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The augmented GARCH model is a unification of numerous extensions of the popular and widely used
ARCH process. It was introduced by Duan and besides ordinary (linear) GARCH processes, it contains ex-
ponential GARCH, power GARCH, threshold GARCH, asymmetric GARCH, etc. In this paper, we study
the probabilistic structure of augmented GARCH(1,1) sequences and the asymptotic distribution of various
functionals of the process occurring in problems of statistical inference. Instead of using the Markov struc-
ture of the model and implied mixing properties, we utilize independence properties of perturbed GARCH
sequences to directly reduce their asymptotic behavior to the case of independent random variables. This
method applies for a very large class of functionals and eliminates the fairly restrictive moment and smooth-
ness conditions assumed in the earlier theory. In particular, we derive functional CLTs for powers of the aug-
mented GARCH variables, derive the error rate in the CLT and obtain asymptotic results for their empirical
processes under nearly optimal conditions.

Keywords: Berry–Esseen bounds; empirical process; GARCH; strong approximation; weak invariance
principles

1. Introduction

The seminal work of Engle [17] gave a new impact to the theory of time series analysis. En-
gle introduced the ARCH (autoregressive conditionally heteroscedastic) process, which allows
the conditional variance of the time series to change as a function of past observations. In past
decades, this model has been widely used in the econometrics literature to describe financial
data showing time-varying volatility. Starting with the GARCH model of Bollerslev [8], a great
variety of generalizations and extensions of the ARCH model have been introduced and stud-
ied. Duan [16] defined a very general model, the so-called augmented GARCH process, which
contains most of the known GARCH models as special cases.

For some random variable Z, we define D(Z) as the smallest (finite or infinite) interval such
that Z ∈ D(Z) a.s.

Definition 1. Let g(x) and c(x) be real-valued and measurable functions and assume that

{εk, k ∈ Z} is an i.i.d. sequence. (1)

Assume, further, that the stochastic recurrence equation

Xk = c(εk−1)Xk−1 + g(εk−1), k ∈ Z, (2)

1350-7265 © 2008 ISI/BS

http://isi.cbs.nl/bernoulli/
http://dx.doi.org/10.3150/07-BEJ120
mailto:hormann@math.utah.edu


544 S. Hörmann

has a strictly stationary solution and assume that

� : R+ → D(X0) is an invertible function. (3)

Then, an augmented GARCH(1,1) process {yk,−∞ < k < ∞} is defined by the equation

yk = σkεk, (4)

with σ 2
k = �−1(Xk).

Necessary and sufficient conditions for the existence of a strictly stationary solution of (2) are
given in Aue et al. [1] and Duan [16]. In fact, (2) defines a stochastic recurrence equation of the
type treated in [9] and [10]. For the convenience of the reader, we state some important results in
Section 2 below.

Statistical inference for augmented GARCH sequences requires the study of the asymptotics
of the process. For example, detecting structural breaks in GARCH models via CUSUM or MO-
SUM statistics or determining the limit distribution of the Dickey–Fuller statistics used in unit
root testing in AR-GARCH processes requires functional CLTs for partial sums of various func-
tionals of the process. A possible method to prove such results is to use the Markov structure of
the model to obtain mixing properties and then to employ the theory of mixing variables to de-
duce the desired asymptotic results. A detailed study of β-mixing properties was undertaken by
Carrasco and Chen [11]. Mixing properties for ordinary GARCH(p,q) sequences were derived
by Basrak et al. [3]. An overview of different dependence structures occurring in econometric
time series models can be found in Nzé and Doukhan [24]. Besides mixing, they consider, for
example, NED (near-epoch dependence), association and (ψ,L, θ)-weak dependence. An elab-
orate treatment of the latter concept with applications is presented in Dedecker et al. [13]. The
great advantage of this approach is that once a good dependence condition is obtained, many
asymptotic results (such as functional CLTs) follow directly from a general theory, without any
additional work. On the other hand, the class of “ready to use” limit theorems for dependent
sequences is limited and the verification of many well-known dependence measures (especially
mixing properties) is usually difficult. Hence, to prove the availability of a specific dependence
structure often requires fairly restrictive moment and smoothness conditions on the underlying
process. For example, in the case of the AR-GARCH model, all existing results on the Dickey–
Fuller test, as well as the underlying functional CLT’s, require the existence of four moments
of the process. Technically, the existence of moments of y0 is a restriction on the functions c(·)
and g(·) in (2). Especially in higher order GARCH models, it is very difficult to connect the
moments of y0 with the specific model (cf. Ling and McAleer [22]). In this paper, we derive
diverse independence properties of GARCH and related models and use these results to directly
reduce their asymptotic behavior to that of independent random variables, extending their scope
of application and eliminating the restrictive moment and smoothness conditions required by ex-
isting theory. This method, adapted from Berkes and Horváth [5], depends on the observation that
truncating the infinite series in explicit representations for a GARCH process {yn,n ≥ 1} leads
to a perturbed process {ỹn, n ≥ 1}, whose finite segments {ỹn,1 ≤ n ≤ N} are m-dependent,
with m = m(N). This fact leads, via simple blocking arguments, to a large class of asymptotic
results under optimal conditions. In particular, we will derive functional CLT’s for powers of
augmented GARCH variables, requiring only the existence of finite variances (Section 4.1). Fur-
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ther, we prove a strong approximation of the empirical process by a two-parameter Gaussian
process under logarithmic moment assumptions (Section 4.3). Our method will also yield essen-
tially sharp convergence rates to the normal law (Section 4.2). It is very likely that this approach
can be used in many other situations as well.

