.
In practice, it corresponds to the maximal number of coefficients to estimate. Thus it must not be
too large.

More concretely, consider the orthogonal collection in L
2([−1,1]) of Legendre polynomials

(Q	, 	 ≥ 0), where the degree of Q	 is equal to 	, generating L
2([−1,1]); see Abramowitz

and Stegun ([1], page 774). These satisfy |Q	(x)| ≤ 1, for all x ∈ [−1,1], Q	(1) = 1 and∫ 1
−1 Q2

	(u)du = 2/(2	 + 1). Then we set P	(x) = (2	 + 1)1/2Q	(2x − 1) to obtain an ortho-
normal basis of L

2([0,1]). Finally,

ϕj,	(x) = 2p/2P	(2
px − j + 1)1Ij

(x), j = 1, . . . ,2p, 	 = 0,1, . . . , r.

The space Sm has dimension Dm = 2p(r +1), and its orthonormal basis described above satisfies∥∥∥∥∥
2p∑

j=1

r∑
	=0

ϕ2
j,	

∥∥∥∥∥∞
≤ Dm(r + 1) ≤ Dm(rmax + 1).

Hence, for all t ∈ Sm, ‖t‖∞ ≤ (rmax + 1)1/2D
1/2
m ‖t‖, where ‖t‖2 = ∫ 1

0 t2(x)dx, for t in
L

2([0,1]), a property which is essential for the proofs.

2.3. Other spaces of approximation

From both theoretical and practical points of view, other spaces can be considered, such as
the trigonometric spaces [T], where Sm is generated by {1,21/2 cos(2πjx),21/2 sin(2πjx) for
j = 1, . . . ,m}, has dimension Dm = 2m + 1 and m ∈ Mn = {1, . . . , [n/2] − 1}; and the dyadic
wavelet-generated spaces [W] with regularity r and compact support, as described, for example,
in Daubechies [19], Donoho et al. [20] or Hoffmann [25].

The key properties that must be fulfilled to fit in our framework are the following:

(H1) Norm connection: (Sm)m∈Mn
is a collection of finite-dimensional linear subspaces of

L
2([0,1]), with dimension dim(Sm) = Dm such that Dm ≤ Nn ≤ n, for all m ∈ Mn,

and satisfying:

There exists �0 > 0 such that, for all m ∈ Mn, for all t ∈ Sm,
‖t‖∞ ≤ �0D

1/2
m ‖t‖.

(7)

An orthonormal basis of Sm is denoted by (ϕλ)λ∈m , where |m| = Dm. It follows from Birgé
and Massart [13] that property (7) in the context of (H1) is equivalent to:

There exists �0 > 0 such that

∥∥∥∥∥ ∑
λ∈m

ϕ2
λ

∥∥∥∥∥∞
≤ �2

0Dm. (8)

Thus, for the collection [DP], (8) holds with �2
0 = rmax + 1. Moreover, for results concerning

adaptive estimators, we need an additional assumption:
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(H2) Nesting condition: (Sm)m∈Mn
is a collection of models such that there exists a space

denoted by Sn, belonging to the collection, with Sm ⊂ Sn for all m ∈ Mn. We denote
by Nn the dimension of Sn: dim(Sn) = Nn (∀m ∈Mn,Dm ≤ Nn).

As far as possible below, we keep the notation general to allow extensions to spaces of approx-
imation other than [DP].

3. Drift estimation

3.1. Drift estimators: non-adaptive case

Let

Yk� = X(k+1)� − Xk�

�
and Zk� = 1

�

∫ (k+1)�

k�

σ(Xs)dWs. (9)

The following standard regression-type decomposition holds:

Yk� = b(Xk�) + Zk� + 1

�

∫ (k+1)�

k�

(b(Xs) − b(Xk�))ds,

where b(Xk�) is the main term, Zk� the noise term and the last term is a negligible residual.
Now, for Sm a space of the collection Mn and for t ∈ Sm, we consider the following regression

contrast:

γn(t) = 1

n

n∑
k=1

[Yk� − t (Xk�)]2. (10)

The estimator belonging to Sm is defined as

b̂m = arg min
t∈Sm

γn(t). (11)

A minimizer of γn in Sm, b̂m always exists but may not be unique. Indeed, in some common
situations the minimization of γn over Sm leads to an affine space of solutions. Consequently, it
becomes impossible to consider a classical L

2-risk for the ‘least squares estimator’ of b in Sm.
In contrast, the random R

n-vector (b̂m(X�), . . . , b̂m(Xn�))′ is always uniquely defined. Indeed,
let us denote by �m the orthogonal projection (with respect to the inner product of R

n) onto the
subspace {(t (X�), . . . , t (Xn�))′, t ∈ Sm} of R

n. Then (b̂m(X�), . . . , b̂m(Xn�))′ = �mY , where
Y = (Y�, . . . , Yn�)′. This is the reason why we define the risk of b̂m by

E

[
1

n

n∑
k=1

{b̂m(Xk�) − b(Xk�)}2

]
= E(‖b̂m − b‖2

n),

where

‖t‖2
n = 1

n

n∑
k=1

t2(Xk�). (12)
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Thus, our risk is the expectation of an empirical norm. Note that, for a deterministic func-
tion t , E(‖t‖2

n) = ‖t‖2
π = ∫

t2(x)dπ(x) where π denotes the stationary law. In view of (5), the
L

2-norm, ‖ · ‖, and the L
2(π)-norm, ‖ · ‖π , are equivalent for A-supported functions.

3.2. Risk of the non-adaptive drift estimator

Using (9), (10) and (12), we have

γn(t) − γn(b) = ‖t − b‖2
n + 2

n

n∑
k=1

(b − t)(Xk�)Zk�

+ 2

n�

n∑
k=1

(b − t)(Xk�)

∫ (k+1)�

k�

(
b(Xs) − b(Xk�)

)
ds.

In view of this decomposition, we define the centred empirical process

νn(t) = 1

n

n∑
k=1

t (Xk�)Zk�. (13)

Now denote by bm the orthogonal projection of b onto Sm. By definition of b̂m, γn(b̂m) ≤ γn(bm).
So γn(b̂m) − γn(b) ≤ γn(bm) − γn(b). This implies

‖b̂m − b‖2
n ≤ ‖bm − b‖2

n + 2νn(b̂m − bm)

+ 2

n�

n∑
k=1

(b̂m − bm)(Xk�)

∫ (k+1)�

k�

(b(Xs) − b(Xk�))ds.

The functions b̂m and bm being A-supported, we can cancel the terms ‖b1Ac‖2
n that appear in

both sides of the inequality. This yields

‖b̂m − b1A‖2
n ≤ ‖bm − b1A‖2

n + 2νn(b̂m − bm)

+ 2

n�

n∑
k=1

(b̂m − bm)(Xk�)

∫ (k+1)�

k�

(b(Xs) − b(Xk�))ds. (14)

On the basis of this inequality, we obtain the following result.

Proposition 1. Let � = �n be such that �n → 0, n�n/ ln2(n) → +∞ when n → +∞. Suppose
that Assumptions 1, 2(i) and 3 hold and consider a space Sm in the collection [DP] with Nn =
o(n�/ ln2(n)) (Nn is defined in (H2)). Then the estimator b̂m of b is such that

E(‖b̂m − bA‖2
n) ≤ 7π1‖bm − bA‖2 + K

E(σ 2(X0))Dm

n�
+ K ′� + K ′′

n�
, (15)

where bA = b1A and K,K ′ and K ′′ are positive constants.
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As a consequence, it is natural to select the dimension Dm that leads to the best compromise
between the squared bias term ‖bm − bA‖2 and the variance term of order Dm/(n�).

