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Given a sequence of observations from a discrete-time, finite-state hidden Markov model, we would like to
estimate the sampling distribution of a statistic. The bootstrap method is employed to approximate the con-
fidence regions of a multi-dimensional parameter. We propose an importance sampling formula for efficient
simulation in this context. Our approach consists of constructing a locally asymptotically normal (LAN)
family of probability distributions around the default resampling rule and then minimizing the asymptotic
variance within the LAN family. The solution of this minimization problem characterizes the asymptoti-
cally optimal resampling scheme, which is given by a tilting formula. The implementation of the tilting
formula is facilitated by solving a Poisson equation. A few numerical examples are given to demonstrate
the efficiency of the proposed importance sampling scheme.

Keywords: Locally asymptotical normal; Markov random walk; bootstrap; Poisson equation; twisting
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1. Introduction

Statistical inference for hidden Markov models has recently received some attention due to its
importance in applications to speech recognition (Rabiner and Juang [24]), signal processing (El-
liott et al. [10]), ion channel studies (Ball and Rice [3]) and molecular biology (Krogh et al. [16]).
Good summaries on the subject are given by MacDonald and Zucchini [20], Künsch [17] and
Cappé et al. [7]. Likelihood-based inference for hidden Markov models was first considered
by Baum and Petrie [4]. Leroux [19] proved consistency of the maximum likelihood estimator
(MLE) for hidden Markov chains under mild conditions. Asymptotic normality of the MLE was
established by Bickel et al. [5].

Although asymptotic normality can be used to construct confidence regions for the parameter
of interest, the lack of accuracy in the asymptotic approximation to the sampling distribution
as well as the computational difficulty of the asymptotic variance–covariance matrix make it
less suitable for applications. Therefore, the bootstrap method becomes a useful alternative. The
application of the bootstrap method to hidden Markov models was studied by Albert [1] and
Stoffer and Wall [25]. As the bootstrap estimate is obtained by Monte Carlo estimation, we need
to find efficient ways to do simulation. This is particularly important for hidden Markov models,
where high accuracy is often required, the estimate needs to be recomputed many times and each
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time a substantial amount of computation is required. For instance, when the EM (Baum–Welch)
algorithm is employed to approximate the MLE, it is computed a number of times so that the
error in bootstrap estimates can be assessed.

Johns [15] and Davison [8] suggested using importance sampling to construct bootstrap con-
fidence intervals and showed that it has potential for dramatic improvement over uniform resam-
pling. Later, Do and Hall [9] complemented it with comprehensive derivation and an empirical
version. However, their method encounters difficulty in multi-parameter cases. Fuh and Hu [12]
overcame the difficulty and provided an optimal tilting formula for the multi-parameter case.
This helps the study of importance sampling in hidden Markov models, where the parameter
space is usually multi-dimensional.

The remaining challenge is to deal with Markovian dependence. To begin, we need to deter-
mine a family of tilted distributions that contains the optimal resampling distribution, so that
the optimization problem is non-trivial and solvable. Our first contribution is the construction a
locally asymptotically normal (LAN) family of probability distributions around the default re-
sampling rule. It turns out that this LAN family of distributions is closely related to the twisting
formula for Markov random walks; see (A.13) in Appendix A.3. Then we minimize the as-
ymptotic variance of the Monte Carlo estimator. Our second contribution is to provide a tilting
formula for efficient importance sampling in a hidden Markov model. We also present a Pois-
son equation which is required to characterize the optimal tilting formula and to facilitate its
implementation.

The rest of this paper is organized as follows. In Section 2 we consider a naive parametric
bootstrap algorithm for hidden Markov models and importance sampling in this context. In Sec-
tion 3 we propose a tilting formula for efficient importance sampling in hidden Markov models.
The implementation of the formula requires a streamlined computation procedure for the vari-
ance of the associated Markov random walk. This is developed in Section 4. Numerical results
are reported in Section 5. The technical details are deferred to the Appendix.

