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We develop a stochastic calculus for processes which are built by convoluting a pure jump, zero expectation
Lévy process with a Volterra-type kernel. This class of processes contains, for example, fractional Lévy
processes as studied by Marquardt [Bernoulli 12 (2006) 1090–1126.] The integral which we introduce is
a Skorokhod integral. Nonetheless, we avoid the technicalities from Malliavin calculus and white noise
analysis and give an elementary definition based on expectations under change of measure. As a main
result, we derive an Itô formula which separates the different contributions from the memory due to the
convolution and from the jumps.
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1. Introduction

In recent years, fractional Brownian motion and other Gaussian processes obtained by convolu-
tion of an integral kernel with a Brownian motion have been widely studied as a noise source
with memory effects (see, e.g., Alòs et al. [2], Bender [4], Biagini et al. [5] and the survey article
by Nualart [15]). Potential applications for noise sources with memory are in such diverse fields
as telecommunication, hydrology and finance, to mention a few.

In Marquardt [14], fractional Lévy processes were introduced. While capturing memory ef-
fects in a similar fashion as a fractional Brownian motion does, the convolution with a Lévy
process provides more flexibility concerning the distribution of the noise (e.g., heavy tails). In
this paper, we consider a larger class of processes by convolution of a rather general Volterra-
type kernel with a centered pure jump Lévy process. These convoluted Lévy process may have
jumps and/or memory effects depending on the choice of the kernel. Following the elementary
S-transform approach developed by Bender [4] for fractional Brownian motion, we motivate and
construct a stochastic integral with respect to convoluted Lévy processes. The integral is of Sko-
rokhod type and so its zero expectation property makes it a possible choice to model an additive
noise. As a main result, we derive an Itô formula for these integrals. The Itô formula clarifies
the different influences of jumps and memory effects, which are captured in different terms.

The only other paper of which we are aware that treats integration for a similar class of
processes is [7]. The class of filtered Poisson processes considered in their paper is analogously
defined by replacing the Lévy process by a marked point process in the convolution. However,
we emphasize that our approach allows the Lévy process to be of infinite variation and that our
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Itô formula for the Skorokhod integral is quite different from the one of Decreusefond and Savy
[7] derive for a Stieltjes integral only.

The paper is organized as follows. After some preliminaries on Lévy processes and convoluted
Lévy processes in Section 2, we discuss the S-transform in Section 3. The results from Section 3
motivate a definition for a Skorokhod integral with respect to convoluted Lévy processes which
is given in Section 4. In this section, some basic properties of this integral are also discussed.
Section 5 is devoted to the derivation of the Itô formula, while some results are specialized to
fractional Lévy processes in Section 6.

2. Preliminaries

2.1. Basic facts on Lévy processes

We state some elementary properties of Lévy processes that will be needed below. For a more
general treatment and proofs, we refer to Cont and Tankov [6] and Sato [18]. For notational
convenience, we abbreviate R0 = R \ {0}. Furthermore, ‖f ‖ is the ordinary L2-norm of the
function f : R → R and the corresponding inner product is denoted by (f, g)L2(R). In this paper,
we assume as given an underlying complete probability space (�,F ,P ). Since the distribution
of a Lévy processes L on (�,F ,P ) is infinitely divisible, L is determined by its characteristic
function in the Lévy–Khinchine form E[eiuL(t)] = exp{tψ(u)}, t ≥ 0, where

ψ(u) = iγ u − 1
2u2σ 2 +

∫
R

(
eiux − 1 − iux1{|x|≤1}

)
ν(dx), u ∈ R, (1)

γ ∈ R, σ 2 ≥ 0 and ν is a Lévy measure on R that satisfies

ν({0}) = 0 and
∫

R

(x2 ∧ 1)ν(dx) < ∞.

For any measurable set B ⊂ R0 × R, let

N(B) = �{s ≥ 0 : (Ls − Ls−, s) ∈ B}
be the Poisson random measure on R0 ×R, with intensity measure n(dx,ds) = ν(dx)ds, that de-
scribes the jumps of L. Furthermore, let Ñ(dx,ds) = N(dx,ds) − ν(dx)ds be the compensated
jump measure of L (see, e.g., Cont and Tankov [6], Definition 2.18).

Assuming that ν satisfies
∫
|x|>1 x2ν(dx) < ∞, L has finite mean and variance given by

var(L(1)) =
∫

R

x2ν(dx) + σ 2. (2)

If σ = 0 in (1), we call L a Lévy process without Brownian component. In what follows, we
will always assume that the Lévy process L has no Brownian part. Furthermore, we suppose that
E[L(1)] = 0, hence γ = − ∫

|x|>1 xν(dx). Thus, (1) can be written in the form

ψ(u) =
∫

R

(eiux − 1 − iux)ν(dx), u ∈ R, (3)
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and L = {L(t)}t≥0 can be represented as

L(t) =
∫ t

0

∫
R0

xÑ(dx,ds), t ∈ R. (4)

In this case, L is a martingale. In the sequel, we will work with a two-sided Lévy process
L = {L(t)}t∈R, constructed by taking two independent copies {L1(t)}t≥0, {L2(t)}t≥0 of a one-
sided Lévy process and setting

L(t) =
{

L1(t), if t ≥ 0,

L2(−t−), if t < 0.
(5)

From now on, we will suppose that F is the completion of the σ -algebra generated by the
two-sided Lévy process L and will define Lp(�) := Lp(�,F ,P ).