To compare the result of Proposition 1 with the optimal nonparametric rates exhibited by
Hoffmann [25], let us assume that bA belongs to a ball of some Besov space, bA ∈ Bα,2,∞([0,1]),
and that r + 1 ≥ α. Then, for ‖bA‖α,2,∞ ≤ L, we have ‖bA − bm‖2 ≤ C(α,L)D−2α

m . Thus,
choosing Dm = (n�)1/(2α+1), we obtain

E(‖b̂m − bA‖2
n) ≤ C(α,L)(n�)−2α/(2α+1) + K ′� + K ′′

n�
. (16)

The first term (n�)−2α/(2α+1) is exactly the optimal nonparametric rate (see Hoffmann [25]).
Moreover, under the standard condition � = o(1/(n�)), the last two terms in (15) are
O(1/(n�)), which is negligible with respect to (n�)−2α/(2α+1).

Proposition 1 holds for the wavelet basis [W] under the same assumptions. For the trigono-
metric basis [T], the additional constraint Nn ≤ O((n�)1/2/ ln(n)) is necessary. Hence, when
working with these bases, if bA ∈ Bα,2,∞([0,1]) as above, the optimal rate is reached for the
same choice for Dm, under the additional constraint that α > 1/2 for [T]. It is worth stressing
that α > 1/2 automatically holds under Assumption 1.

3.3. Adaptive drift estimator

As a second step, we must ensure an automatic selection of Dm, which does not use any knowl-
edge of b, and in particular which does not require α to be known. The standard selection is

m̂ = arg min
m∈Mn

[γn(b̂m) + pen(m)], (17)

with pen(m) a penalty to be chosen appropriately. We denote by b̂m̂ the resulting estimator and
we need to determine pen(·) such that, ideally,

E(‖b̂m̂ − bA‖2
n) ≤ C inf

m∈Mn

(
‖bA − bm‖2 + E(σ 2(X0))Dm

n�

)
+ K ′� + K ′′

n�
,

with C a constant which should not be too large. We almost achieve this aim.

Theorem 1. Let � = �n be such that �n → 0, n�n/ ln2(n) → +∞ when n → +∞. Suppose
that Assumptions 1, 2(i) and 3 hold and consider the nested collection of models [DP] with
maximal dimension Nn = o(n�/ ln2(n)). Let

pen(m) ≥ κσ 2
1

Dm

n�
, (18)

where κ is a universal constant. Then the estimator b̂m̂ of b with m̂ defined in (17) is such that

E(‖b̂m̂ − bA‖2
n) ≤ C inf

m∈Mn

(‖bm − bA‖2 + pen(m)
) + K ′� + K ′′

n�
. (19)
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Some comments are in order. It is possible to choose pen(m) = κσ 2
1 Dm/(n�), but this is not

what is done in practice. It is better to calibrate additional terms. This is explained in Section 5.2.
The constant κ in the penalty is numerical and must be calibrated for the problem. Its value is
usually adapted by intensive simulation experiments. This point is also discussed in Section 5.2.
From (15), one would expect to obtain E(σ 2(X0)) instead of σ 2

1 in (18): we do not know if this
is the consequence of technical problems or if it is a structural result. Another important point is
that σ 2

1 is unknown. In practice, we just replace it by a rough estimator (see Section 5.2).
From (19), we deduce that the adaptive estimator automatically realizes the bias–variance

compromise: whenever bA belongs to some Besov ball (see (16)), if r + 1 ≥ α and n�2 = o(1),
b̂m̂ achieves the optimal corresponding nonparametric rate, without logarithmic loss, contrary to
Hoffmann’s adaptive estimator (see Hoffmann [25], page 159, Theorem 5). As mentioned above,
Theorem 1 holds for the basis [W] and, if Nn = o((n�)1/2/ ln(n)), for [T] .

4. Adaptive estimation of the diffusion coefficient

4.1. Diffusion coefficient estimator: non-adaptive case

To estimate σ 2 on A = [0,1], we define

σ̂ 2
m = arg min

t∈Sm

γ̆n(t) with γ̆n(t) = 1

n

n∑
k=1

[Uk� − t (Xk�)]2, (20)

and

Uk� = (X(k+1)� − Xk�)2

�
. (21)

For diffusion coefficient estimation under our asymptotic framework, it is now well known that
rates of convergence are faster than for drift estimation. This is the reason why the regression-
type equation has to be more precise than for b. Let us set

ψ = 2σ ′σb + [(σ ′)2 + σσ ′′]σ 2. (22)

Some computations using Itô’s formula and Fubini’s theorem lead to

Uk� = σ 2(Xk�) + Vk� + Rk�

where Vk� = V
(1)
k� + V

(2)
k� + V

(3)
k� , with

V
(1)
k� = 1

�

[{∫ (k+1)�

k�

σ(Xs)dWs

}2

−
∫ (k+1)�

k�

σ 2(Xs)ds

]
V

(2)
k� = 2

�

∫ (k+1)�

k�

(
(k + 1)� − s

)
σ ′(Xs)σ

2(Xs)dWs,

V
(3)
k� = 2b(Xk�)

∫ (k+1)�

k�

σ(Xs)dWs,
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and

Rk� = 1

�

(∫ (k+1)�

k�

b(Xs)ds

)2

+ 2

�

∫ (k+1)�

k�

(
b(Xs) − b(Xk�)

)
ds

∫ (k+1)�

k�

σ(Xs)dWs

+ 1

�

∫ (k+1)�

k�

[(k + 1)� − s]ψ(Xs)ds.

Obviously, the main noise term in the above decomposition must be V
(1)
k� , as will be proved

below.

4.2. Risk of the non-adaptive estimator

As for the drift, we write

γ̆n(t) − γ̆n(σ
2) = ‖σ 2 − t‖2

n + 2

n

n∑
k=1

(σ 2 − t)(Xk�)Vk� + 2

n

n∑
k=1

(σ 2 − t)(Xk�)Rk�.

We denote by σ 2
m the orthogonal projection of σ 2 on Sm and define

ν̆n(t) = 1

n

n∑
k=1

t (Xk�)Vk�.

Again we use the fact that γ̆n(σ̂
2
m) − γ̆n(σ

2) ≤ γ̆n(σ
2
m) − γ̆n(σ

2) to obtain

‖σ̂ 2
m − σ 2‖2

n ≤ ‖σ 2
m − σ 2‖2

n + 2ν̆n(σ̂
2
m − σ 2

m) + 2

n

n∑
k=1

(σ̂ 2
m − σ 2

m)(Xk�)Rk�.

Analogously to what was done for the drift, we can cancel on both sides the common term
‖σ 21Ac‖2

n. This yields

‖σ̂ 2
m − σ 2

A‖2
n ≤ ‖σ 2

m − σ 2
A‖2

n + 2ν̆n(σ̂
2
m − σ 2

m) + 2

n

n∑
k=1

(σ̂ 2
m − σ 2

m)(Xk�)Rk�. (23)

We obtain the following result.