2. Bootstrapping hidden Markov models

2.1. A naive bootstrap algorithm

In this section we formulate the hidden Markov model as a Markov random walk with the un-
derlying Markov chain as missing data. Specifically, let {Xt, t ≥ 0} be a Markov chain on a
finite state space D = {1,2, . . . , d}, with transition probability matrix P = [pij ]i,j=1,...,d , and
stationary distribution π = (π1, . . . , πd). Suppose that an additive component Sm = ∑m

t=1 Yt ,
with Y0 = 0, taking values in R

�, is adjoined to the chain such that {(Xt , St ), t ≥ 0} is a Markov
chain on D × R

� and

P {(Xt , St ) ∈ A × (B + y)|(Xt−1, St−1) = (i, y)}
= P {(Xt , St ) ∈ A × B|(Xt−1, St−1) = (i,0)}
= P(i,A × B) =

∑
j∈A

∫
y∈B

pij (θ)fj (y; θ)ν(dy), (2.1)
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where fj (·; θ) is the conditional probability density function of Yt given Xt = j , with respect to
a σ -finite measure ν on R

�. Here θ ∈ R
κ denotes the unknown parameter in both the transition

matrix [pij ] and the conditional density fj of the hidden Markov model. Note that {Xt, t ≥ 0}
is a Markov chain and, given X0,X1, . . . ,Xm, the random variables Y1, . . . , Ym are independent
with density functions fXt (·; θ), t = 1, . . . ,m.

Definition 1. If there is an unobservable Markov chain {Xt, t ≥ 0} such that the process
{(Xt , St ), t ≥ 1} satisfies (2.1), then we refer to {St , t ≥ 1} as a hidden Markov model.

The likelihood of a sample Y = {y1, . . . , ym} from the hidden Markov model {St , t ≥ 1} is

d∑
x0=1

· · ·
d∑

xm=1

πx0

m∏
t=1

pxt−1,xt fxt (yt ; θ), (2.2)

where the initial distribution is the stationary distribution π . Let θ̂ be the MLE of θ , and V be
an estimate of the asymptotic variance–covariance matrix of θ̂ . We will discuss how to obtain
V in (3.1). Under the regularity conditions given by Bickel et al. ([5], pages 1617–1618), the
MLE θ̂ is asymptotically normal. We assume these conditions hold, and henceforth refer to them

together as Condition R. Let P θ̂ be as in (2.1) such that θ equals the MLE θ̂ based on the ob-
served data Y . A bootstrap algorithm for estimating the sampling distribution of the standardized
statistic T (m) := m1/2V −1/2(θ̂ − θ) is as follows:

1. From P θ̂ , generate a Markov chain realization of n steps (x∗
0 , x∗

1 , . . . , x∗
n).

2. For each x∗
t , obtain an observation y∗

t by a random draw from fx∗
t
(·; θ̂ ).

3. Compute the MLE θ̂∗ of the bootstrap sample Y∗ = (y∗
1 , . . . , y∗

n) and the corresponding
asymptotic variance–covariance matrix V ∗.

4. Approximate the sampling distribution of T (m) by the bootstrap distribution

T ∗(n) = √
n(V ∗)−1/2(θ̂∗ − θ̂ ). (2.3)

In this algorithm, we use m to denote the original sample size and n to denote the bootstrap
sample size. We follow this notation in our discussion of efficient resampling schemes.

2.2. Importance sampling for bootstrap estimates

Suppose that we would like to estimate the probability of the event {T (m) ∈ A} for A ⊂ R
κ . Then

the bootstrap estimate of P {T (m) ∈ A} is û = P {T ∗(n) ∈ A|Y}. Consider an importance sam-

pling problem in hidden Markov models. Instead of resampling from P θ̂ directly, as in the naive
bootstrap algorithm described in Section 2.1, we resample from an alternative distribution Q.
To be more precise, given Y , let Y†

1 , . . . ,Y†
B denote independent samples drawn according to the

bootstrap algorithm under the probability distribution Q for the hidden Markov model {St , t ≥ 1}.
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For b = 1, . . . ,B , write T b as the version of T computed from Y†
b . Then the importance sampling

bootstrap approximation of û is

û
†
B = B−1

B∑
b=1

1{T b(n)∈A}
dP θ̂

dQ
(Y†

b ). (2.4)

When Q = P θ̂ , (2.4) is the approximation under the naive parametric bootstrap algorithm, the
default resampling rule of this paper. To make the relationship between the default resampling
rule and the importance sampling rule more transparent, we adopt the following notation. We
denote the default resampling rule by replacing every occurrence of the superscript † with ∗,
with the understanding that the default resampling rule is the naive parametric bootstrap algo-
rithm. That is, S∗

n = ∑n
t=1 Y ∗

t is a hidden Markov model according to Definition 1 under the

probability P θ̂ . The P θ̂ probability is a conditional probability which depends on the sample Y
through θ̂ . Because we always indicate random variables from P θ̂ with ‘*’, there is no danger of
confusion. Henceforth, we drop the dependence on Y for convenience.