The structure of our paper is as follows. In Section 2, we formulate preliminary results con-
cerning the existence of a stationary solution to (2) and conditions for E|y0|p < ∞ (p > 0). In
Section 3, we study the dependence structure of augmented GARCH sequences. We deduce an
approximation of the original random variables by an m-dependent sequence and give estimates
for the resulting error. These structural results are applied in Section 4 to derive diverse limit
theorems under very mild, or even optimal, assumptions. Finally, Section 5 contains proofs.

2. Preliminaries

We give conditions that ensure the existence of a strictly stationary solution of the stochastic
recurrence equation (2). Since we assume (1) and (3), this will obviously provide a strictly sta-
tionary solution of (4). The following existence theorem is due to Brandt [10]. Let log+ x =
log(x ∨ 1).

Theorem 1. Assume that (1) holds and that E log+ |g(ε0)| and E log+ |c(ε0)| are finite. If

E log |c(ε0)| < 0, (5)

then for every k ∈ Z, the series

Xk =
∞∑
i=1

g(εk−i )
∏

1≤j<i

c(εk−j ) (6)

is convergent with probability one and {Xk, k ∈ Z} is the unique strictly stationary solution of (2).

If {Xk, k ∈ Z} is a strictly stationary solution of (2), then it is called non-anticipative if Xk

is independent of σ(εj , j ≥ k). Following Bougerol and Picard [9], we call the model (2) ir-
reducible if there is no trivial solution Xk = x ∈ R such that x = c(ε0)x + g(ε0) a.s., hence,
we exclude the case where g(ε0) = x(1 − c(ε0)) for some x ∈ R. The following converse to
Theorem 1 is a special case of Bougerol and Picard [9], Theorem 2.4.

Theorem 2. Assume that (1) holds and that the model (2) is irreducible and has a strictly sta-
tionary non-anticipative solution. Then, the series in (6) converges with probability one and is
the unique strictly stationary solution of (2).

The series representation (6) is essential for our approach since it will provide a construc-
tion method for approximating m-dependent random variables. From Theorem 2, we learn that
whenever a non-anticipative and strictly stationary solution of (2) exists, it has the form (6). Fur-
thermore, Theorem 1 provides easy conditions for the convergence of this series. Hence, instead
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of requiring the existence of a solution of (2), we will hereafter assume a priori that the series
in (6) is convergent and that

�(σ 2
k ) =

∞∑
i=1

g(εk−i )
∏

1≤j<i

c(εk−j ). (7)

We shall abbreviate this compound assumption as simply “(7) holds”. Also, note that (7) is always
a formal solution of (2).

The next theorem is only a slight modification of a result of Aue et al. [1].

Theorem 3. Assume that (1) and (7) hold. If, for some µ > 0,

E|g(ε0)|µ < ∞ and E|c(ε0)|µ < 1, (8)

then E|�(σ 2
0 )|µ < ∞. Conversely, if

c(ε0) ≥ 0 and g(ε0) ≥ 0 (9)

hold, then (8) is necessary in order that E|�(σ 2
0 )|µ < ∞.

Remark 1. The sufficiency of (8) for E|�(σ 2
0 )|µ < ∞ is also given in Carrasco and Chen [11],

but under additional assumptions. They require µ ∈ {1,2, . . .}, Eε0 = 0, Eε2
0 = 1 and a continu-

ous density p(·) of ε0 such that p(x) > 0 for all x ∈ R.

In [11] and [16], several examples of augmented GARCH(1,1) processes appearing in the
literature are given. We refer to these articles for an overview. It should be noted that most
commonly known examples (as well as all examples given in [11,16]) treat so-called polynomial
or exponential GARCH processes. We say that an augmented GARCH sequence is a polynomial
(resp., exponential) GARCH process if �(x) = xδ with δ > 0 (resp., �(x) = logx). This special
form of � is motivated from a Box–Cox transformation of the observation. In order to avoid
cumbersome calculations for only a small gain, in this paper, we shall solely deal with these two
types. Our approach will work with more general � if we require certain smoothness conditions
as, for example, in Aue et al. [1]. However, in a generalized formulation, the price will be a
loss of accuracy of our results. The main advantage of a special choice of � is that we can very
precisely transfer different properties which are derived for �(σ 2

k ) to the volatility process {σ 2
k }.

The following corollary to Theorem 3 characterizes the existence of E|y0|2ν (ν > 0) for some
polynomial GARCH sequence. (See also Ling and McAleer [23].)

Corollary 1. Assume that (1), (4), (7), (9) and E|ε0|2ν < ∞ hold. Assume, further, that �(x) =
xδ (δ > 0). Then, for some ν > 0, we have E|y0|2ν < ∞ if and only if

E|c(ε0)|ν/δ < 1 and E|g(ε0)|ν/δ < ∞. (10)

For polynomial GARCH processes, the left-hand side of (2) is always positive and thus it
is natural to assume (9). Note, however, that c(ε0) ≥ 0 and g(ε0) ≥ 0 are not required for
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�(σ 2
k ) ≥ 0. A non-trivial example is where g(x) = 1 and the distribution of c(ε0) is concen-

trated on the interval [−1/2,0]. It follows from the definition of � that E|y0|2ν < ∞ if and only
if E|ε0|2ν < ∞ and E|�(σ 2

0 )|ν/δ < ∞, which, in view of Theorem 3, proves the corollary.
Proposition 1 below gives a moment criterion for exponential GARCH processes. For the

special case c(ε0) = c with |c| < 1, we refer to He et al. [21].