Proposition 2. Let � = �n be such that �n → 0, n�n/ ln2(n) → +∞ when n → +∞.
Suppose that Assumptions 1–3 hold and consider a model Sm in the collection [DP] with
Nn = o(n�/ ln2(n)), where Nn is defined in (H2). Then the estimator σ̂ 2

m of σ 2 defined by (20)
is such that

E(‖σ̂ 2
m − σ 2

A‖2
n) ≤ 7π1‖σ 2

m − σ 2
A‖2 + K

E(σ 4(X0))Dm

n
+ K ′�2 + K ′′

n
, (24)

where σ 2
A = σ 21A, and K , K ′, K ′′ are positive constants.
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Let us make some comments on the rates of convergence. If σ 2
A belongs to a ball of some

Besov space, say σ 2
A ∈ Bα,2,∞([0,1]), and ‖σ 2

A‖α,2,∞ ≤ L, with r + 1 ≥ α, then ‖σ 2
A − σ 2

m‖2 ≤
C(α,L)D−2α

m . Therefore, if we choose Dm = n1/(2α+1), we obtain

E(‖σ̂ 2
m − σ 2

A‖2
n) ≤ C(α,L)n−2α/(2α+1) + K ′�2 + K ′′

n
. (25)

The first term n−2α/(2α+1) is the optimal nonparametric rate proved by Hoffmann [25]. Moreover,
under the standard condition �2 = o(1/n), the last two terms are O(1/n), that is, negligible with
respect to n−2α/(2α+1).

4.3. Adaptive diffusion coefficient estimator

As previously, the second step is to ensure an automatic selection of Dm, which does not use any
knowledge on σ 2. This selection is done by

m̂ = arg min
m∈Mn

[γ̆n(σ̂
2
m) + p̃en(m)]. (26)

We denote by σ̂ 2
m̂

the resulting estimator and we need to determine the penalty p̃en as for b. For
simplicity, we use the same notation m̂ in (26) as in (17) although they are different. We can
prove the following theorem.

Theorem 2. Let � = �n be such that �n → 0, n�n/ ln2(n) → +∞ when n → +∞. Suppose
that Assumptions 1–3 hold. Consider the nested collection of models [DP] with maximal dimen-
sion Nn ≤ n�/ ln2(n). Let

p̃en(m) ≥ κ̃σ 4
1

Dm

n
, (27)

where κ̃ is a universal constant. Then, the estimator σ̂ 2
m̂

of σ 2 with m̂ defined by (26) is such that

E(‖σ̂ 2
m̂

− σ 2
A‖2

n) ≤ C inf
m∈Mn

(‖σ 2
m − σ 2

A‖2 + p̃en(m)
) + K ′�2 + K ′′

n
. (28)

As for the drift, it is possible to choose p̃en(m) = κ̃σ 4
1 Dm/n, but this is not what is done in

practice. Moreover, making such a choice, it follows from (28) that the adaptive estimator au-
tomatically realizes the bias–variance compromise. Whenever σ 2

A belongs to some Besov ball
(see (25)), if n�2 = o(1) and r + 1 ≥ α, σ̂ 2

m̂
achieves the optimal corresponding nonparametric

rate n−2α/(2α+1), without logarithmic loss, contrary to Hoffmann’s adaptive estimator (see Hoff-
mann [25], page 160, Theorem 6). As mentioned for b, Proposition 2 and Theorem 2 hold for the
basis [W] under the same assumptions on Nn. For [T], Nn = o((n�)1/2/ ln(n)) is needed.
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5. Examples and numerical simulation results

In this section, we consider examples of diffusions and implement the estimation algorithms on
simulated data. To simulate sample paths of diffusion, we use the retrospective exact simulation
algorithms proposed by Beskos et al. [10] and Beskos and Roberts [9]. Contrary to the Euler
scheme, these algorithms produce exact simulation of diffusions under some assumptions on
the drift and diffusion coefficient. Therefore, we choose our examples in order to meet these
conditions in addition with our set of assumptions. For the sake of simplicity, we focus on models
that can be simulated by the simplest algorithm of Beskos et al. [10], which is called EA1. More
precisely, consider a diffusion model given by the stochastic differential equation

dXt = b(Xt )dt + σ(Xt )dWt. (29)

We assume that there is a C2 one-to-one mapping F on R such that ξt = F(Xt ) satisfies

dξt = α(ξt )dt + dWt. (30)

To produce an exact realization of the random variable ξ�, given that ξ0 = x, the exact algorithm
EA1 requires that α be C1, and α2 + α′ be bounded from below and above. Moreover, setting
A(ξ) = ∫ ξ

α(u)du, the function

h(ξ) = exp
(
A(ξ) − (ξ − x)2/2�

)
(31)

must be integrable on R, and an exact realization of a random variable with density proportional
to h must be possible. Provided that the process (ξt ) admits a stationary distribution that it may
also be possible to simulate, using the Markov property, the algorithm can therefore produce
an exact realization of a discrete sample (ξk�, k = 0,1, . . . , n + 1) in the stationary regime. We
deduce an exact realization of (Xk� = F−1(ξk�), k = 0, . . . , n + 1).

In all examples, we estimate the drift function α(ξ) and the constant 1 for models like (30)
or both the drift b(x) and the diffusion coefficient σ 2(x) for models like (29). Let us note that
Assumptions 1–3 are fulfilled for all the models (ξt ) below. For the models (Xt ), the ergodicity
and the exponential β-mixing property hold.

5.1. Examples of diffusions

5.1.1. Family 1

First, we consider (29) with

b(x) = −θx, σ (x) = c(1 + x2)1/2. (32)

Standard computations of the scale and speed densities show that the model is positive recurrent
for θ + c2/2 > 0. In this case, its stationary distribution has density

π(x) ∝ 1

(1 + x2)1+θ/c2 .
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Figure 1. dXt = −(θ/c + c/2) tanh(cXt ) + dWt , n = 5000, � = 1/20, θ = 6, c = 2. Dotted line, true;
solid line, estimate. The algorithm selects (p, r) equal to (0,1) for the drift, (0,2) for σ 2.

If X0 = η has distribution π(x)dx, then, setting ν = 1 + 2θ/c2, ν1/2 η has Student distribution
t (ν) which can be easily simulated.

We now consider F1(x) = ∫ x

0 1/(c(1 + x2)1/2)dx = arg sinh(x)/c. By the Itô formula,
ξt = F1(Xt ) satisfies (30) with

α(ξ) = −(θ/c + c/2) tanh(cξ). (33)

Assumptions 1–3 hold for (ξt ) with ξ0 = F1(X0). Moreover,

α2(ξ) + α′(ξ) = {(θ/c + c/2)2 + θ + c2/2} tanh2(cξ) − (θ + c2/2)

is bounded from below and above. And

A(ξ) =
∫ ξ

0
α(u)du = −(1/2 + θ/c2) log(cosh(cξ)) ≤ 0,

so that exp(A(ξ)) ≤ 1. Therefore, function (31) is integrable for all x and, by a simple rejection
method, we can produce a realization of a random variable with density proportional to h(ξ)

using a random variable with density N (x,�).
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Note that model (29) satisfies Assumptions 1–3 except that σ 2(x) is not bounded from above.
Nevertheless, since Xt = F−1

1 (ξt ) = sinh(cξt ), the process (Xt ) is exponentially β-mixing. The
upper bound σ 2

1 that appears explicitly in the penalty function must be replaced by an estimated
upper bound.