It is easy to see that û
†
B is an unbiased estimate of û. It was shown in Hall [14] that

var(û†
B) = B−1(v̂ − û2), where v̂ = E

{
1{T ∗(n)∈A}

dP θ̂

dQ
(Y∗)

}
. (2.5)

Because û
†
B is unbiased, the mean squared error of û

†
B equals its variance. Note that û does not

depend on Q. To minimize the variance (2.5) of û
†
B , it is sufficient to minimize v̂ by properly

choosing Q from a suitable class of probability distributions.

3. An exponential tilting formula

3.1. An optimization problem in a LAN family

Under Condition R, the MLE θ̂ is a smooth function of the sample mean; see Ghosh ([13], Sec-
tion 2.6). That is, there exists a smooth function g from R

� �→ R
κ such that θ̂ = g(Sm/m). Sup-

pose that we would like to estimate the sampling distribution of the MLE θ̂ = (θ̂1, θ̂2, . . . , θ̂κ )T =
(g1(Sm/m),g2(Sm/m), . . . , gκ(Sm/m))T, where T denotes transpose.

Let � be the �×� variance–covariance matrix of Sm = (S1m, . . . , S�m)T. Then we can estimate
it by �̂ = �

θ̂
, the variance–covariance matrix of Sm under probability P θ̂ , which is assumed to

be of full rank. The computation of �̂ is discussed in Section 4. Let µ(θ̂) = µ̂ be the stationary

mean of Y ∗
t under P θ̂ . Let J be the Jacobian matrix of g, and denote by Jµ̂ the Jacobian matrix

of g at µ̂. Let

V = Jµ̂�̂J�
µ̂

(3.1)
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be the estimated variance–covariance matrix of θ̂ = g(Sm/m). Note that estimating the condi-
tional probability of the event {T ∗(n) ∈ A} is asymptotically equivalent to estimating

P

{
(V ∗)−1/2Jµ̂

S∗
n − nµ̂√

n
∈ A

}
. (3.2)

We now study the problem of how to choose Q such that the variance of û
†
B is minimized.

From (2.5), this is equivalent to choosing Q such that

v̂ = min
Q

E

{
1{T ∗(n)∈A}

dP θ̂

dQ
(Y∗)

}
. (3.3)

In order to pose (3.3) as a well-defined minimization problem, we need to determine an ap-
propriate class of Q probability distributions so that meaningful optimization can take place. It
turns out that significant optimization can occur within a LAN family of probability distributions;
see LeCam and Yang [18] for the definition of LAN. That is, we shall consider the family C of

probability distributions, which are LAN at P θ̂ .
Note that in a LAN family, the magnitude of the asymptotic mean for the log-likelihood ratio

equals half of its asymptotic variance. This is the key property that we need to solve the mini-
mization problem (3.3). In Appendix A.2, we construct a LAN family and show that it is closely
related to the celebrated twisting formula for Markov random walks, studied by Miller [21] and
Ney and Nummelin [23].

When the underlying Markov chain moves from state i to state j , we use qij and hj (y) to
denote respectively the transition probability and the conditional probability density of an obser-
vation y under Q. Let pij (θ̂) and fj (y; θ̂ ) be the transition probability and conditional density

under P θ̂ . Note that for the rest of this section, n → ∞ means the bootstrap sample size tends to
infinity while the original sample size m remains fixed. We now define the class C of probability
distributions as those satisfying the following conditions:

(C1) The optimal tilting distribution is given by

qijhj (y) = pij (θ̂ )fj (y; θ̂ ) exp

[
−cij (y) + o(1)√

n

]
, (3.4)

(C2) Let Z be a normal random variable with mean zero and variance σ 2. Then as n → ∞,
the log-likelihood ratio

L∗
n = log

[
dP θ̂

dQ
(Y∗)

]

=
∑n

t=1[cX∗
t−1,X

∗
t
(Y ∗

t ) + o(1)]√
n

→ Z + 1

2
σ 2 in distribution (3.5)

for observations (X∗
t , Y

∗
t ), t = 1, . . . , n, from P θ̂ . Moreover, L∗

n and n−1/2(S∗
n − nµ̂)

are asymptotically jointly normal.
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(C3) The o(1) terms in (3.4) tend to 0 as n → ∞ and are asymptotically negligible in deter-
mining the limiting distribution of (3.5).