Proposition 1. Assume that (1), (4), (7) and E|ε0|2µ < ∞ hold. Assume, further, that �(x) =
logx. If

|c(ε0)| ≤ c < 1 and Eeµ|g(ε0)| < ∞, (11)

then E|y0|2µ < ∞. On the other hand, if (9) holds, then

P
(|c(ε0)| ≤ 1

) = 1 (12)

and the second assumption in (11) are necessary to assure E|y0|2µ < ∞.

The sufficiency part is implicit in [1]. To prove the other direction, we observe that by (7) and
the non-negativity of c(ε0) and g(ε0), it follows that

E|y0|2µ = E|ε0|2µ
E exp(µ�(σ 2

0 )) ≥ E|ε0|2µ
E exp(µg(ε0)) (13)

and hence Eeµg(ε0) < ∞ is necessary. Further, it is clear from (13) that �(σ 2
0 ) must have mo-

ments of all orders. If we assume that (12) does not hold, then there is some δ > 0 and some
α > 0 such that P {c(ε0) ≥ 1 + δ} = α. Consequently, Ec(ε0)

p ≥ α(1 + δ)p > 1 for sufficiently
large p. By (7) and the assumption c(ε0), g(ε0) ≥ 0, we have

E�(σ 2
0 )p ≥

∞∑
i=1

Eg(ε0)
p(Ec(ε0)

p)i−1 = ∞,

which contradicts the fact that E�(σ 2
0 )p < ∞ for any p > 0.

3. Dependence structure

In this section, we show that augmented GARCH sequences (yk) can be closely approximated
by m-dependent random variables (ykm). The error of the approximation will be measured by
the L2-distance

‖yk − ykm‖2 = (E|yk − ykm|2)1/2

and by probability inequalities for

P(|yk − ykm| > ε).

Under the present assumptions, such types of inequalities are relatively easy to obtain, yet they
have very strong consequences. In Section 4, we show that the closeness of the yk’s to inde-
pendence allows the study of asymptotic properties with classical methods and the derivation of
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sharp limit theorems via a unified approach. Since, in many applications, it is not the original
observations that are analyzed, but the transformed variables ηk = f (yk), where f comprises the
functions

f (x) = |x|ν or f (x) = sign(x) · |x|ν (ν > 0), (14)

we shall derive our results for (ηk). The basic idea for the approximation is this. If (7) holds, then

σ 2
k = �−1

( ∑
1≤i<∞

g(εk−i )
∏

1≤j<i

c(εk−j )

)
.

We now define

ykm = εkσkm, (15)

where σ 2
km is the solution of

�(σ 2
km) =

∑
1≤i≤m

g(εk−i )
∏

1≤j<i

c(εk−j ). (16)

It follows that (ykm) defines an m-dependent sequence. Usually, the series in (16) converges very
fast and hence considering the finite sums will only cause a small error.

Lemma 1. Assume that (1), (4), (7) and (9) hold. Assume, further, that �(x) = xδ . Let f be
given as in (14) and set

ηk = f (yk) and ηkm = f (ykm). (17)

If E|η0|2 < ∞, then there are constants C1 > 0 and 0 < � < 1 such that

‖ηk − ηkm‖2 ≤ C1�
m (m ≥ 1).

Lemma 2. Assume that (1), (4), (7) and (11) hold. Assume, further, that �(x) = logx. Let ηk

and ηkm be defined as in (17) and assume that E|η0|2 < ∞. If µ > ν, then there is some C2 > 0
such that

‖ηk − ηkm‖2 ≤ C2c
m (m ≥ 1). (18)

(Here, µ and ν come from (11) and (14) resp.).

Remark 2. Under the assumption E|η0|p < ∞ for p ≥ 1, some trivial changes in the proofs also
yield the exponential decrease of the Lp-error.

The conclusion of Lemmas 1 and 2 is that under some minor regularity assumptions –
providing manageable conditions for the existence of E|η0|2 (see Corollary 1 and Proposition 1) –
the L2 approximation error via the perturbed sequence decays exponentially fast. An immediate
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consequence is the short-memory behavior of the sequence (ηk), which can be characterized by
the convergence of

∞∑
k=1

|Cov(η0, ηk)| < ∞.

In fact, for m = m(k) = k − 1, we get, by the independence of η0 and ηkm, that |Cov(η0, ηk)| =
|Cov(η0, ηk − ηkm)| ≤ 4‖η0‖2‖ηk − ηkm‖2.

Having established the Lp-error of the approximating r.v.’s, one can immediately estimate
P(|�(σ 2

k )−�(σ 2
km)| > ε) and P(|yk −ykm| > ε) by using the Markov inequality. However, with

a little more effort, one can drastically weaken the associated moment requirements. Observe that
under (7),

|�(σ 2
k ) − �(σ 2

km)| =
m∏

i=1

|c(εk−i )||�(σ 2
k−m)|.