2.2. Convoluted and fractional Lévy processes

We call a stochastic process M = {M(t)}t∈R given by

M(t) =
∫

R

f (t, s)L(ds), t ∈ R, (6)

a convoluted Lévy process with kernel f . Here, f : R×R → R is a measurable function satisfying
the following properties:

(i) f (t, ·) ∈ L2(R) for all t ∈ R;
(ii) f (t, s) = 0 whenever s > t ≥ 0, that is, the kernel is of Volterra type;

(iii) f (0, s) = 0 for almost all s, hence M(0) = 0.

Furthermore, we suppose that L = {L(t)}t∈R is a Lévy process without Brownian component
satisfying E[L(1)] = 0 and E[|L(t)|m] < ∞ for all m ∈ N. Hence, the process M can be rewritten
as

M(t) =
∫

R

∫
R0

f (t, s)xÑ(dx,ds), t ∈ R. (7)

Since f (t, ·) ∈ L2(R), the integral (7) exists in L2(�,P ) and

E[M(t)2] = E[L(1)2]
∫

R

f 2(t, s)ds = E[L(1)2]‖f (t, ·)‖2
L2(R)

. (8)

As an important class of examples of convoluted Lévy processes, we now consider univariate
fractional Lévy processes. The name “fractional Lévy process” already suggests that it can be
regarded as a generalization of fractional Brownian motion (FBM). We review the definition of
a one-dimensional fractional Lévy process (FLP). For further details on FLP’s, see Marquardt
[13,14].
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Definition 2.1 (Fractional Lévy Process (FLP)). Let L = {L(t)}t∈R be a Lévy process on R

with E[L(1)] = 0, E[L(1)2] < ∞ and without Brownian component. For fractional integration
parameter 0 < d < 0.5, a stochastic process

Md(t) = 1

�(d + 1)

∫ ∞

−∞
[(t − s)d+ − (−s)d+]L(ds), t ∈ R, (9)

is called a fractional Lévy process (FLP).

Note that the kernel (9) given by

ft (s) = 1

�(1 + d)
[(t − s)d+ − (−s)d+], s ∈ R, (10)

satisfies conditions (i)–(iii). Thus, fractional Lévy processes are well defined and belong to
L2(�) for fixed t .

Moreover, the kernel can be represented by fractional integrals of the indicator function. Recall
that for 0 < α < 1, the fractional integral of Riemann–Liouville type Iα± is defined by

(Iα−f )(x) = 1

�(α)

∫ ∞

x

f (t)(t − x)α−1 dt,

(Iα+f )(x) = 1

�(α)

∫ x

−∞
f (t)(x − t)α−1 dt

if the integrals exist for almost all x ∈ R.
In terms of these fractional operators, fractional Lévy processes can be rewritten as

Md(t) =
∫ ∞

−∞
(
I d−χ[0,t]

)
(s)L(ds), t ∈ R, (11)

where the indicator χ[a,b] is given by (a, b ∈ R)

χ[a,b](t) =



1, if a ≤ t < b,

−1, if b ≤ t < a,

0, otherwise.

(12)

Remark 2.2. The distribution of Md(t) is infinitely divisible for all t ∈ R,

E[Md(t)2] = t2d+1E[L(1)2], t ∈ R, and

E[exp{izMd(t)}] = exp

{∫
R

∫
R

(
eizft (s)x − 1 − izft (s)x

)
ν(dx)ds

}
, t, z ∈ R. (13)

3. The Lévy Wick exponential and the S-transform

One of our aims is to introduce a Hitsuda–Skorokhod integral for convoluted Lévy processes
without touching the technicalities of Malliavin calculus and white noise analysis. Our approach
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is based on the S-transform, which uniquely determines a square-integrable random variable by
its expectation under an appropriately rich class of probability measures. As a preparation and
motivation, we compute the S-transform of Itô integrals with respect to the compensated jump
measure Ñ in this section. This result then yields a simple definition for anticipative integrals
with respect to Ñ .

We begin with some definitions.

Definition 3.1 (Lévy Wick exponential). Let S(R2) denote the Schwartz space of rapidly de-
creasing smooth functions on R

2. For η ∈ �, where

� =
{
η ∈ S(R2) :η(x, t) > −1, η(0, t) = 0,

d

dx
η(0, t) = 0, for all t, x ∈ R

}
,

the Wiener integral is defined by

I1(η) =
∫

R

∫
R0

η(x, s)Ñ(dx,ds) (14)

and the Wick exponential of I1(η) by

exp	(I1(η)) = exp

{∫
R

∫
R0

log
(
1 + η(x, t)

)
N(dx,dt) −

∫
R

∫
R0

η(x, t)ν(dx,dt)

}
. (15)

Remark 3.2. (i) By Theorem 3.1 in Lee and Shih [11],

exp	(I1(η)) =
∞∑

n=0

In(η
⊗n)

n! , (16)

where In denotes the multiple Wiener integral of order n with respect to the compensated Lévy
measure. This respresentation justifies the name ‘Wick exponential’.