For importance sampling from Q in class C, it follows from (3.3) and (3.4) that we need to
minimize, over Q,

E

{
1{T ∗(n)∈A}

dP θ̂

dQ
(Y∗)

}
= E

{
1{T ∗(n)∈A} exp

[∑n
t=1 cX∗

t−1X
∗
t
(Y ∗

t ) + o(1)√
n

]}
. (3.6)

Since T ∗(n) is asymptotically normal and Q ∈ C, it follows that as n → ∞, (3.6) tends to

E[1{N∈A} exp(NL)], (3.7)

where N = (N1, . . . ,Nκ)T and NL are jointly normal. The distribution of N is κ-variate normal
with zero mean and identity variance–covariance matrix, while the distribution of NL is normal
with mean µL and variance σ 2

L. By (3.5), we have µL = σ 2
L/2.

Let ρk be the asymptotic correlation between the kth component,
√

n(θ̂∗
k − θ̂k), of T ∗(n)

and the log-likelihood ratio L∗
n for k = 1, . . . , κ . Let �L = (σLρ1, σLρ2, . . . , σLρκ)T denote

the covariance between N and L∗
n. Then we can write the joint variance–covariance matrix of

(N,NL)T as 


1 0 · · · 0 ρ1σL

0 1
. . .

... ρ2σL
...

. . .
. . . 0

...

0 · · · 0 1 ρκσL

ρ1σL · · · · · · ρκσL σ 2
L


 =

(
Iκ �L

�T
L σ 2

L

)
,

where Iκ is the κ × κ identity matrix. Thus the optimization problem (3.3) is reduced to that of
finding σL and �L so that (3.7) is minimized.

3.2. The derivation of the optimal tilting formula

The following lemma determines the minimum of (3.7). The proof of Lemma 1 can be found in
Fuh and Hu [12].

Lemma 1. The following choice of �L and σL minimizes (3.7):

�L = − 1
2 E(N|N ∈ A − �L), σL =

√
�T

L�L. (3.8)

We now proceed to identify cij (y) in (3.4) for the optimal Q such that (3.8) is satisfied.
Observe that limn→∞ cov(�T

LT ∗(n),L∗
n) = limn→∞ �T

L cov(T ∗(n),L∗
n) = �T

L�L = σ 2
L. On the

other hand, from the Cauchy–Schwarz inequality it follows that

lim
n→∞ cov(�T

LT ∗(n),L∗
n) ≤ lim

n→∞

√
var(�T

LT ∗(n))var(L∗
n) = σ 2

L.
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Because the equality is attained only when L∗
n is asymptotically equivalent to a linear function

of �T
LT ∗(n) and thus asymptotically equivalent to a linear function of Sn, we have

n−1/2
n∑

t=1

[cX∗
t−1,X

∗
t
(Y ∗

t ) + o(1)] ≈ cn−1/2(S∗
n − nµ̂) (3.9)

for some constant c ∈ R
�.

Let nij be the number of i-to-j transitions and ni be the number of visits to state i by
X∗

1, . . . ,X∗
n. We first represent ni/

√
n in terms of nij /

√
n. Let γi be any constant independent

of n; then nin
−1/2 ≈ n−1/2[γi

∑d
j=1 nij + (1 − γi)

∑d
j=1 nji], as n → ∞. This is possible be-

cause
∑d

j=1 nij − ∑d
j=1 nji = 1i (X

∗
1) − 1i (X

∗
n), where 1i (·) denotes the indicator function of

state i. Later, we will specify the value of γi so that other conditions are satisfied. Let us first as-
sume that � = 1 – that is, Y ∗

t , t = 1,2, . . . , n, are one-dimensional – and then show that the gener-
alization to the multi-dimensional case is straightforward. Let wi = ∑

t∈Di
Y ∗

t /ni, i = 1, . . . , d ,
where Di = {t |X∗

t = i, 1 ≤ t ≤ n}.
For i = 1, . . . , d , summing wi − µ̂ with respect to i from 1 to d , we obtain

c
S∗

n − nµ̂√
n

= c

d∑
i=1

(wi − µ̂)
ni√
n

≈ c

d∑
i=1

[
(wi − µ̂)γi

d∑
j=1

nij√
n

+ (wi − µ̂)(1 − γi)

d∑
j=1

nji√
n

]

= c

d∑
i=1

(wi − µ̂)
nii√

n
+ c

d∑
i,j=1,i �=j

(wj − µ̂ − δi + δj )
nij√

n
, (3.10)

where δi = −(wi − µ̂)γi . Let Dij = {t |X∗
t−1 = i,X∗

t = j,2 ≤ t ≤ n}. By (3.9), match the coeffi-

cient of (3.10) with
∑d

i,j=1 c̄ij nij /
√

n, where c̄ij = ∑
t∈Dij

cij (Y
∗
t )/nij , to obtain

lim
n→∞ c̄ij = lim

n→∞ c(wj − µ̂ − δi + δj ). (3.11)