If (5) holds, then we can choose c1 > 0 such that −c1 − E log |c(ε0)| > 0. From the stationarity
of �(σ 2

k ), we get

P

(
m∏

i=1

|c(εk−i )||�(σ 2
k−m)| > e−c1m/2

)

≤ P

(
m∑

i=1

(
log |c(εk−i )| − E log |c(ε0)|

)
>

(−c1 − E log |c(ε0)|
)
m

)
+ P

(|�(σ 2
0 )| > ec1m/2).

Of course, the first term in the previous line only makes sense if E log |c(ε0)| > −∞. These
simple observations are summarized in the next lemma.

Lemma 3. Assume that (1) and (7) hold. Assume, further, that

−∞ < E log |c(ε0)| < 0 (19)

and set

Tm =
m∑

i=1

(
log |c(εi)| − E log |c(εi)|

)
.

There are then constants C3,C4 > 0 which do not depend on m such that for sufficiently small
α > 0, we have

P
(|�(σ 2

k ) − �(σ 2
km)| > e−αm

) ≤ P(Tm > C3m) + P
(|�(σ 2

0 )| > eC4m
)
.

Lemma 3 shows that the error rate depends on the tail probabilities of Tm and |�(σ 2
0 )|. Both

can be obtained by classical methods for independent random variables. Clearly, these probabil-
ities are determined by the specific distributions of c(ε0) and g(ε0). The next two lemmas give
more concrete estimates under different moment assumptions.
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Lemma 4. Assume that the conditions of Lemma 3 hold. If for some µ > 2,

E| log |c(ε0)||µ < ∞ and E(log+ |g(ε0)|)µ < ∞, (20)

then for a sufficiently small α > 0, there is some constant C5 such that for every m ≥ 1,

P
(|�(σ 2

k ) − �(σ 2
km)| > e−αm

) ≤ C5m
(2−µ)/2.

Lemma 5. Assume that the conditions of Lemma 3 hold. If for some µ > 0,

E|c(ε0)|µ < 1 and E|g(ε0)|µ < ∞, (21)

then for a sufficiently small α > 0, there are constants C6, ρ > 0 such that for every m ≥ 1,

P
(|�(σ 2

k ) − �(σ 2
km)| > e−αm

) ≤ C6e−ρm.

Finally, we consider the estimation of P(|yk − ykm| > ε). As in Lemmas 1–2, we will be
a little bit more general, considering the transformed variables ηk and distinguisting between
polynomial and exponential GARCH.

Lemma 6. Assume that (1), (4), (7), (9) and (19) hold and that (20) holds with some µ > 2.
Assume, further, that �(x) = xδ and let ηk and ηkm be given as in (17). Then, for sufficiently
small α > 0, there is some constant C7 such that

P(|ηk − ηkm| > e−αm) ≤ P(|ε0| ≥ eαm) + C7m
(2−µ)/2 (m ≥ 1).

Lemma 7. Assume that (1), (4), (7) hold and that (21) holds with some µ > 0. Assume, further,
that �(x) = logx and let ηk and ηkm be given as in (17). Then, for sufficiently small α > 0, there
is some constant C8 such that

P(|ηk − ηkm| > e−αm) ≤ P(|ε0| ≥ eαm) + C8m
−µ (m ≥ 1).

4. Applications

4.1. The functional central limit theorem

Statistical inference based on GARCH sequences often requires the establishment of functional
central limit theorems for partial sums processes like

Sn(t) = 1√
n

∑
1≤i≤nt

(
f (yi) − Ef (y0)

)

or

Zn(t) = 1√
n

∑
1≤i≤nt

(
f (σi) − Ef (σ0)

)
.
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For example, to derive the asymptotic distribution of the CUSUM or MOSUM statistics ap-
plied in the theory of change-point detection, an FCLT is needed. Also, the determination of the
asymptotic distribution of the Dickey–Fuller statistic for the unit root test in an AR-GARCH
model requires an FCLT. Several authors have obtained functional limit theorems for Sn(t) with
f (x) = x, f (x) = |x| or f (x) = x2 under various conditions. Most FCLTs in the literature as-
sume at least four moments of the GARCH variables (cf. Davidson [12], Hansen [19]) instead
of the more desirable assumption of solely a finite variance. Berkes et al. [6] noted that in the
special case f (x) = x and Eε0 = 0, the envisaged result follows from an FCLT for ergodic
martingale difference sequences (cf. Billingsley [7], Theorem 23.1) under the optimal condition
Ey2

0 < ∞. However, if Ey0 	= 0 or if we are, for example, interested in the squared GARCH
sequence, then the martingale structure no longer applies. Giraitis et al. [18] point out the im-
portant association property of the ARCH(∞) model, which, when specialized to the GARCH
case, yields an FCLT for the sequence y2

k under Ey4
k < ∞. Since association is preserved by

non-decreasing transformations, an FCLT for the sequences (|yk|ν) follows if one shows that∑∞
k=−∞ Cov(|y0|ν, |yk|ν) < ∞. Although the convergence of the last series is implied by Lem-

mas 1 and 2, this approach will not lead to the desired goal here. Due to the general form of the
functions c(x) and g(x) in (2), it is not clear whether the association property of the independent
εk’s is inherited as it is in the ARCH(∞) case. Also, for the variables sign(yk) · |yk|ν , this method
seems not to be applicable. A further weak dependence condition has been proposed by Doukhan
and Louhichi [14] (see also Doukhan and Wintenberger [15]), the so-called (θ,L,ψ)-weak de-
pendence. Roughly speaking, a sequence is (θ,L,ψ)-dependent if for all n ≥ 1 and all bounded
Lipschitz functions h, k : Rn → R, the covariances Cov(h(‘past’), k(‘future’)) ≤ ψ(·)θ(·). Here,
ψ and θ are functions, depending on the choice of ‘past’ and ‘future’. If the covariance relation
holds with proper ψ and θ , this structure can be used to verify an FCLT (see Nzé and Doukhan
[24], Section 5.1.6). Berkes et al. [6], Theorem 2.9, applied this method to derive the FCLT for
the squares of some GARCH sequence under the condition E|y0|κ < ∞ for some κ > 8.