(ii) Since exp	(I1(η)) coincides with the Doléans–Dade exponential of I1(η) at t = ∞, it is
straightforward that for η, η̃ ∈ �, we have

E[exp	(I1(η))] = 1 and E[exp	(I1(η)) · exp	(I1(η̃))] = exp
{
(η, η̃)L2(ν×λ)

}
,

where λ denotes the Lebesgue measure.

We can now define the S-transform.

Definition 3.3 (S-transform). For X ∈ L2(�,P ), the S-transform SX of X is an integral trans-
form defined on the set � by

(SX)(η) = EQη [X], (17)

where

dQη = exp	(I1(η))dP.
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Various definitions of the S-transform can be found in the literature, which differ according to
the chosen subset of deterministic integrands. Our choice of � is particularly convenient because
of the smoothness of its members. Moreover, it is a sufficiently rich set, as demonstrated by the
following theorem. It states that every square-integrable random variable is uniquely determined
by its S-transform.

Proposition 3.4. The S-transform is injective, that is, if S(X)(η) = S(Y )(η) for all η ∈ �, then
X = Y .

Proof. The assertion is proved in Løkka and Proske [12], Theorem 5.3, by reformulating a more
general result from Albeverio et al. [1], Theorem 5. �

We shall now calculate the S-transform of an Itô integral with respect to the compensated jump
measure Ñ . To this end, let T > 0 and X : R0 × [0, T ] × � → R be a predictable random field
(with respect to the filtration Ft generated by the Lévy process L(s),0 ≤ s ≤ t) satisfying

E

[∫ T

0

∫
R0

|X(y, t)|2ν(dy)dt

]
< ∞.

The compensated Poisson integral
∫ T

0

∫
R0

X(y, t)Ñ(dy,dt) then exists in L2(�,P ).

The following theorem characterizes this integral in terms of the S-transform. The result was
derived by Løkka and Proske [12], Corollary 7.4, by lengthy calculations involving multiple
Wiener integrals. Here, we provide a short proof which only makes use of classical tools such as
the Girsanov theorem.

Theorem 3.5. Let X denote a predictable random field satisfying the above integrability con-
dition.

∫ T

0

∫
R0

X(y, t)Ñ(dy,dt) is then the unique square-integrable random variable with
S-transform given by

∫ T

0

∫
R0

S(X(y, t))(η)η(y, t)ν(dy)dt, η ∈ �. (18)

Proof. Applying Girsanov’s theorem for random measures (Jacod and Shiryaev [8], Theo-
rem 3.17), we obtain that under the measure Qη, the compensator of N(dy,dt) is given by
(1 + η(y, t))ν(dy)dt . Hence,

∫ T

0

∫
R0

X(y, t)Ñ(dy,dt) −
∫ T

0

∫
R0

X(y, t)η(y, t)ν(dy)dt (19)

is a Qη-local martingale. In particular, if 0 = τ1 ≤ · · · ≤ τN < ∞ is a localizing sequence of
stopping times with limN→∞ τN = ∞ a.s., then

lim
N→∞ EQη

[∫ T ∧τN

0

∫
R0

X(t, y)Ñ(dy,dt)

]
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= lim
N→∞ EQη

[∫ T ∧τN

0

∫
R0

X(t, y)η(y, t)ν(dy)dt

]

= EQη

[∫ T

0

∫
R0

X(t, y)η(y, t)ν(dy)dt

]

by a straightforward application of the dominated convergence theorem.
To treat the limit in the first line, note that

EQη

[∫ T ∧τN

0

∫
R0

X(y, t)Ñ(dy,dt)

]
= EP

[
exp	(I1(η))

∫ T ∧τN

0

∫
R0

X(y, t)Ñ(dy,dt)

]
.

The integrand on the right-hand side is dominated by

exp	(I1(η)) sup
0≤u≤T

∣∣∣∣
∫ u

0

∫
R0

X(y, t)Ñ(dy,dt)

∣∣∣∣,
which is P -integrable by Hölder’s inequality, Doob’s inequality and the assumed integrability of
the random field. Thus,

EQη

[∫ T

0

∫
R0

X(y, t)Ñ(dy,dt)

]
= EQη

[∫ T

0

∫
R0

X(y, t)η(y, t)ν(dy)dt

]

and the assertion follows by applying Fubini’s theorem.
Note that the last identity shows that the Qη-local martingale (19) is indeed a

Qη-martingale. �

Example 3.6. By separately applying the previous theorem to both sides of the two-sided Lévy
process, we derive

S(M(t))(η) =
∫ t

−∞

∫
R0

f (t, s)yη(y, s)ν(dy)ds

since

M(t) =
∫ t

−∞
f (t, s)L(ds) =

∫ t

−∞

∫
R0

f (t, s)yÑ(dy,ds).

The S-transform characterization in the previous theorem gives rise to a straightforward ex-
tension to anticipative random fields.

Definition 3.7. Suppose X is a random field.

(i) The Hitsuda–Skorokhod integral of X with respect to the compensated jump measure Ñ

is said to exist in L2(�) if there is a random variable � ∈ L2(�) such that for all η ∈ �,

S�(η) =
∫ T

0

∫
R0

S(X(y, t))(η)η(y, t)ν(dy)dt.
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It is denoted by � = ∫ T

0

∫
R0

X(y, t)Ñ	(dy,dt).
(ii) The Hitsuda–Skorokhod integral of X with respect to the jump measure N is defined as∫ T

0

∫
R0

X(y, t)N	(dy,dt) :=
∫ T

0

∫
R0

X(y, t)Ñ	(dy,dt) +
∫ T

0

∫
R0

X(y, t)ν(dy)dt

if both integrals on the right-hand side exist in L2(�).