Note that limn→∞ c̄ij = ∫
cij (y)fj (y, θ̂)ν(dy). In view of

1 =
d∑

j=1

∫
exp

[
−cij (y) + o(1)

n1/2

]
fj (y, θ̂)pij (θ̂ )ν(dy)

=
d∑

j=1

∫
[1 − cij (y)n−1/2 + o(n−1/2)]fj (y, θ̂ )pij (θ̂ )ν(dy),

we have

lim
n→∞

d∑
j=1

c̄ijpij (θ̂ ) = 0. (3.12)
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From (3.11) and (3.12), we conclude that δi, i = 1, . . . , d, satisfy

lim
n→∞

d∑
j=1

(wj − µ̂− δi + δj )pij (θ̂ ) = 0 ⇒ lim
n→∞

d∑
j=1

(wj − µ̂)pij (θ̂ )− δi +
d∑

j=1

δjpij (θ̂ ) = 0.

In matrix form, this becomes

lim
n→∞




p11 p12 · · · p1d

p21 p22 · · · p2d

...
...

. . .
...

pd1 pd2 · · · pdd







(w1 − µ̂)

(w2 − µ̂)
...

(wd − µ̂)




−




1 − p11 −p12 · · · −p1d

−p21 1 − p22 · · · −p2d

...
...

. . .
...

−pd1 −pd2 · · · 1 − pdd







δ1
δ2
...

δd


 = 0,

where we have dropped θ̂ from pij (θ̂ ) for simplicity. Clearly, limn→∞ wj = E(Y ∗
t |X∗

t = j) = µj .
Thus we can replace wj by µj in the preceding matrix equation.

It is easy to see that if Y ∗
t , t = 1, . . . , n, are multi-dimensional, the preceding matrix equality

holds for each component of the random vectors Y ∗
t . Denote by I as the identity matrix, and let

�i = E(Y ∗
t − µ̂|X∗

t = i) be the adjusted conditional mean given X∗
t = i, for i = 1, . . . , d . Write

� = (�i) and � = (δi) = (δil), a d × � matrix. Then the preceding matrix equation implies that
� is a solution of the Poisson equation

(I − P)� = P�. (3.13)

Let δi be the solution of (3.13). Consider choosing

cij (y) = �T
LV −1/2Jµ̂(y − µ̂ + δi − δj ), (3.14)

where �L is defined in (3.8). It can be shown that if we choose cij (y) according to (3.14), then
(3.8) is satisfied.

The optimal tilting distribution is given by

qijhj (y) = pij (θ̂)fj (y, θ̂ ) exp[−cij (y)/
√

n]∑d
j=1 pij (θ̂ )

∫
exp(−cij (y)/

√
n)fj (y, θ̂)ν(dy)

, (3.15)

where cij (y) given by (3.14). Furthermore, let

Cij =
∫

exp[−cij (y)/
√

n]fj (y, θ̂ )ν(dy).

Then, in (3.15), we have

qij = pij (θ̂ )Cij∑d
j=1 pij (θ̂)Cij

(3.16)
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and

hj (y) = C−1
ij exp(−cij (y)/

√
n)fj (y, θ̂). (3.17)

Note that due to the cancelation of δi and δj in cij (y) and C−1
ij , hj (y) defined in (3.17) depends

on the current state j only. We summarize our findings in the following theorem.

Theorem 1. Let θ̂ be the MLE of the sample Y = {y1, y2, . . . , ym} from a hidden Markov model
(2.1) satisfying Condition R. To estimate the sampling distribution of θ̂ , we do importance sam-
pling according to the following procedure.

(i) Sample from a Markov chain with transition matrix (3.16) to obtain {x†
0 , x

†
1 , . . . , x

†
n}.

(ii) For each x
†
i , i = 1, . . . , n, sample from h

x
†
i
(·) of (3.17) to obtain y

†
i .

(iii) Calculate the MLE θ̂† of the sample {y†
1 , . . . , y

†
n}.

(iv) Repeat the preceding steps B times to obtain an approximation of (3.2) via (2.4).

The preceding importance sampling scheme minimizes the asymptotic variance of (2.4) among
all distributions within the class C defined in (3.4).