5.1.2. Family 2

For the second family of models, we start with an equation of type (30) where the drift is now
(see Barndorff-Nielsen [7])

α(ξ) = −θ
ξ

(1 + c2ξ2)1/2
. (34)

The model for (ξt ) is positive recurrent on R for θ > 0. Its stationary distribution is given by

π(ξ)dξ ∝ exp

(
−2

θ

c2
(1 + c2ξ2)1/2

)
= exp

(
−2

θ |ξ |
c

)
exp(ϕ(ξ)),

where expϕ(ξ) ≤ 1 so that a random variable with distribution π(ξ)dξ can be simulated by
simple rejection method using a double exponential variable with distribution proportional to
exp(−2θ |ξ |/c). The conditions required to perform an exact simulation of (ξt ) hold. More

Figure 2. dXt = −θXt dt + c(1 + X2
t )1/2 dWt , n = 5000, � = 1/20, θ = 6, c = 2. Dotted line, true; solid

line, estimate. The algorithm selects (p, r) equal to (0,1) for the drift, (0,2) for σ 2.
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Figure 3. dXt = −[θ + c2/(2 cosh(Xt ))](sinh(Xt )/ cosh2(Xt ))dt + (c/ cosh(Xt ))dWt , n = 5000,
� = 1/20, θ = 3, c = 2. Dotted line, true; solid line, estimate. The algorithm selects (p, r) equal to (0,2)

for the drift, (0,3) for σ 2.

precisely, α2 + α′ is bounded from below and above and A(ξ) = ∫ ξ

0 α(u)du = −(θ/c2)(1 +
c2ξ2)1/2. Hence exp(A(ξ)) ≤ 1, (31) is integrable and we can produce a realization of a random
variable with density proportional to (31). Lastly, Assumptions 1–3 also hold for this model.

We now consider Xt = F2(ξt ) = arg sinh(cξt ), which satisfies a stochastic differential equation
with coefficients

b(x) = −
(

θ + c2

2 cosh(x)

)
sinh(x)

cosh2(x)
, σ (x) = c

cosh(x)
. (35)

The process (Xt ) is exponentially β-mixing as (ξt ). The diffusion coefficient σ(x) is not bounded
from below but has an upper bound.

To obtain a different shape for the diffusion coefficient, showing two bumps, we consider
Xt = G(ξt ) = arg sinh(ξt − 5)+ arg sinh(ξt + 5) where (ξt ) is as in (30)–(34). The function G(·)
is invertible and its inverse has the explicit expression

G−1(x) = 1

21/2 sinh(x)

[
49 sinh2(x) + 100 + cosh(x)

(
sinh2(x) − 100

)]1/2
.
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Figure 4. Two paths for the two-bumps diffusion coefficient model Xt = G(ξt ), dξt =
−θξt /(1 + c2ξ2

t )1/2 dt + dWt , G(x) = arg sinh(x − 5) + arg sinh(x + 5), n = 5000, � = 1/20,
θ = 1, c = 10. Dotted line, true; solid line, estimate. The algorithm selects (p, r) equal to (0,3) (above)
and (2,0) (below) for the drift, (0,6) (above) and (1,3) (below) for σ 2.
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The diffusion coefficient of (Xt ) is given by

σ(x) = 1

(1 + (G−1(x) − 5)2)1/2
+ 1

(1 + (G−1(x) + 5)2)1/2
. (36)

The drift is given by b(x) = G′(G−1(x))α(G−1(x)) + 1
2G′′(G−1(x)).

5.2. Estimation algorithms and numerical results

We do not give here a complete Monte Carlo study but we illustrate how the algorithm works
and what kind of estimate it delivers visually.

We consider the regular collection [DP] (see Section 2.2). The algorithm minimizes the mean
square contrast and selects the space of approximation in the sense that it selects p and r for
integers p and r such that 2p(r + 1) ≤ Nn ≤ n�/ ln2(n) and r ∈ {0,1, . . . , rmax}. Note that the
degree is global in the sense that it is the same on all the intervals of the subdivision. We take
rmax = 9 in practice. Moreover, additive (but negligible) correcting terms are classically involved
in the penalty (see Comte and Rozenholc [17]). Such terms avoid underpenalization and are in
accordance with the fact that the theorems provide lower bounds for the penalty. The correcting
terms are asymptotically negligible so they do not affect the rate of convergence. Thus, both
penalties contain additional logarithmic terms which have been calibrated in other contexts by
intensive simulation experiments (see Comte and Rozenholc [16,17]).

The constant κ in both penalties pen(m) and p̃en(m) has been set equal to 4.
We retain the idea that the adequate term in the penalty was E(σ 2(X0))/� for b and

E(σ 4(X0)) for σ 2, instead of those obtained (σ 2
1 /� and σ 4

1 , respectively). Indeed, in classi-
cal regression models, the corresponding coefficient is the variance of the noise. This variance
is usually unknown and replaced by a rough estimate. Therefore, in penalties, σ 2

1 /� and σ 4
1 are

replaced by empirical variances computed using initial estimators b̂, σ̂ 2 chosen in the collection
and corresponding to a space with medium dimension: σ 2

1 /� for pen(·) is replaced ŝ2
1 = γn(b̂)

(see (10)); and σ 4
1 for the other penalty is replaced by ŝ2

2 = γ̆n(σ̂
2) (see (20)).

Finally, for m = (p, r), the penalties pen(m) for i = 1 and p̃en(m) for i = 2 are given by

4
ŝ2
i

n
2p

(
r + 1 + ln2.5(r + 1)

)
.

Figures 1–4 illustrate our simulation results. We have plotted the data points (Xk�,Yk�)

(see (9)) and (Xk�,Uk�) (see (21)), the true functions b and σ 2 and the estimated functions
based on 95% of data points. Parameters have been chosen in the admissible range of ergodicity.
The sample size n = 5000 and the step size � = 1/20 are in accordance with the asymptotic
context (large n and small �) and may be relevant for applications in finance. It is clear that the
estimated functions correspond very well to the true ones.

The simulation of sample paths does not rely on Euler schemes as in the estimation method.
Therefore, the data simulation method is disconnected with the estimation procedures and cannot
be suspected of being favourable to our estimation algorithm.
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6. Proofs

6.1. Proof of Proposition 1

We recall that for A-supported functions, ‖t‖2
π = ∫

A
t2(x)π(x)dx. Starting from (13)–(14), we

obtain

‖b̂m − bA‖2
n ≤ ‖bm − bA‖2

n + 2‖b̂m − bm‖π sup
t∈Sm,‖t‖π=1

|νn(t)|

+ 2‖b̂m − bm‖n

[
1

n�2

n∑
k=1

{∫ (k+1)�

k�

(b(Xs) − b(Xk�))ds

}2
]1/2

≤ ‖bm − bA‖2
n + 1

8
‖b̂m − bm‖2

π + 8 sup
t∈Sm,‖t‖π=1

[νn(t)]2

+ 1

8
‖b̂m − bm‖2

n + 8

n�2

n∑
k=1

(∫ (k+1)�

k�

(b(Xs) − b(Xk�))ds

)2

.