Remark 3.8. From the previous definition, we get immediately that

S

(∫ T

0

∫
R0

X(y, t)N	(dy,dt)

)
(η) =

∫ T

0

∫
R0

S(X(y, t))(η)
(
1 + η(y, t)

)
ν(dy)dt.

Clearly, if the integrand is predictable, this Skorokhod integral reduces to the ordinary stochastic
integral for random measures and the diamond can be omitted in this case.

Remark 3.9. Theorem 3.5 implies that

S(Ñ(A, [0, t]))(η) =
∫ t

0

∫
A

η(y, s)ν(dy)ds.

Hence, we can write, in a suggestive notation,

S

(∫ T

0

∫
R0

X(y, t)Ñ	(dy,dt)

)
(η) =

∫ T

0

∫
R0

S(X(y, t))(η)S(Ñ(dy,dt))(η).

In view of Example 3.6, Theorem 3.5 can be specialized to integrals with respect to the Lévy
process L as follows.

Corollary 3.10. Let 0 ≤ a ≤ b and X : [a, b] × � → R be a predictable process such that
E[∫ b

a
|X(t)|2 dt] < ∞.

∫ b

a
X(s)L(ds) is then the unique square-integrable random variable with

S-transform given by ∫ b

a

∫
R0

S(X(t))(η)
d

dt
S(L(t))(η)dt, η ∈ �.

We close this section with a remark concerning the relationship between the Skorokhod inte-
gral with respect to Ñ and ordinary integration.

Remark 3.11. Suppose u(y, t) is a simple random field of the form

u(y, t) = F1A×(a,b](y, t), a < b ∈ R,F ∈ L2(�),

where A ⊂ R0 satisfies ν(A) < ∞. Then, in the sense of ordinary integration,∫
R

∫
R0

u(y, t)Ñ(dy,dt) = FÑ(A, (a, b]).
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We want to relate this expression to Skorokhod integration with respect to Ñ . We shall suppose
that F = exp	(I (f )) for some f ∈ L2(ν × λ), where, in generalization of Definition 3.1,

exp	(I (f )) := exp

{∫
R

∫
R0

f (y, t)Ñ(dy,dt)

} ∏
s∈R

(
1 + f (�L(s), s)

)
e−f (�L(s),s).

A direct calculation then shows that for f ∈ L2(ν × λ), η ∈ �,

exp	(I (f )) exp	(I (η)) = exp	(I (f + η + f η)
)

exp

{∫
R

∫
R0

f (y, t)η(y, t)ν(dy)dt

}
.

Consequently, by a slight extension of Remark 3.9,

S

(∫
R

∫
R0

u(y, t)Ñ(dy,dt)

)
(η)

= exp

{∫
R

∫
R0

f (y, t)η(y, t)ν(dy)dt

}
E
[
exp	(I (f + η + f η)

)
Ñ(A, (a, b])]

= (S exp	(I (f )))(η)

∫ b

a

∫
A

[η(y, s) + f (y, s) + η(y, s)f (y, s)]ν(dy)ds

= S

(∫
R

∫
R0

u(y, t)f (y, t)ν(dy)dt

)
(η)

+ S

(∫
R

∫
R0

[u(y, t)f (y, t) + u(y, t)]Ñ	(dy,dt)

)
(η).

Let us now define the Malliavin derivative of a Wick exponential by

Dy,s exp	(I (f )) = f (y, s) exp	(I (f )),

which can be extended to a linear closed operator acting on a larger class of random variables
(see, e.g., Nualart and Vives [16]). We then arrive at the formula∫

R

∫
R0

u(y, t)Ñ(dy,dt) =
∫

R

∫
R0

Dy,tu(y, t)ν(dy)ds

+
∫

R

∫
R0

[u(y, t) + Dy,tu(y, t)]Ñ	(dy,ds).

We conjecture that this formula can be extended by approximation to a larger class of random
fields.

4. A Skorokhod integral for convoluted Lévy processes

In this section, we define the Skorokhod integral for convoluted Lévy processes and state some
basic properties. The definition is strongly motivated by Corollary 3.10 above.
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Definition 4.1. Suppose that the mapping

t �→ S(M(t))(η)

is differentiable for every η ∈ �. Suppose B ⊂ R is a Borel set and X :B × � → R is a measur-
able stochastic process such that X(t) is square-integrable for each t ∈ B . X is said then to have
a Hitsuda-Skorokhod integral with respect to M if

S(X(·))(η)
d

dt
S(M(·))(η) ∈ L1(B) for any η ∈ �

and there is a � ∈ L2(�) such that for all η ∈ �,

S(�)(η) =
∫

B

S(X(t))(η)
d

dt
S(M(t))(η)dt.

In that case, � is uniquely determined by the injectivity of the S-transform and we write

� =
∫

B

X(t)M	(dt).

Remark 4.2. (i) Lemma 5.1(ii) below provides some sufficient conditions for the differentiability
of the mapping t �→ S(M(t))(η) in terms of the convolution kernel.