Here, we will obtain the FCLT for the partial sum processes Sn(t) (resp., Zn(t)) by assuming

only the necessary assumption Ef (y0)
2 < ∞. Let

D[0,1]−→ denote weak convergence of a random
function in the Skorokhod space D[0,1].

Theorem 4. Assume that (1), (4), (7) and (9) hold. Assume, further, that �(x) = xδ (δ > 0) and
that f is given as in (14). If Ef (y0)

2 < ∞, then

τ 2 = Varf (y0) + 2
∑

1≤k<∞
Cov(f (y0), f (yk)) (22)

is convergent and

Sn(t)
D[0,1]−→ τW(t),

where {W(t),0 ≤ t ≤ 1} is a Brownian motion. An analogous result is valid for Zn(t).
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In particular, when the yk are GARCH(1,1) variables, we obtain FCLTs

1√
n

nt∑
k=1

(yk − Eyk)
D[0,1]−→ τ1W(t)

or

1√
n

nt∑
k=1

(σ 2
k − Eσ 2

k )
D[0,1]−→ τ2W(t) (23)

(here, τ 2
1 , τ 2

2 are the corresponding variances arising from (22)) under the necessary conditions
Ey2

k < ∞ and Eσ 4
k < ∞, respectively.

Theorem 5. Assume that (1), (4), (7) and (11) hold. Assume, further, that �(x) = logx and let
f be given as in (14). If Ef (y0)

2 < ∞ and µ > ν, then the proposition of Theorem 4 holds.
(Here, µ and ν stem from (11) and (14).)

Proof of Theorems 4 and 5. Set ξk = ηk − Eη0 and ξkm = ηkm − Eη0, where ηk and ηkm are
given as in (17). Obviously, ξk = g(. . . , εk−1, εk), where g is some measurable mapping from the
space of infinite sequences into R. According to Theorem 21.1 of Billingsley [7], for the proof,
it is enough to find measurable mappings gm from R

m into R such that∑
1≤m<∞

‖ξ0 − ζ0m‖2 < ∞, (24)

where ζ0m = gm(ε−m+1, ε−m+2, . . . , ε0). By Lemma 1, ξ0m satisfies this requirement and thus
setting ζ0m = ξ0m yields the proof of Theorem 4. The proof of Theorem 5 is the same. �

4.2. Rates of convergence in the central limit theorem

The functional CLT developed in Section 4.1 clearly implies the ordinary CLT for the partial
sums and raises the question of the normal approximation error. If f is given as in (14), we will
obtain the rate of convergence of

Sn = f (y1) + · · · + f (yn) − nEf (y1)

to the normal distribution provided that m3 = E|f (y1)|3 < ∞. For notational convenience, we
will write Sn instead of Sn(f ) and we set B2

n = Bn(f )2 = VarSn(f ) and

β2
n = β2

n(f ) = Varf (y0) + 2
n−1∑
j=1

(1 − j/n)Cov(f (y1), f (yj+1)),

that is, β2
n = B2

n/n.
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Theorem 6. Assume that the conditions of Theorem 4 hold with the added assumption
E|f (y0)|3 < ∞. Then,

β := limβn exists (25)

and if β > 0, there is some C > 0 such that

|P {Sn < xBn} − �(x)| ≤ C
(logn)2

√
n

for all n ≥ 2 and x ∈ R.

The constant C may depend on f , �, c, g and the law of ε0.

Theorem 7. Assume that the conditions of Theorem 5 hold with the added assumptions
E|f (y0)|3 < ∞ and µ > 3ν/2. Then, the proposition of Theorem 6 holds.

The additional assumptions in Theorems 6–7, compared with Theorems 4–5, arise from the
requirement E|f (y1)|3 < ∞, which is the classical assumption in the context of Berry–Esseen
bounds. The existence of the limit in (25) follows from Theorems 4–5. The rate (logn)2n−1/2

coincides with that obtained by Tihomirov [27], Theorem 2, for sequences which are β-mixing
with geometric rate. The proofs of Theorems 6–7 are given in Section 5.2. The main ingredients
are a Berry–Esseen bound for m-dependent sequences (Tihomirov [27], Theorem 5) and Lem-
mas 1–2. Again, it becomes clear that m-dependence, rather than mixing, is the crucial structural
property required in order to study the asymptotics of augmented GARCH variables.

4.3. Asymptotics of the empirical process

In this section, we study the empirical process of augmented GARCH sequences. For this pur-
pose, we define

R(s, t) =
∑

1≤k≤t

(
I {F(yk) ≤ s} − s

)
,

where F(x) = P(y0 ≤ x). We will derive an almost sure approximation theorem for R(s, t) by
a two-parameter Gaussian process K(s, t), assuming only the existence of logarithmic moments
of the εk and c(εk), g(εk). In the sequel, we shall use Yk(s) = I {F(yk) ≤ s} − s. Our results rely
on the following recent theorem, which is a special case of Theorem 2 in Berkes et al. [4]. We
write an 
 bn if lim supn→∞ |an/bn| < ∞. A function F is Lipschitz continuous of order θ if
there is some constant κ such |F(y) − F(x)| ≤ κ|y − x|θ for all x, y ∈ R.