Because the L
2-norm, ‖ · ‖π , and the empirical norm (12) are not equivalent, we must introduce

a set on which they are and then prove that this set has small probability. Let us define (see (6))

�n =
{
ω

/∣∣∣∣ ‖t‖2
n

‖t‖2
π

− 1

∣∣∣∣ ≤ 1

2
,∀t ∈

⋃
m,m′∈Mn

(Sm + Sm′) \ {0}
}
. (37)

On �n, ‖b̂m − bm‖2
π ≤ 2‖b̂m − bm‖2

n and ‖b̂m − bm‖2
n ≤ 2(‖b̂m − bA‖2

n + ‖bm − bA‖2
n). Hence,

some elementary computations yield:

1

4
‖b̂m − bA‖2

n1�n

≤ 7

4
‖bm − bA‖2

n + 8 sup
t∈Sm,‖t‖π=1

[νn(t)]2 + 8

n�2

n∑
k=1

(∫ (k+1)�

k�

(b(Xs) − b(Xk�))ds

)2

.

Now, using (3), we obtain

E

(∫ (k+1)�

k�

(b(Xs) − b(Xk�))ds

)2

≤ �

∫ (k+1)�

k�

E[(b(Xs) − b(Xk�))2]ds ≤ c′�3.

Consequently,

E(‖b̂m − bA‖2
n1�n) ≤ 7‖bm − bA‖2

π + 32E

(
sup

t∈Sm,‖t‖π=1
[νn(t)]2

)
+ 32c′�. (38)
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Next, using (5), (7)–(9) and (13), it is easy to see that, since ‖t‖π = 1 ⇒ ‖t‖2 ≤ 1/π0,

E

(
sup

t∈Sm,‖t‖π=1
[νn(t)]2

)
≤ 1

π0
E

(
sup

t∈Sm,‖t‖≤1
[νn(t)]2

)
≤ 1

π0

∑
λ∈m

E[ν2
n(ϕλ)]

= 1

π0n2�2

n∑
k=1

E

{ ∑
λ∈m

ϕ2
λ(Xk�)

∫ (k+1)�

k�

σ 2(Xs)ds

}

≤ �2
0Dm

π0n2�2

n∑
k=1

E

{∫ (k+1)�

k�

σ 2(Xs)ds

}

= �2
0Dm

π0n�2
E

(∫ �

0
σ 2(Xs)ds

)
= �2

0E(σ 2(X0))Dm

π0n�
.

Gathering bounds, and using the upper bound π1 defined in (5), we obtain

E(‖b̂m − bA‖2
n1�n) ≤ 7π1‖bm − bA‖2 + 32

�2
0E(σ 2(X0))Dm

π0n�
+ 32c′�.

Now, all that remains is to deal with �c
n. Since ‖b̂m −bA‖2

n ≤ ‖b̂m −b‖2
n, it is enough to check

that E(‖b̂m − b‖2
n1�c

n
) ≤ c/n. Write the regression model as Yk� = b(Xk�) + εk� with

εk� = 1

�

∫ (k+1)�

k�

[b(Xs) − b(Xk�)]ds + 1

�

∫ (k+1)�

k�

σ(Xs)dWs.

Recall that �m denotes the orthogonal projection (with respect to the inner product of R
n)

onto the subspace {(t (X�), . . . , t (Xn�))′, t ∈ Sm} of R
n. We have (b̂m(X�), . . . , b̂m(Xn�))′ =

�mY , where Y = (Y�, . . . , Yn�)′. Using the same notation for the function t and the vector
(t (X�), . . . , t (Xn�))′, we see that

‖b − b̂m‖2
n = ‖b − �mb‖2

n + ‖�mε‖2
n ≤ ‖b‖2

n + n−1
n∑

i=1

ε2
i�.

Therefore,

E(‖b − b̂m‖2
n1�c

n
) ≤ E(‖b‖2

n1�c
n
) + 1

n

n∑
k=1

E(ε2
k�1�c

n
)

≤ (
E

1/2(b4(X0)) + E
1/2(ε4

�)
)
P

1/2(�c
n).

By Assumption 1(ii) we have E(b4(X0)) ≤ c(1 + E(X4
0)) = K . With the Burholder–Davis–

Gundy inequality, we find

E(ε4
�) ≤ 23

{
1

�

∫ �

0
E

[(
b(Xs) − b(X�)

)4]ds + 36

�3
E

(∫ �

0
σ 4(Xs)ds

)}
.
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Under Assumptions 1, 2(i) and 3 and inequality (3), we obtain E(ε4
�) ≤ C(1+σ 4

1 /�2) := C′/�2.
The next lemma enables us to complete the proof.

Lemma 1. Let �n be defined by (37) and assume that n�n/ ln2(n) → +∞ when n → +∞.
Then, if Nn ≤ O(n�n/ ln2(n)) for collections [DP] and [W], and if Nn ≤ O((n�n)

1/2/ ln(n))

for collection [T], then

P(�c
n) ≤ c

n4
. (39)

The proof of Lemma 1 is given in Section 7.
Now, we gather all terms and use (39) to obtain (15).

6.2. Proof of Theorem 1

The proof relies on the following Bernstein-type inequality:

Lemma 2. Under the assumptions of Theorem 1, for any positive numbers ε and v, we have

P

(
n∑

k=1

t (Xk�)Zk� ≥ nε,‖t‖2
n ≤ v2

)
≤ exp

(
− n�ε2

2σ 2
1 v2

)
.

Proof. We use the fact that
∑n

k=1 t (Xk�)Zk� can be written as a stochastic integral. Consider
the process

Hn
u = Hu =

n∑
k=1

1[k�,(k+1)�[(u)t (Xk�)σ (Xu),

which satisfies H 2
u ≤ σ 2

1 ‖t‖2∞ for all u ≥ 0. Then, writing Ms = ∫ s

0 Hu dWu, we obtain that

M(n+1)� =
n∑

k=1

t (Xk�)

∫ (k+1)�

k�

σ(Xs)dWs,

〈M〉(n+1)� =
n∑

k=1

t2(Xk�)

∫ (k+1)�

k�

σ 2(Xs)ds.

Moreover, 〈M〉s = ∫ s

0 H 2
u du ≤ nσ 2

1 �‖t‖2
n, for all s ≥ 0, so that (Ms) and exp(λMs −λ2〈M〉s/2)

are martingales with respect to the filtration Fs = σ(Xu,u ≤ s). Therefore, for all s ≥ 0, c > 0,
d > 0, λ > 0,

P(Ms ≥ c, 〈M〉s ≤ d) ≤ P

(
exp

(
λMs − λ2

2
〈M〉s

)
≥ exp

(
λc − λ2

2
d

))
≤ exp

(
−

(
λc − λ2

2
d

))
.
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Therefore,

P(Ms ≥ c, 〈M〉s ≤ d) ≤ inf
λ>0

exp

(
−

(
λc − λ2

2
d

))
= exp

(
− c2

2d

)
.

Finally,

P

(
n∑

k=1

t (Xk�)Zk� ≥ nε,‖t‖2
n ≤ v2

)
= P

(
M(n+1)� ≥ n�ε, 〈M〉(n+1)� ≤ nv2σ 2

1 �
)

≤ exp

(
− (n�ε)2

2nv2σ 2
1 �

)
= exp

(
− nε2�

2v2σ 2
1

)
. �

Now we turn to the proof of Theorem 1. As in the proof of Proposition 1, we have to split
‖b̂m̂ − bA‖2

n = ‖b̂m̂ − bA‖2
n1�n + ‖b̂m̂ − bA‖2

n1�c
n
. For the treatment of �c

n, the end of the proof
of Proposition 1 can be used.