(ii) The definition of the Skorokhod integral does not require conditions such as predictabil-
ity or progressive measurability. Hence, it also generalizes the Itô integral with respect to the
underlying Lévy process to anticipative integrands.

(iii) Since the Lévy process itself is stochastically continuous, the S-transform cannot distin-
guish between L(t) and L(t−) for fixed t . Consequently, we obtain, for example,

∫ t

0
L(s)L	(ds) =

∫ t

0
L(s−)L	(ds) =

∫ t

0
L(s−)L(ds),

where the last integral is the classical Itô integral.

The following properties of the Skorokhod integral are an obvious consequence of the defini-
tion.

Proposition 4.3. (i) For all a < b ∈ R, M(b) − M(a) = ∫ b

a
M	(dt).

(ii) Let X :B × � → L2(�) be Skorokhod integrable. Then∫
B

X(t)M	(dt) =
∫

R

1B(t)X(t)M	(dt),

where 1B denotes the indicator function of the set B .
(iii) Let X :B × � → L2(�) be Skorokhod integrable. Then E[∫

B
X(t)M	(dt)] = 0.
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We note that (iii) holds since the expectation coincides with the S-transform at η = 0. The zero
expectation property makes the integral a promising candidate for modeling an additive noise.

Example 4.4. As an example, we show how to calculate
∫ T

0 M(t)M	(dt). In the follow-
ing manipulations, Ñη denotes the compensated jump measure under the probability measure
Qη = exp	(I1(η))dP . In particular, it follows from Girsanov’s theorem, as in the proof of The-
orem 3.5, that

M(T ) =
∫ T

−∞

∫
R0

f (T , s)yÑη(dy,ds) +
∫ T

−∞

∫
R0

f (T , s)yη(y, s)ν(dy)ds.

By this identity, integration by parts and Example 3.6, we obtain

S

(
2
∫ T

0
M(t)M	(dt)

)
(η)

= 2
∫ T

0
S(M(t))(η)

d

dt
S(M(t))(η)dt

= (S(M(T ))(η))2 =
(∫ T

−∞

∫
R0

f (T , s)yη(y, s)ν(dy)ds

)2

= EQη

[(∫ T

−∞

∫
R0

f (T , s)yÑη(dy,ds) +
∫ T

−∞

∫
R0

f (T , s)yη(y, s)ν(dy)ds

)2]

− EQη

[(∫ T

−∞

∫
R0

f (T , s)yÑη(dy,ds)

)2]

= S(M(T )2)(η) −
∫ T

−∞

∫
R0

f (T , s)2y2(1 + η(y, s)
)
ν(dy)ds.

Here, we have used the fact that
∫ T

−∞
∫

R0
f (T , s)yÑη(dy,ds) has zero expectation and variance∫ T

−∞
∫

R0
f (T , s)2y2(1 +η(y, s))ν(dy)ds since the compensator of N under Qη is given by (1 +

η(y, s))ν(dy,ds).
Hence, from Remark 3.8, we derive the identity

2
∫ T

0
M(t)M	(dt) = M(T )2 −

∫ T

−∞

∫
R0

f (T , s)2y2N(dy,ds)

= M(T )2 −
∑

−∞<s≤T

f (T , s)2(�L(s))2,

provided both members on the right-hand side exist in L2(�).
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Remark 4.5. Applying the same techniques as in Example 4.4, one can easily obtain, for a ≤ b,

M(a)

∫ b

a

1M	(dt) =
∫ b

a

M(a)M	(dt) +
∫ a

0

∫
R0

f (a, s)
(
f (b, s) − f (a, s)

)
y2N(dy,ds).

Hence, ordinary multiplication with a random variable, which is measurable with respect to the
information up to the lower integration bound, cannot, in general, be introduced under the integral
sign if the kernel depends on the past.

5. Itô’s formula

In this section, we will derive an Itô formula for convoluted Lévy processes. The proof is based
on a calculation of the time derivative of S(G(M(t)))(η). It may be seen as a generalization
of the calculations in Example 4.4. This technique of proof is in the spirit of Kubo [9], Bender
[3] and Lee and Shih [10], where this approach was applied to obtain Itô formulas for general-
ized functionals of a Brownian motion a fractional Brownian motion, and a Lévy process with
Brownian component, respectively.

During the derivation of the Itô formula, we have to interchange differentiation and integration
several times. Under the following (rather strong) conditions on the convolution kernel, these
manipulations are easily justified. However, the Itô formulas below may also be viewed as generic
results which hold for more general kernels (with the technicalities to be checked on a case-by-
case basis).

We make the following assumptions:

(H1) there are constants a ≤ 0 < b such that supp(f ) ⊂ [a, b]2;
(H2) f is continuous and bounded on [a, b]2 \ {(t, s); t = s};
(H3) lims↑t f (t, s) = f (t, t) and the mapping t �→ f (t, t) is continuous;
(H4) f is continuously differentiable on (a, b)2 \ {(t, s); t = s} with bounded derivative.

Lemma 5.1. Under (H1)–(H4), we have the following:

(i) For a ≤ t ≤ b,

M(t) = f (t, t)L(t) − f (t, a)L(a) −
∫ t

a

L(s)
d

ds
f (t, s)ds. (20)

In particular, M(t) has a modification which is RCLL and stochastically continuous. Moreover,

�M(t) = f (t, t)�L(t).