Proof. We have shown that in order for the importance sampling estimator (2.4) to have mini-
mum asymptotic variance in class C, it is necessary for the importance sampling distribution to
satisfy (3.14)–(3.17). It remains to show that the resampling distribution given by (3.14)–(3.17)
actually belongs to C. The details are given in Appendix A.1. �

4. Implementation of the tilting formula

To implement the tilting formula (3.14)–(3.17), we need to know how to compute �L and V .
Let us first consider the computation of �L. Since �L is only implicitly defined by (3.8), it
cannot be evaluated directly. However, it can be employed to construct a recursive approximation
algorithm. In this regard, it is easier to approximate −�L. Changing �L to �̄L = −�L in (3.8),
we obtain

�̄L = 1
2 E(N|N ∈ A + �̄L). (4.1)

From (4.1), we can compute �̄L via a recursive algorithm as follows:

(i) Initialize �̄L = �̄
(0)
L .

(ii) Iterate �̄
(i+1)
L = 1

2E[N|N ∈ A + �̄
(i)
L ].

The convergence proof and some useful results on the implementation of the recursive algorithm
can be found in Fuh and Hu ([12], Section 2).

The computation of V , or, for that matter, the computation of �, the asymptotical variance
for the Markov random walk Sn, is much more complicated than that for the independent and
identically distributed case where the sample covariance matrix does the job. Here we develop
a representation which allows straightforward calculation of � via the solution of a Poisson
equation.
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Let {Xn,n ≥ 0} be a finite ergodic (positive recurrent, aperiodic and irreducible) Markov chain
on state space D = {1, . . . , d} with stationary distribution π . Let {(Xn,Sn), n ≥ 0} be the Markov
random walk defined in (2.1). Then

� = Eπ [(Y1 − µ)(Y1 − µ)T)] + 2
∞∑

k=1

Eπ [(Y1 − µ)(Yk+1 − µ)T] (4.2)

is well defined if Eπ (||Y1||2) < ∞. Furthermore, if � is positive definite, Theorem 17.0.1 of
Meyn and Tweedie [22] shows that

1√
n
(Sn − nµ) → N(0,�) in distribution. (4.3)

Note that (4.2) is inconvenient to compute. We provide another representation of the asymptotic
variance, � = [σ 2

ll′ ]l,l′=1,...,�, which facilitates the computation of it,

σ 2
ll′ =

d∑
i=1

[Gll′(i) − �l(i)�l′(i)]πi +
d∑

i,j=1

[�l(j) − δil + δjl]2pijπi, (4.4)

where �l(i) = E(Y1l − µl |X0 = i),Gll′(i) = E[(Y1l − µl)(Y1l′ − µl′)T|X0 = i], µl is the lth
component of the stationary mean, and δil, i = 1, . . . , d, l = 1, . . . , �, are the elements of the
d × � matrix � which is the solution of the Poisson equation

(I − P)� = P�l(i), (4.5)

in which I denotes the identity operator. The asymptotic variance formulae (4.4) and (4.5) for
Markov random walks in general state space and their proofs are given in Appendix A.2.

5. Simulation study

To demonstrate the effectiveness of our method, we study two examples. We measure the effec-
tiveness by relative efficiency, which is defined to be the ratio of the variance under the default
resampling distribution P to that under the tilted probability distribution Q given by (3.14)–
(3.17). We refer the reader to Fuh and Hu ([12], Section 5.1) for results on relative efficiency.

To construct confidence regions through importance sampling, it is usually necessary to com-
bine stratified sampling with importance sampling. That is, we need to partition the region into
several parts and apply a different tilting formula to each part. These results are given in Fuh and
Hu ([12], Section 4) and are used in Sections 5.1 and 5.2.

The first example concerns a three-state hidden Markov chain {Xt, t ≥ 0} with transition ma-
trix P , and the {Yt , t ≥ 0} observations follow a bivariate normal distribution N((µj1,µj2)

T,�)

given the states j = 1,2,3 of the Markov chain. Specifically, let

P =
[0.2 0.3 0.5

0.3 0.4 0.3
0.5 0.3 0.2

]
, � =

[
1.0 0.3
0.3 1.0

]
, (5.1)
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µ11 = µ12 = 0, µ21 = µ22 = 5 and µ31 = µ32 = 10. The second example concerns the time
series of daily counts of epileptic seizures is given in Section 5.2.