Theorem 8. Assume that {yk, k ∈ Z} is a strictly stationary sequence which can be represented
in the form

yk = f (. . . , εk−1, εk),

where f : RN → R is Borel measurable and {εk, k ∈ Z} is an i.i.d. sequence. Further, assume
that the distribution function F(x) = P(y0 ≤ x) is Lipschitz continuous of order θ . If there are
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measurable functions fm : Rm → R (m ≥ 1) such that

P
(|yk − fm(εk−m+1, . . . , εk)| > m−A

) 
 m−B for min{A/θ,B} > 4,

then the series

�(s, s′) =
∑

−∞<k<∞
EY0(s)Yk(s

′) (26)

converges absolutely for every choice of parameters 0 ≤ s, s′ ≤ 1. Moreover, we can construct
{yk, k ∈ Z} and a two-parameter Gaussian process {K(s, t), (s, t) ∈ [0,1]2}, with EK(s, t) = 0
and EK(s, t)K(s′, t ′) = (t ∧ t ′)�(s, s′), on one probability space such that for some α > 0,

sup
0≤t≤T

sup
0≤s≤1

|R(s, t) − K(s, t)| = o(T 1/2(logT )−α) a.s.

A look at our approximation results in Section 3 (Lemmas 6 and 7) shows that Theorem 8
can be almost directly applied for augmented GARCH sequences. The only thing that remains
to be checked is the Lipschitz continuity of F . This will follow if, for example, we demand that
H(x) = P(ε0 ≤ x) is Lipschitz continuous of order θ and that

Eσ−θ
0 < ∞. (27)

Indeed, since ε0 and σ0 are independent, we get

|P(y0 ≤ x2) − P(y0 ≤ x1)| = |P(ε0 ≤ x2/σ0) − P(ε0 ≤ x1/σ0)|
≤ E|H(x2/σ0) − H(x1/σ0)|
≤ LEσ−θ

0 |x2 − x1|θ .
A sufficient condition for (27) is σ0 ≥ δ > 0, which is satisfied in all known examples for poly-
nomial GARCH processes. In case of exponential GARCH, the conditions

|c(ε0)| ≤ c < 1 and E exp(θ/2|g(ε0)|) < ∞
suffice to ensure (27). To see this, note that

Eσ−θ
0 ≤ E exp(θ/2|�(σ 2

0 )|).
Hence, we use the same arguments as in the proof of Proposition 1 to show that the last term is
finite. The following theorems summarize our observations.

Theorem 9. Let �(x) = xδ , δ > 0. Assume that (1), (4) and (7) hold. Assume, further, that
the distribution function H(x) = P(ε0 ≤ x) is Lipschitz continuous of order θ > 0 and that
(27) holds. If (20) holds and E log+ |ε0|(µ−2)/2 < ∞ with some µ > 10, then the proposition of
Theorem 8 is valid.
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Theorem 10. Let �(x) = logx. Assume that (1), (4) and (7) hold. Assume, further, that the dis-
tribution function H(x) = P(ε0 ≤ x) is Lipschitz continuous of order θ > 0 and that (27) holds.
If for some µ > 10, (21) and E log+ |ε0|(µ−2)/2 < ∞ hold, then the proposition of Theorem 8 is
valid.

An immediate consequence is the following two-parameter version of the empirical central
limit theorem which can, for example, be used to detect a change in the structure of the GARCH
sequence (cf. Bai [2]).

Theorem 11. Assume that {yk, k ∈ Z} is an augmented GARCH sequence satisfying the condi-
tions of either Theorem 9 or Theorem 10. Let {K(s, t), (s, t) ∈ [0,1]2} be a Gaussian process
with EK(s, t) = 0 and EK(s, t)K(s′, t ′) = (t ∧ t ′)�(s, s′). Then,

n1/2

(
1

n

∑
1≤k≤nt

(
I {F(yk) ≤ s} − s

)) D[0,1]2−→ K(s, t) (n → ∞).

As we pointed out in the introduction, our approach is, in many cases, superior to results fol-
lowing from mixing properties. Carrasco and Chen [11] verified β-mixing with exponential de-
cay for yk , an approach requiring a continuous positive density of ε0 on (−∞,∞) and Eε0 = 0,
Eε2

0 = 1 and

|c(0)| < 1, E|c(ε0)| < 1, E|g(ε0)| < ∞. (28)

Together with Theorem 2 in Philipp and Pinzur [26], this yields a similar result. Clearly, (28) is
more restrictive than (20). Also, our results do not require a positive and continuous density. In
the literature, special attention has been paid to the IGARCH(1,1) process, that is, GARCH(1,1)

with E(β +αε2
0) = 1. For an IGARCH process, (28) does not hold, but our new results still apply.

The moment conditions (28) for c(ε0) and g(ε0) are slightly milder than those of Theorem 10 in
case of exponential GARCH sequences.