Hence, M is continuous on [a, b] if and only if f (t, t) = 0 for all a ≤ t ≤ b.
(ii) The mapping [a, b] → R, t �→ (SM(t))(η) is continuously differentiable for all η ∈ � and

d

dt
(SM(t))(η) =

∫ t

−∞

∫
R0

d

dt
f (t, s)yη(y, s)ν(dy)ds + f (t, t)

∫
R0

yη(y, t)ν(dy). (21)
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Proof. (i) Fix a modification of L which is right-continuous with left limits (RCLL). Formula
(20) follows from the definition of M and integration by parts, which is justified by (H3)–(H4).
The second and third terms on the right-hand side are continuous in t by (H2) and the bound-
edness of d

ds
f (t, s), respectively. The first term is stochastically continuous and RCLL since L

has these properties and t �→ f (t, t) is continuous. The other assertions in (i) are obvious conse-
quences.

(ii) can easily be obtained by differentiating the expression in Example 3.6. �

Example 5.2. The following prominent examples satisfy conditions (H1)–(H4):

1. one-sided shot noise processes defined by the kernel

f (t, s) =
{

k(t − s), 0 ≤ s ≤ t ≤ T ∗,

0, otherwise,

for constants T ∗ > 0 and k;
2. one-sided Ornstein–Uhlenbeck type processes defined by the kernel

f (t, s) =
{

e−k(t−s), 0 ≤ s ≤ t ≤ T ∗,

0, otherwise,

for constants T ∗ > 0 and k ≥ 0.

From the previous lemma, one directly obtains that the shot noise processes have continuous
paths, while the Ornstein–Uhlenbeck-type processes exhibit jumps.

To state the Itô formula precisely, we finally recall that the Wiener algebra is defined as

A(R) := {G ∈ L1(R);FG ∈ L1(R)},

where F denotes the Fourier transform. Note that the space of rapidly decreasing smooth func-
tions is included in the Wiener algebra.

The first version of Itô’s formula requires that the underlying Lévy process is a finite variation
process.

Theorem 5.3 (Itô formula I). Let (H1)–(H4) hold, 0 < T ≤ b and∫
R0

|x|ν(dx) < ∞.

Furthermore, assume that G ∈ C1(R) with G,G′ ∈ A(R) bounded. Then

∫ T

0

(∫ t

−∞

∫
R0

G′(M(t) + xf (t, s)
)
x

d

dt
f (t, s)N	(dx,ds)

)
dt
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exists in L2(�) and

G(M(T )) = G(0) −
(∫

R0

xν(dx)

)∫ T

0
G′(M(t))

(
f (t, t) +

∫ t

−∞
d

dt
f (t, s)ds

)
dt

+
∑

0≤t≤T

G(M(t)) − G(M(t−))

+
∫ T

0

(∫ t

−∞

∫
R0

G′(M(t−) + xf (t, s)
)
x

d

dt
f (t, s)N	(dx,ds)

)
dt.

In the general case, the Itô formula reads as follows. Indeed, the previous formula can be
derived from the general one by rearranging some terms.

Theorem 5.4 (Itô formula II). Let (H1)–(H4) hold and 0 < T ≤ b. Furthermore, assume that
G ∈ C1(R) with G,G′ ∈ A(R). Then

G(M(T ))

= G(0) +
∫ T

0
G′(M(t−))M	(dt)

+
∑

0≤t≤T

G(M(t)) − G(M(t−)) − G′(M(t−))�M(t)

+
∫ T

0

(∫ t

−∞

∫
R0

(
G′(M(t−) + xf (t, s)

) − G′(M(t−))
)
x

d

dt
f (t, s)N	(dx,ds)

)
dt,

provided all terms exist in L2(�).

We would like to emphasize that the Skorokhod integrals with respect to N in the above
versions of Itô’s formula do not, in general, reduce to ordinary integrals for the following reason.
The time variable of the Skorokhod integral is s, but the integrand depends on M through the
value M(t−), where t > s. Therefore, the integrand is typically not predictable as a process in
the variable s.

The above versions of Itô’s formula (but not their exact assumptions) reduce to well-known
formulas for Lévy processes with the choice f (t, s) = χ(0,t](s) as, in this case, the last Sko-
rokhod integral with respect to N vanishes. We recall that M has independent increments if and
only if d

dt
f (t, s) = 0 for all t . Hence, the contributions from discontinuities and memory effects

are nicely separated in the above Itô formulas. Finally, note that the formula for M(t)2 from
Example 4.4 can be recovered by formally applying the Itô formula II with G(y) = y2.

Remark 5.5. Itô formula II has the drawback that the conditions do not guarantee that all mem-
bers of the identity exist in L2(�). However, the manipulations below can be recast in a white
noise framework, as developed in [17], in a way that all members exist as generalized random
variables.
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The remainder of this section is devoted to the proof of the Itô formulas. As a general strategy,
we wish to show that both sides of the asserted identities have the same S-transform. Indeed, the
following calculations show how to identify the right-hand side constructively. We first write

S(G(M(T )))(η) = G(0) +
∫ T

0

d

dt
S(G(M(t)))(η)dt

and then calculate d
dt

S(G(M(t))) explicitly. To achieve this, we apply the inverse Fourier theo-
rem and obtain, for G ∈ A(R),

S(G(M(t)))(η) = EQη [G[M(t)]] = 1√
2π

∫
R

FG(u)EQη
[
eiuM(t)

]
du. (22)

To differentiate this expression, we calculate the characteristic function of M under Qη .