5.1. A bivariate normal example

We first generate m = 100 observations Y1 = (Y11, Y12)
T, . . . , Ym = (Ym1, Ym2)

T from the
hidden Markov model defined in (5.1). The parameter of interest is the stationary mean
(
∑3

i=1 πiµi1,
∑3

i=1 πiµi2)
T. The estimator is the sample mean (µ̂1, µ̂2)

T. Two different types
of confidence regions, square and circular, are considered in this simulation study. The bootstrap
sample size is n = 100, and the number of bootstrap replications is B = 1000 for uniform re-
sampling and B = 200, 100, 50 for importance sampling. The whole experiment was repeated
180 000 times to estimate the coverage probability and the mean and the standard deviation of
confidence region areas. The nominal coverage probability is 0.95 in all cases. The results are
summarized in Tables 1 and 2. The tilting points and the confidence regions are shown in Figures
1 and 2 for various nominal levels.

In Table 1, we divide the complement of a square region into four subregions. The four optimal
tilting points chosen according to (3.14) and (3.15) are (0, r), (r,0), (0,−r), (−r,0), as shown
in Figure 1(a), where r = 2.4613 by inverting the normal approximation. Note that the large-
deviations tilting would use r = 2.236; see Fuh and Hu [12]. The four transition matrices and
the conditional densities hk

j (·) ∼ N((µk
j1,µ

k
j2)

T,�) of Y given the hidden states j = 1,2,3 and
optimal tilting points k = 1, . . . ,4 can be calculated from (3.14)–(3.17).

In Table 2, we divide the complement of a circular region into four subregions. The four opti-
mal tilting points chosen according to (3.8) are (0, r), (r,0), (0,−r), (−r,0), as shown in Fig-
ure 2(a), where r = 2.655, whereas the large-deviations tilting would use r = 2.447. Similar to
the square confidence region, the transition matrices and conditional densities can be calculated
from (3.14)–(3.17).

Table 1. Square confidence region

Bootstrap
method

Bootstrap
replication
size

Non-coverage
probability

Region area

Standard
Average deviation

Non-studentized statistic
Ordinary 1000 0.0493 2.396 0.644
Tilted 200 0.0504 2.394 0.647
Tilted 100 0.0484 2.407 0.651
Tilted 52 0.0475 2.421 0.657

Studentized statistic
Ordinary 1000 0.0495 2.394 0.641
Tilted 200 0.0502 2.393 0.640
Tilted 100 0.0490 2.403 0.642
Tilted 52 0.0485 2.409 0.645
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Table 2. Circular confidence region

Bootstrap
method

Bootstrap
replication
size

Non-coverage
probability

Region area

Standard
Average deviation

Nonstudentized statistic
Ordinary 1000 0.0515 2.383 0.644
Tilted 200 0.0491 2.393 0.645
Tilted 100 0.0485 2.399 0.653
Tilted 52 0.0467 2.414 0.659

Studentized statistic
Ordinary 1000 0.0510 2.391 0.641
Tilted 200 0.0492 2.392 0.641
Tilted 100 0.0489 2.394 0.643
Tilted 52 0.0472 2.409 0.645

Tables 1 and 2 reveal that the importance sampling method permits a reduction of replication
sizes from 5 to 1. The performance is still reasonable for a reduction from 10 to 1. The only
penalty seems to be a slight increase in the variability of the confidence region area.

(a) (b)

Figure 1. (a) The four tilting points and (b) 0.5, 0.95 and 0.99 bootstrap confidence regions for parameter
estimates of a three-state model using importance sampling with n = 100 and replication size B = 200.
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(a) (b)

Figure 2. (a) The four tilting points and (b) the 0.5, 0.95 and 0.99 bootstrap circular confidence regions for
parameter estimates of a three-state hidden Markov model using importance sampling with n = 100 and
replication size B = 200.

5.2. A Poisson example

Albert [1] described the fitting of a two-state Poisson hidden Markov model to the sequence
of daily seizure counts recorded during follow-up for each of 13 outpatients with intractable
epilepsy maintained on steady anticonvulsant drugs. Specifically, let X = (X0,X1, . . . ,Xm) be
generated from a two-state (0 and 1) Markov chain with unknown transition probabilities p01
and p10. Write p11 = 1−p10 and p00 = 1−p01. Given X, let Y1, . . . , Ym be the observed counts
from the Poisson distributions

P(Yk = yk|Xk = i) = e−λi λ
yk

i

yk! , i = 0,1,

where λ0 and λ1 are the mean numbers of counts in states 0 and 1, respectively. Let θ =
(p01,p10, λ0, λ1) be the parameter of interest. Balish et al. [2] demonstrated using quasi-
likelihood regression models that all but one patient had seizure counts fitted inadequately by
a Poisson distribution. As reported in Albert [1], the two-state hidden Markov model provides a
better fit and described the apparent clustering of seizures better than a Poisson regression model
with autoregressive terms.