5. Proofs

5.1. Perturbation error

Proof of Lemma 1. We assume, without loss of generality, that k = 0. By our assumption (9),
the term �(σ 2

km) is non-negative and thus, using the special choice of f and �, we get

|η0 − η0m|2 = |ε0|2ν
∣∣(�−1 ◦ �(σ 2

0 )
)ν/2 − (

�−1 ◦ �(σ 2
0m)

)ν/2∣∣2

≤ |ε0|2ν
∣∣(�−1 ◦ �(σ 2

0 )
)ν − (

�−1 ◦ �(σ 2
0m)

)ν∣∣ (29)

= |ε0|2ν |�(σ 2
0 )ν/δ − �(σ 2

0m)ν/δ|. (30)
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Let us first consider the case ν/δ ≤ 1. From (7) and Minkowski’s inequality (Hardy, Littlewood
and Pólya [20]), we infer that

|�(σ 2
0 )ν/δ − �(σ 2

0m)ν/δ| ≤
( ∞∑

i=m+1

g(ε−i )
∏

1≤j<i

c(ε−j )

)ν/δ

≤
∞∑

i=m+1

g(ε−i )
ν/δ

∏
1≤j<i

c(ε−j )
ν/δ.

Since we assume E|η0|2 < ∞, it follows from Corollary 1 that

E|η0 − η0m|2 ≤ E|ε0|2ν
∞∑

i=m+1

Eg(ε−i )
ν/δ

∏
1≤j<i

Ec(ε−j )
ν/δ ≤ c1�

m
1 ,

with some constant c1 > 0 and �1 = Ec(ε0)
ν/δ < 1.

If ν/δ > 1, then by the mean value theorem, (30) is bounded by

|ε0|2ν ν

δ
|�(σ 2

0 )|ν/δ−1|�(σ 2
0 ) − �(σ 2

0m)|.

From this, we get, by the Hölder and the Minkowski inequalities, that

E|η0 − η0m|2

≤ ν

δ
E|ε0|2ν(E|�(σ 2

0 )|ν/δ)(ν−δ)/ν

(
E

( ∞∑
i=m+1

g(ε−i )
∏

1≤j<i

c(ε−j )

)ν/δ)δ/ν

≤ c2

∞∑
i=m+1

(
Eg(ε−i )

ν/δ
∏

1≤j<i

Ec(ε−j )
ν/δ

)δ/ν

≤ c3(�
δ/ν

1 )m.

�

Proof of Lemma 2. Assume, again, that k = 0. We can formally derive (29), which reads here
as

|η0 − η0m|2 ≤ |ε0|2ν |eν logσ 2
0 − eν logσ 2

0m |. (31)

By the mean value theorem, we get

|eν logσ 2
0 − eν logσ 2

0m | ≤ ν(eν logσ 2
0 + eν logσ 2

0m)| logσ 2
0 − logσ 2

0m|. (32)

Since ν < µ, we can find some ζ > 0 such that ν(1 + ζ ) < µ. It follows from Proposition 1 that

Eeν(1+ζ ) logσ 2
0 < ∞
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and, similarly, we get

Eeν(1+ζ ) logσ 2
0m < ∞.

Thus, the Hölder inequality and the Minkowski inequality give

Eeν logσ 2
0 | logσ 2

0 − logσ 2
0m|

≤ (
Eeν(1+ζ ) logσ 2

0
)1/(1+ζ )(

E| logσ 2
0 − logσ 2

0m|(1+ζ )/ζ
)ζ/(1+ζ )

≤ (
Eeν(1+ζ ) logσ 2

0
)1/(1+ζ )(

E|g(ε0)|(1+ζ )/ζ
)ζ/(1+ζ )

∞∑
i=m+1

ci−1 ≤ const · cm.

The analogous result can be obtained if we replace exp (ν logσ 2
0 ) by exp (ν logσ 2

0m). Rela-
tion (18) now follows from (31) and (32). �

Proof of Lemma 4. We can make use of Lemma 3. By the first part of (20) and the Rosenthal
inequality (see, e.g., Petrov [25], Theorem 2.9), we infer that P(Tm > C3m) ≤ c1m

−µ/2. Hence,
it remains to estimate P(|�(σ 2

0 )| > eC4m). We set γ1 = E log |c(ε0)| and γ2 = E log+ |g(ε0)|. Let
0 ≤ � < 1 such that log� − γ1 = a > 0. If t is chosen sufficiently large, we get, from (7) and the
Markov inequality,

P
(|�(σ 2

0 )| > t
)

≤
∞∑
i=1

P

(
|g(ε−i )|

∏
1≤j<i

|c(ε−j )| > t(1 − �)�i−1

)

=
∞∑
i=1

P

(
log+ |g(ε−i )| +

∑
1≤j<i

(
log |c(ε−j )| − γ1

)
> log t − c2 + i(log� − γ1)

)

≤
∞∑
i=1

P

(
log+ |g(ε−i )| − γ2 +

∑
1≤j<i

(
log |c(ε−j )| − γ1

)
>

log t

2
+ ia

)

≤
∞∑
i=1

E

∣∣∣∣∣ log+ |g(ε−i )| − γ2 +
∑

1≤j<i

(
log |c(ε−j )| − γ1

)∣∣∣∣∣
µ(

log t

2
+ ia

)−µ

.