Proposition 5.6. Let M = {M(t)}t∈R be a convoluted Lévy process as defined in (6), with kernel
function f . Then

S
(
eiuM(t)

)
(η)

= EQη
[
eiuM(t)

]
= exp

{
iuS(M(t))(η) +

∫ t

−∞

∫
R0

[(
eiuxf (t,s) − 1 − iuxf (t, s)

)(
1 + η(x, s)

)]
ν(dx)ds

}
.

Proof. It follows from the proof of Theorem 3.5 that

LQ(t) := L(t) −
∫ t

0

∫
R0

xη(x, s)ν(dx)ds

is a Qη-martingale with zero mean. Applying Girsanov’s theorem for semimartingales (Jacod

and Shiryayev [8], Theorem 3.7) yields that LQ has semimartingale characteristics (γ
Q
s ,0, ν

Q
s ),

where γ
Q
s = − ∫

|x|>1 x(1 + η(x, s))ν(dx) and ν
Q
s (dx) = (1 + η(x, s))ν(dx). Hence,

S(exp{iuLQ(t)})(η) = exp

{∫ t

0

∫
R0

[eiux − 1 − iux][1 + η(x, s)]ν(dx)ds

}
.

Finally,

S(exp{iuM(t)})(η)

= EQη

[
exp

{
iu

∫ t

−∞
f (t, s)L(ds)

}]

= EQη

[
exp

{
iu

∫ t

−∞
f (t, s)LQ(ds) + iu

∫ t

−∞
f (t, s)

∫
R0

xη(x, s)ν(dx)ds

}]
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= exp

{∫ t

−∞

∫
R0

[
eiuxf (t,s) − 1 − iuxf (t, s)

][1 + η(x, s)]ν(dx)ds

}

× exp

{∫ t

−∞

∫
R0

iuxf (t, s)η(x, s)ν(dx)ds

}
.

Taking the S-transform of M into account, which was calculated in Example 3.6, the assertion
follows. �

By introducing the derivative under the integral sign, we get

d

dt
EQη

[
eiuM(t)

]
= EQη

[
eiuM(t)

] ∫
R0

[(
eiuxf (t,t) − 1 − iuxf (t, t)

)(
1 + η(x, t)

)]
ν(dx)

+ EQη
[
eiuM(t)

] ∫ t

−∞

∫
R0

[
iux

d

dt
f (t, s)

(
eiuxf (t,s) − 1

)(
1 + η(x, t)

)]
ν(dx)ds

+ EQη
[
eiuM(t)

]
iu

d

dt
S(M(t))(η). (23)

Combining (22) with (23) and again interchanging differentiation and integration (which can
be justified under (H1)–(H4) since G,G′ ∈ A(R)), we obtain

d

dt
S(G(M(t)))(η)

= 1√
2π

∫
R

(FG)(u)EQη
[
eiuM(t)

] ∫
R0

[(
eiuxf (t,t) − 1 − iuxf (t, t)

)(
1 + η(x, t)

)]
ν(dx)du

+ 1√
2π

∫
R

(FG)(u)EQη
[
eiuM(t)

]

×
∫ t

−∞

∫
R0

[
iux

d

dt
f (t, s)

(
eiuxf (t,s) − 1

)(
1 + η(x, t)

)]
ν(dx)ds du

+ 1√
2π

∫
R

(FG)(u)EQη
[
eiuM(t)

]
iu

d

dt
S(M(t))(η)du

=: (I ) + (II) + (III).

Standard manipulations of the Fourier transform, together with (22), now yield

(I ) = 1√
2π

∫
R

∫
R0

[(
FG(· + xf (t, t)

)
(u) − (FG)(u) − xf (t, t)(FG′)(u)

]
× EQη

[
eiuM(t)

](
1 + η(x, t)

)
ν(dx)du
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=
∫

R0

S
(
G

(
M(t−) + xf (t, t)

) − G(M(t−)) − xf (t, t)G′(M(t−))
)
(η)

× (1 + η(x, t))ν(dx).

The second term can be treated analogously and thus,

(II) =
∫ t

−∞

∫
R0

x
d

dt
f (t, s)S

(
G′(M(t−) + xf (t, s)

) − G′(M(t−))
)
(η)

× (
1 + η(x, t)

)
ν(dx)ds.

Finally, (III) = S(G′(M(t−)))(η) d
dt

S(M(t))(η).