We now focus on what happens on �n. From the definition of b̂m̂, we have, for all m ∈ Mn,
γn(b̂m̂) + pen(m̂) ≤ γn(bm) + pen(m). We proceed as in the proof of Proposition 1 with the
additional penalty terms (see (38)) and obtain

E(‖b̂m̂ − bA‖2
n1�n) ≤ 7π1‖bm − bA‖2 + 4 pen(m) + 32E

(
sup

t∈Sm+Sm̂,‖t‖π=1
[νn(t)]21�n

)
− 4E(pen(m̂)) + 32c′�.

The main problem here is to control the supremum of νn(t) on a random ball (which depends on
the random m̂). This is done by using the martingale property of νn(t).

Let us introduce the notation

Gm(m′) = sup
t∈Sm+Sm′ ,‖t‖π=1

|νn(t)|.

Now, we plug in a function p(m,m′), which will in turn fix the penalty:

G2
m(m̂)1�n ≤ [(

G2
m(m̂) − p(m, m̂)

)
1�n

]
+ + p(m, m̂)

≤
∑

m′∈Mn

[(
G2

m(m′) − p(m,m′)
)
1�n

]
+ + p(m, m̂).

And pen is chosen such that 8p(m,m′) ≤ pen(m)+pen(m′). More precisely, the next proposition
determines the choice of p(m,m′).

Proposition 3. Under the assumptions of Theorem 1, there exists a numerical constant κ1 such
that, for p(m,m′) = κ1σ

2
1 (Dm + Dm′)/(n�), we have

E
[(

G2
m(m′) − p(m,m′)

)
1�n

]
+ ≤ cσ 2

1
e−Dm′

n�
.
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Proof of Proposition 3. The result of Proposition 3 follows from the inequality of Lemma 2 by
the L

2-chaining technique used in Baraud et al. [5] (see their Section 7, pages 44–47, Lemma 7.1,
with s2 = σ 2

1 /�). �

It is easy to see that the result of Theorem 1 follows from Proposition 3 with pen(m) ≥
κσ 2

1 Dm/(n�) and κ = 8κ1.

6.3. Proof of Proposition 2

First, we prove that

E

(
1

n

n∑
k=1

R2
k�

)
≤ K�2. (40)

With the obvious convention, let Rk� = R
(1)
k� + R

(2)
k� + R

(3)
k� so that (40) holds if E[(R(i)

k�)2] ≤
Ki�

2 for i = 1,2,3. Using Assumption 1,

E
[(

R
(1)
k�

)2] ≤ E

(∫ (k+1)�

k�

b2(Xs)ds

)2

≤ �E

(∫ (k+1)�

k�

b4(Xs)ds

)
≤ �2

E(b4(X0)) ≤ c�2.

We also have

E
[(

R
(2)
k�

)2] ≤ 1

�2

(
E

(∫ (k+1)�

k�

(
b(Xs) − b(Xk�)

)
ds

)4

E

(∫ (k+1)�

k�

σ(Xs)dWs

)4)1/2

.

Using (3), we obtain

E
[(

R
(2)
k�

)2] ≤ c′�2.

Lastly, using Assumptions 1 and 2 and equation (22),

E
[(

R
(3)
k�

)2] ≤ 1

�
E

(∫ (k+1)�

k�

(
(k + 1)� − s

)2
ψ2(Xs)ds

)
≤ E(ψ2(X0))

�2

3
≤ c′′�2.

Therefore (40) is proved.
We now return to (23) and recall that �n is defined by (37). The treatment is similar to that for

the drift estimator. On �n, ‖σ̂ 2
m − σ 2

m‖2
π ≤ 2‖σ̂ 2

m − σ 2
m‖2

n,

‖σ̂ 2
m − σ 2

A‖2
n ≤ ‖σ 2

m − σ 2
A‖2

n + 1

8
‖σ̂ 2

m − σ 2
m‖2

π + 8 sup
t∈Sm,‖t‖π=1

ν̆2
n(t)

+ 1

8
‖σ̂ 2

m − σ̂ 2
m‖2

n + 8

n

n∑
k=1

R2
k�
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≤ ‖σ 2
m − σ 2

A‖2
n + 3

8
‖σ̂ 2

m − σ 2
m‖2

n + 8 sup
t∈Sm,‖t‖π=1

ν̆2
n(t) + 8

n

n∑
k=1

R2
k�.

Setting Bm(0,1) = {t ∈ Sm,‖t‖ ≤ 1} and Bπ
m(0,1) = {t ∈ Sm,‖t‖π ≤ 1}, the following holds

on �n:

1

4
‖σ̂ 2

m − σ 2
A‖2

n ≤ 7

4
‖σ 2

m − σ 2
A‖2

n + 8 sup
t∈Bπ

m(0,1)

ν̆2
n(t) + 8

n

n∑
k=1

R2
k�.

Moreover,

E

(
sup

t∈Bπ
m(0,1)

ν̆2
n(t)

)
≤ 1

π0
E

(
sup

t∈Bm(0,1)

ν̆2
n(t)

)
≤ 1

π0

∑
λ∈m

E(ν̆2
n(ϕλ))

≤ 1

π0n2

∑
λ∈m

E

(
n∑

k=1

ϕ2
λ(Xk�)V 2

k�

)

≤ �2
0Dm

π0n
{12E(σ 4(X0)) + 4�Cb,σ },

where Cb,σ = E((σ ′σ 2)2(X0)) + σ 2
1 E(b2(X0)). Now using the condition on Nn, we have

�Dm/n ≤ �Nn/n ≤ �2/ ln2(n). This yields the first three terms of the right-hand side of (24).
The treatment of �c

n is the same as for b with the regression model Uk� = σ 2(Xk�) + ηk�,
where ηk� = Vk� + Rk�. By standard inequalities, E(η4

�) ≤ K{�4
E(b8(X0)) + E(σ 8(X0))}.

Hence, E(η4
�) is bounded. Moreover, using Lemma 1, P(�c

n) ≤ c/n2.

6.4. Proof of Theorem 2

This proof follows the same lines as the proof of Theorem 1. We start with a Bernstein-type
inequality.

Lemma 3. Under the assumptions of Theorem 2,

P

(
n∑

k=1

t (Xk�)V
(1)
k� ≥ nε,‖t‖2

n ≤ v2

)
≤ exp

(
−Cn

ε2/2

2σ 4
1 v2 + ε‖t‖∞σ 2

1 v

)
and

P

(
1

n

n∑
k=1

t (Xk�)V
(1)
k� ≥ vσ 2

1 (2x)1/2 + σ 2
1 ‖t‖∞x,‖t‖2

n ≤ v2

)
≤ exp(−Cnx). (41)

The non-trivial link between the above two inequalities is enhanced by Birgé and Massart [14],
so we just prove the first.
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Proof of Lemma 3. First we note that

E
(
eut (Xn�)V

(1)
n� |Fn�

) = 1 +
+∞∑
p=2

up

p! E
{(

t (Xn�)V
(1)
n�

)p∣∣Fn�

}

≤ 1 +
+∞∑
p=2

up

p! |t (Xn�)|pE
(∣∣V (1)

n�

∣∣p∣∣Fn�

)
.