From (20), and again from the Rosenthal inequality, we obtain

P
(|�(σ 2

0 )| > t
) ≤ c3

∞∑
i=1

iµ/2
(

log t

2
+ ia

)−µ

≤ c4

∞∑
i=1

(
log t

2
+ ia

)−µ/2

≤ c5(log t)−(µ−2)/2.
�
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Since Lemmas 5–7 follow by similar arguments, we will omit their proofs.

5.2. A Berry–Esseen bound

We shall prove Theorem 6; the arguments for Theorem 7 are identical. Our proof relies on the
following result for m-dependent sequences.

Lemma 8 (Tihomirov [27]). Let X1,X2, . . . be a strictly stationary sequence of m-dependent
random variables with EX1 = 0 such that

E|X1|3 < ∞.

Let B2
n = Var(Sn) and β2 = EX2

1 +2
∑m

k=2 EX1Xk . If β2 > 0, then there exist absolute constants
C1 and C2 such that

sup
x∈R

|P {Sn ≤ Bnx} − �(x)| ≤ C1
b2
mE

1/3|X1|3
β3

√
n

+ C2
mbmE

1/3|X1|3 logn

β2n
,

where bm = max1≤p≤m+1 E
1/3|∑p

v=1 Xv|3.

We use the notation of Section 4.3 and additionally define ηk and ηkm by

ηk = f (yk) − Ef (yk) and ηkm = f (εkσkm) − Ef (εkσkm).

Then, clearly, for every m ≥ 1, {ηkm, k ∈ Z} defines some strictly stationary and m-dependent
sequence. By a routine argument, we can extend the proof of Lemma 1 to show

‖ηk − ηkm‖2 ≤ c1�
m for all m ≥ 1 and k ∈ Z, (33)

for some positive constant c1 and � < 1. We choose some n ∈ N which we assume to be fixed for
the moment and set S′

n = ∑n
k=1 ηkm and (B ′

n)
2 = VarS′

n with m = [t logn]. The value of t will
be specified later. Let (δk) be a sequence of positive reals. A simple estimate gives

P {Sn > xBn} ≤ P {S′
n > (x − δn)Bn} + P {|Sn − S′

n| > δnBn}

and

P {S′
n > (x + δn)Bn} ≤ P {Sn > xBn} + P {|Sn − S′

n| > δnBn}.
A repeated application of the triangle inequality, together with the latter estimates, shows, after
a moment’s reflection, that

sup
x∈R

|P {Sn ≤ Bnx} − �(x)| ≤ R(1)
n + R(2)

n + R(3)
n , (34)
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where

R(1)
n = sup

x∈R

|P {S′
n ≤ Bn(x + δn)} − �(x + δn)|,

R(2)
n = sup

x∈R

|�(x + δn) − �(x)|,

R(3)
n = P {|Sn − S′

n| > δnBn}.

We shall now estimate R
(i)
n , i = 1,2,3. Setting δn = n−1/2, we get, by the mean value theorem,

R
(2)
n ≤ (2πn)−1/2. From (25), we conclude that 2B2

n > β2n for all n ≥ n0. Since we assume that
β2 > 0, we infer from the Markov and the Minkowski inequalities and (33) that

R(3)
n = P {|Sn − S′

n| > δnBn} ≤ nE|Sn − S′
n|2/B2

n

≤ n

(
n∑

k=1

‖yk − ykm‖2

)2/
B2

n ≤ c2n
2�m,

where c2 can be chosen such that it is not dependent on n. (The following constants ci occurring
in the proof are also independent of n.) Hence, if t ≥ −5/ log�, we have R

(3)
n = O(n−1/2). In

order to estimate R
(1)
n , we will use Lemma 8. This cannot be directly applied; we have to change

from Bn to B ′
n. By Cauchy–Schwarz and Minkowski’s inequality again, we derive

|B2
n − (B ′

n)
2| ≤ E|Sn − S′

n||Sn + S′
n| ≤ c3‖Sn − S′

n‖2Bn

≤ c4n
1/2

n∑
k=1

‖yk − ykm‖2 ≤ c5n
3/2�m/2 ≤ c6n

−1,

where the last inequality follows from the choice t ≥ −5/ log�. Again using 2B2
n > β2n, if

n ≥ n0, we can reformulate the latter estimate to

(1 + c7n
−2)−1/2 ≤ Bn

B ′
n

≤ (1 − c7n
−2)−1/2, (35)

provided that c7n
−2 < 1. By routine arguments (cf. [25], Lemma 5.2), it follows that

sup
y∈R

|�(yp) − �(y)| ≤
{

(p − 1)/(2πe)1/2, if p ≥ 1,

(p−1 − 1)/(2πe)1/2, if 0 < p < 1.
(36)

Trivially, we have

R(1)
n ≤ ∣∣P {S′

n ≤ Bn(x + δn)} − �
(
Bn/B

′
n(x + δn)

)∣∣
+ ∣∣�(

Bn/B
′
n(x + δn)

) − �(x + δn)
∣∣

=: R(11)
n + R(12)

n .
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From (35) and (36), we get R
(12)
n = O(n−2). Next, observe that E|η1m|3 ≤ c8E|f (y1)|3 and that

as consequence of (35), we have β ′
n ∼ β , where

β ′
n =

(
Varη1m + 2

[t logn]∑
j=2

Cov(η1m,ηjm)

)1/2

.

By Lemma 8, it follows that R
(11)
n = O(n−1/2 log2 n). Finally, combining our estimates for R

(11)
n ,

R
(12)
n , R

(2)
n and R

(3)
n with (34) completes the proof.
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