We now collect terms and integrate t from 0 to T , whence

S(G(M(T )))(η) − G(0)

=
∫ T

0

∫
R0

S
(
G

(
M(t−) + xf (t, t)

) − G(M(t−)) − xf (t, t)G′(M(t−))
)
(η)

× (
1 + η(x, t)

)
ν(dx)dt

+
∫ T

0

∫ t

−∞

∫
R0

x
d

dt
f (t, s)S

(
G′(M(t−) + xf (t, s)

) − G′(M(t−))
)
(η)

× (
1 + η(x, t)

)
ν(dx)ds dt

+
∫ T

0
S(G′(M(t−)))(η)

d

dt
S(M(t))(η)dt

=: (i) + (ii) + (iii). (24)

From Remark 3.8, we get

(i) = S

(∫ T

0

∫
R0

G
(
M(t−) + xf (t, t)

) − G(M(t−)) − xf (t, t)G′(M(t−))N	(dx,dt)

)
(η)

= S

( ∑
0≤t≤T

G(M(t)) − G(M(t−)) − G′(M(t−))�M(t)

)
(η),

where the second identity holds because the Skorokhod integral is an Itô integral by predictability
(and by taking Lemma 5.1(i) into account). Similarly,

(ii) = S

(∫ T

0

∫ t

−∞

∫
R0

x
d

dt
f (t, s)

[
G′(M(t−) + xf (t, s)

) − G′(M(t−))
]
N	(dx,ds)dt

)
(η).

Finally, by the definition of the Skorokhod integral with respect to M ,

(iii) = S

(∫ T

0
G′(M(t−))M	(dt)

)
(η).
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Hence, both sides of Itô formula II have the same S-transform, which proves this formula.
To get Itô formula I, we rearrange the terms in (24). By Lemma 5.1(ii),

d

dt
S(M(t))(η) = f (t, t)

∫
R0

xη(x, t)ν(dx) +
∫ t

−∞
d

dt
f (t, s)

∫
R0

xη(x, s)ν(dx)ds.

Thus, by (24) and similar considerations as above,

∫ T

0

∫ t

−∞

∫
R0

x
d

dt
f (t, s)S

(
G′(M(t−) + xf (t, s)

))
(η)

(
1 + η(x, t)

)
ν(dx)ds dt

= S

(
G(M(T )) − G(0) +

(∫
R0

xν(dx)

)∫ T

0
G′(M(t))

(
f (t, t) +

∫ t

−∞
d

dt
f (t, s)ds

)
dt

−
∑

0≤t≤T

G
(
M(t−) + �M(t)

) − G(M(t−))

)
(η).

The expression under the S-transform on the right-hand side clearly belongs to L2(�) under the
assumptions of Itô formula I. Then, by Remark 3.8, the Skorokhod integral

∫ T

0

∫ t

−∞

∫
R0

x
d

dt
f (t, s)G′(M(t−) + xf (t, s)

)
N	(dx,ds)dt

exists in L2(�) and coincides with the expression under the S-transform on the right-hand side.
This proves Itô formula I.

6. Stochastic calculus for fractional Lévy processes

We shall now specialize from a convoluted Lévy process to a fractional one. In Marquardt [14],
a Wiener-type integral with respect to a fractional Lévy process is defined for deterministic inte-
grands. Its domain is the space of functions g such that I d−g ∈ L2(R) and it can be characterized
by the property ∫

R

g(s)Md(ds) =
∫

R

(I d−g)(s)L(ds).

The following theorem shows that a similar characterization holds for Skorokhod integrals with
respect to fractional Lévy processes. Hence, it also proves, as a by-product that the Wiener-type
integral is a special case of the Skorokhod integral.

In preparation, note that

S(Md(t))(η) =
∫

R

∫
R0

I d−χ[0,t](s)yη(s, y)ν(dy)ds.

Hence, by Fubini’s theorem and fractional integration by parts, we obtain the following theorem.
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Theorem 6.1. Suppose Md is a fractional Lévy process with 0 < d < 0.5. Then, for all η ∈ �,

d

dt
S(Md(t))(η) =

∫
R0

(I d+η)(t, y)yν(dy),

where, by convention, fractional integral operators are applied only to the time variable t .
Furthermore, suppose that X ∈ Lp(R,L2(�)) with p = (d + 1/2)−1. Then∫

R

X(t)M	
d (dt) =

∫
R

(I d−X)(t)L	(dt)

in the usual sense, that is, if one of the integrals exists, then so does the other and both coincide.

Proof. The proof follows the same lines as that of Theorem 3.4 in Bender [4]. �

Note that only Itô formula II makes sense for fractional Lévy processes. When we formally
apply this Itô formula, the following observation is noteworthy. For d > 0, the process Md is
continuous and has memory, whence

G(Md(T )) = G(0) +
∫ T

0
G′(Md(t−))M	(dt)

+
∫ T

0

(∫ t

−∞

∫
R0

(
G′

(
Md(t−) + x

�(d + 1)

(
(t − s)d+ − (−s)d+

))

− G′(Md(t−))

)
x

�(d)
(t − s)d−1+ N	(dx,ds)

)
dt.

However, the Lévy process L itself comes up as limit of Md when d tends to 0. As this process
has independent increments and jumps, its well-known Itô formula reads

G(L(T )) = G(0) +
∫ T

0
G′(L(t−))L(dt)

+
∑

0≤t≤T

G(L(t)) − G(L(t−)) − G′(L(t−))�L(t).

So, apparently, the Itô formulas do not transform continuously into each other when passing to
this limit. This is in sharp contrast to the Gaussian case, in which the Itô formula for Brownian
motion is recovered by substituting H = 1/2 (the Hurst parameter corresponding to d via d =
H − 1/2) into the Itô formula for fractional Brownian motions (see, e.g., [4]).
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