Next we apply successively the Hölder inequality and the Burkholder–Davis–Gundy inequality
with best constant (Proposition 4.2 of Barlow and Yor [6]). For a continuous martingale (Mt),
with M0 = 0, for k ≥ 2, M∗

t = sups≤t |Ms | satisfies ‖M∗‖k ≤ ck1/2‖〈M〉1/2‖k , with c a universal
constant. And we obtain

E
(∣∣V (1)

n�

∣∣p∣∣Fn�

) ≤ 2p−1

�p

{
E

(∣∣∣∣∫ (n+1)�

n�

σ(Xs)dWs

∣∣∣∣2p∣∣∣Fn�

)
+ E

(∣∣∣∣∫ (n+1)�

n�

σ 2(Xs)ds

∣∣∣∣p∣∣∣Fn�

)}
≤ 2p−1

�p

(
c2p(2p)p�pσ

2p

1 + �pσ
2p

1

) ≤ (2σ1c)
2ppp.

Therefore,

E
(
eut (Xn�)V

(1)
n�

∣∣Fn�

) ≤ 1 +
∞∑

k=2

pp

p! (4uσ 2
1 c2)p|t (Xn�)|p.

Using pp/p! ≤ ep−1, we find

E
(
eut (Xn�)V

(1)
n�

∣∣Fn�

) ≤ 1 + e−1
∞∑

k=2

(4uσ 2
1 c2e)p|t (Xn�)|p

≤ 1 + e−1 (4uσ 2
1 c2e)2t2(Xn�)

1 − (4uσ 2
1 c2e‖t‖∞)

.

Now, let us set

a = e(4σ 2
1 c2)2 and b = 4σ 2

1 c2e‖t‖∞.

Since for x ≥ 0, 1 + x ≤ ex , we obtain, for all u such that bu < 1,

E
(
eut (Xn�)V

(1)
n�

∣∣Fn�

) ≤ 1 + au2t2(Xn�)

1 − bu
≤ exp

(
au2t2(Xn�)

1 − bu

)
.

This can also be written as

E

(
exp

(
ut(Xn�)V

(1)
n� − au2t2(Xn�)

1 − bu

)∣∣∣Fn�

)
≤ 1.
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Therefore, iterating conditional expectations yields

E

[
exp

{
n∑

k=1

(
ut(Xk�)V

(1)
k� − au2t2(Xk�)

1 − bu

)}]
≤ 1.

Then we deduce that

P

(
n∑

k=1

t (Xk�)V
(1)
k� ≥ nε,‖t‖2

n ≤ v2

)

≤ e−nuε
E

{
1‖t‖2

n≤v2 exp

(
u

n∑
k=1

t (Xk�)V
(1)
k�

)}

≤ e−nuε
E

[
1‖t‖2

n≤v2 exp

{
n∑

k=1

(
ut(Xk�)V

(1)
k� − au2t2(Xk�)

1 − bu

)}
e(au2)/(1−bu)

∑n
k=1 t2(Xk�)

]

≤ e−nuεe(nau2v2)/(1−bu)
E

[
exp

{
n∑

k=1

(
ut(Xk�)V

(1)
k� − au2t2(Xk�)

1 − bu

)}]

≤ e−nuεe(nau2v2)/(1−bu).

The inequality holds for any u such that bu < 1. In particular, u = ε/(2av2 + εb) gives −uε +
av2u2/(1 − bu) = −(1/2)(ε2/(2av2 + εb) and therefore

P

(
n∑

k=1

t (Xk�)V
(1)
k� ≥ nε,‖t‖2

n ≤ v2

)
≤ exp

(
−n

ε2/2

2av2 + εb

)
.

�

As for b̂m̂, we introduce the additional penalty terms and obtain that the risk satisfies

E(‖σ̂ 2
m̂

− σ 2
A‖2

n1�n) ≤ 7π1‖σ 2
m − σ 2

A‖2 + 4p̃en(m) + 32E

(
sup

t∈Bπ
m,m̂

(0,1)

(ν̆n(t))
21�n

)
− 4E(p̃en(m̂)) + K ′�2, (42)

where Bπ
m,m′(0,1) = {t ∈ Sm + Sm′,‖t‖π = 1}. Let us denote by

Ğm(m′) = sup
t∈Bπ

m,m′ (0,1)

∣∣ν̆(1)
n (t)

∣∣
the main quantity to be studied, where

ν̆(1)
n (t) = 1

n

n∑
k=1

t (Xk�)V
(1)
k� ;
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define also

ν̆(2)
n (t) = 1

n

n∑
k=1

t (Xk�)
(
V

(2)
k� + V

(3)
k�

)
.

As for the drift, we write

E(Ğ2
m(m̂)) ≤ E

[(
Ğ2

m(m̂) − p̃(m, m̂)
)
1�n

]
+ + E(p̃(m, m̂))

≤
∑

m′∈Mn

E
[(

Ğ2
m(m′) − p̃(m,m′)

)
1�n

]
+ + E(p̃(m, m̂)).

Now we have the following statement.

Proposition 4. Under the assumptions of Theorem 2, for

p̃(m,m′) = κ∗σ 4
1

{
Dm + Dm′

n
+ �2

0

π0

(
Dm + Dm′

n

)2}
,

where κ∗ is a numerical constant, we have

E
[(

Ğ2
m(m′) − p̃(m,m′)

)
1�n

]
+ ≤ cσ 4

1
e−Dm′

n
.

The result of Proposition 4 is obtained from inequality (41) of Lemma 3 by a L2(π) − L∞
chaining technique. For a description of this method, in a more general setting, we refer to Propo-
sitions 2–4 in Comte ([15], page 282–287), to Theorem 5 in Birgé and Massart [14] and to
Proposition 7 and Theorems 8 and 9 in Barron et al. [8]. Note that there is a difference be-
tween Propositions 3 and 4 which comes from the additional term ‖t‖∞ appearing in Lemma 3.
For this reason, we need to use the fact that ‖∑

λ∈m
βλψλ‖∞/ supλ∈m

|βλ| ≤ ‖∑ |ψλ|‖∞ ≤
(rmax + 1)D

1/2
m /π

1/2
0 for (ψλ)λ∈m an L

2(π)-orthonormal basis constructed by orthonormalisa-
tion of the (ϕλ). This explains the additional term appearing in p̃(m,m′).

Choosing p̃en(m) ≥ κ̃σ 4
1 Dm/n with κ̃ = 16κ∗, we deduce from (42), Proposition 4 and Dm ≤

Nn ≤ n�/ ln2(n) that

E(‖σ̂ 2
m̂

− σ 2
A‖2

n) ≤ 7π1‖σ 2
m − σ 2

A‖2 + 8p̃en(m) + cσ 4
1

∑
m′∈Mn

e−Dm′

n
+ κ̃σ 4

1 �2
0

π0

�2

ln4(n)

+ 64E

(
sup

t∈Bπ
m,m̂

(0,1)

(
ν̆(2)
n (t)

)2
)

+ K ′�2 + E(‖σ̂ 2
m̂

− σ 2
A‖2

n1�c
n
).

The bound for E(‖σ̂ 2
m̂

− σ 2‖2
n1�c

n
) is the same as that given in the end of the proof of Proposi-

tion 2. It is less than c/n provided that Nn ≤ n�/ ln2(n) for [DP] and [W] and N2
n ≤ n�/ ln2(n)

for [T].
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Since the spaces are all contained in a space denoted by Sn with dimension Nn bounded as
right above, we have

E

(
sup

t∈Bπ
m,m̂

(0,1)

(
ν̆(2)
n (t)

)2
)

≤ 1

π0
E

(
sup

t∈Sn,‖t‖=1

(
ν̆(2)
n (t)

)2
)

≤ KCb,σ �2
0
�Nn

π0n
≤ K ′�2.

The result of Theorem 2 follows.

7. Proof of Lemma 1

Using Baraud et al. [4], we prove that, for all n and � > 0,

P(�c
n) ≤ 2nβX(qn�) + 2n2 exp

(
−C0

n

qnLn(φ)

)
, (43)

where C0 is a constant depending on π0,π1, qn is an integer such that qn < n, and Ln(φ) is a
quantity depending on the basis of the largest nesting space Sn of the collection and is defined
below. We recall that Nn = dim(Sn).

We first prove (43). We use Berbee’s coupling method as in Proposition 5.1 of Viennet [32]
and its proof. We assume that n = 2pnqn. Then there exist random variables X∗

i�, i = 1, . . . , n,
satisfying the following properties:

• For 	 = 1, . . . , pn, the random vectors �U	,1 = (X[2(	−1)qn+1]�, . . . ,X(2	−1)qn�)′ and �U∗
	,1 =

(X∗
[2(	−1)qn+1]�, . . . ,X∗

(2	−1)qn�)′ have the same distribution, and so have the vectors
�U	,2 = (X[(2	−1)qn+1]�, . . . ,X2	qn�)′ and �U∗

	,2 = (X∗
[(2	−1)qn+1]�, . . . ,X∗

2	qn�)′.
• For 	 = 1, . . . , pn, P( �U	,1 �= �U∗

	,1) ≤ βX(qn�) and P( �U	,2 �= �U∗
	,2) ≤ βX(qn�).

• For each δ ∈ {1,2}, the random vectors �U∗
1,δ, . . . ,

�U∗
pn,δ are independent.

Let us define �∗ = {Xi� = X∗
i�, i = 1, . . . , n}. We have P(�c

n) ≤ P(�c
n ∩ �∗) + P(�∗c) and

clearly

P(�∗c) ≤ 2pnβX(qn�) ≤ nβX(qn�). (44)

Thus, (43) holds if we prove

P(�c
n ∩ �∗) ≤ 2N2

n exp

(
−A0

π2
0

π1

n

qnLn(φ)

)
, (45)

where Ln(φ) is defined as follows. Let (ϕλ)λ∈n be an L
2(A,dx)-orthonormal basis of Sn and,

as in Baraud et al. [4], define the matrices

V =
[(∫

A

ϕ2
λ(x)ϕ2

λ′(x)dx

)1/2]
λ,λ′∈n×n

, B = (‖ϕλϕλ′ ‖∞)λ,λ′∈n×n
.

Then we set Ln(φ) = max{ρ2(V ), ρ(B)}, where, for any symmetric matrix M = (Mλ,λ′),
ρ(M) = sup{aλ},∑λ a2

λ≤1

∑
λ,λ′ |aλ||aλ′ ||Mλ,λ′ |.
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We now prove (45). Let P
∗(·) := P(· ∩ �∗). We use Baraud ([3], Claim 2 in Proposi-

tion 4.2). Consider vn(t) = (1/n)
∑n

i=1[t (Xi�) − E(t (Xi�))], Bπ(0,1) = {t ∈ Sn,‖t‖π ≤ 1}
and B(0,1) = {t ∈ Sn,‖t‖ ≤ 1}. As, on A, π0 ≤ π(x) ≤ π1,

sup
t∈Bπ(0,1)

|vn(t
2)| = sup

t∈Sn/{0}

∣∣∣∣ ‖t‖2
n

‖t‖2
π

− 1

∣∣∣∣ ≤ π−1
0 sup

t∈B(0,1)

|vn(t
2)|.

Thus

P
∗
(

sup
t∈Bπ (0,1)

|vn(t
2)| ≥ ρ0

)
≤ P

∗
(

sup
t∈B(0,1)

|vn(t
2)| ≥ π0ρ0

)

≤ P
∗
(

sup∑
λ∈n

a2
λ≤1

∑
λ,λ′∈n

|aλaλ′ ||vn(ϕλϕλ′)| ≥ π0ρ0

)
.

On the set {∀(λ,λ′) ∈ 2
n, |vn(ϕλϕλ′)| ≤ 2Vλλ′(2π1x)1/2 + 3Bλλ′x}, we have

sup∑
λ∈n

a2
λ≤1

∑
λ,λ′∈n

|aλaλ′ ||vn(ϕλϕλ′)| ≤ 2ρ(V )(2π1x)1/2 + 3ρ(B)x.

By choosing x = (ρ0π0)
2/(16π1Ln(φ)) and ρ0 = 1/2, and recall that π0 ≤ π1, we obtain that

sup∑
λ∈n

a2
λ≤1

∑
λλ′

|aλaλ′ ||vn(ϕλϕλ′)| ≤ ρ0π0 = π0

2
.

This leads to

P
∗(�c

n) = P
∗
(

sup
t∈Bπ(0,1)

|vn(t
2)| ≥ 1

2

)
≤ P

∗({∀(λ,λ′) ∈ 2
n, |vn(ϕλϕλ′)| ≥ 2Vλλ′(2π1x)1/2 + 3Bλλ′x}).

The proof of (45) is then achieved by using the following claim, which is exactly Claim 6 in the
proof of Proposition 7 of Baraud et al. [4].

Claim 1. Let (ϕλ)λ∈n be an L
2(A,dx) orthonormal basis of Sn. Then, for all x ≥ 0 and all

integers q , 1 ≤ q ≤ n,

P
∗(∃(λ,λ′) ∈ 2

n/|vn(ϕλϕλ′)| > 2Vλ,λ′(2π1x)1/2 + 2Bλ,λ′x
) ≤ 2N2

n exp

(
−nx

q

)
.

Claim 1 implies that

P(�c
n ∩ �∗) ≤ 2N2

n exp

(
− π2

0

64π1

n

qnLn(φ)

)
,
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and thus (45) holds true.
Again we refer to Baraud et al. [4] (see Lemma 2 in Section 10). It is proved there that, for

[T], Ln(φ) ≤ CφN2
n . For [W] and [DP] (see Sections 2.2 and 2.3 above), Ln(φ) ≤ C′

φNn. We
now use (43) to complete the proof of Lemma 1. By assumption, the diffusion process X is
geometrically β-mixing. So, for some constant θ , βX(qn�) ≤ e−θqn�. Provided that � = �n

satisfies ln(n)/(n�) → 0, it is possible to take qn = [5 ln(n)/(θ�)] + 1. This yields

P(�c
n) ≤ 2

n4
+ 2n2 exp

(
−C′

0
n�

ln(n)Nn

)
.

The above constraint on � must be strengthened. Indeed, to ensure (39), we need

n�

Nn

≥ 6 ln2(n)

C′
0

, i.e. Nn ≤ C̃0
n�

ln2(n)

for [W] and [DP] . This requires n�/ ln2(n) → +∞. The result for [T] follows analogously.
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