To illustrate the efficiency of the proposed method in Theorem 1, we adopted estimates in
Albert [1] of transition probabilities p̂01 = 0.197, p̂10 = 0.61, and the Poisson means λ̂0 =
0.251, λ̂1 = 2.0 for a particular patient. Bootstraps are done by generating a random sample
of size 100 with the aforementioned parameter values for the patient concerned. We then com-
pute the MLE using the EM algorithm and generate bootstrap samples via the naive bootstrap
algorithm in Section 2.1 and via importance sampling according to Theorem 1. The number of
bootstrap replications is B = 1000 for uniform resampling, and B = 200, 100, 52 are used for
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Table 3. Square confidence regions for the two-state model with parameters λ0 =
0.251, λ1 = 2.0, p01 = 0.197, p10 = 0.61 and 10 000 Monte Carlo repetitions

Region area
Bootstrap
method

Replication
size Average S.D.

Ordinary 1000 5.761 1.674
Tilted 200 5.789 1.656
Tilted 100 6.069 1.702
Tilted 52 6.446 1.761

importance sampling. As in Section 5.1, we obtain four tilting points and r = 2.4613. Table 3
shows that importance sampling permits a reduction of bootstrap replication sizes from 5 to 1.
Figure 3 exhibits three confidence regions for (λ0, λ1) from importance sampling with n = 100
and B = 200.

Figure 3. The 0.5, 0.95 and 0.99 confidence regions with parameters λ0 = 0.251, λ1 = 2.0, p01 = 0.197,
p10 = 0.61 using importance sampling with n = 100 and replication B = 200.
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Appendix

A.1. Proof of Theorem 1

We drop ‘*’ from y∗
t and x∗

t for simplicity. It is understood that in the following proof yt and xt

are generated according to P θ̂ , that is, the default sampling rule. From (3.15), the log-likelihood
ratio is given by

log
n∏

t=1

pxt−1,xt fxt (yt , θ̂ )

qxt−1,xt hxt (yt )

= log
n∏

t=1

d∑
j=1

pxt−1,j

∫
exp

[
−cxt−1,j (yt )

n1/2

]
fj (yt , θ̂ )ν(dy) exp

[
cxt−1,xt (yt )

n1/2

]

=
n∑

t=1

{
log

[
d∑

j=1

pxt−1,j

∫
exp

(
−cxt−1,j (yt )

n1/2

)
fj (yt , θ̂ )ν(dy)

]
+ cxt−1,xt (yt )

n1/2

}
. (A.1)

Let Ej denote the conditional expectation given xt = j . The integral in (A.1) with a two-term
Taylor expansion of the exponential term equals

1 − Ej [cxt−1,j (yt )]
n1/2

+ Ej [c2
xt−1,j

(yt )]
2n

+ o(n−1).

By (3.12), multiplying the preceding expression by pxt−1,j , summing over j , and taking loga-
rithms yield

log

[
1 +

d∑
j=1

Ej [c2
xt−1,j

(yt )]pxt−1,j

2n
+ o(n−1)

]
≈

d∑
j=1

Ej [c2
xt−1,j

(yt )]pxt−1,j

2n
.

In view of (3.14), summing the preceding expression over t , we find that the log term in (A.1) is
approximated by

n∑
t=1

�T
L�

−1/2
θ̂

J T
µ̂

d∑
j=1

[
Ej (yt − µ̂ − δxt−1 + δj )(yt − µ̂ − δxt−1 + δj )

Tpxt−1,j

2n

]
Jµ̂�

−1/2
θ̂

�L.

When n is large, the proportion of time that the chain {xt } spends in state i is approximately πi ,
the stationary probability of state i. Using this fact in the preceding expression, we see that it is
approximated by

1
2�T

L�
−1/2
θ̂

J T
µ̂

d∑
i=1

d∑
j=1

[Ej (yt − µ̂ − δi + δj )(yt − µ̂ − δi + δj )
Tpijπi]Jµ̂�

−1/2
θ̂

�L.
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The summation over i, j of the terms in the square bracket equals

d∑
j=1

Ej (yt − µj )(yt − µj )
Tπj +

d∑
i=1

d∑
j=1

[Ej (yt − µ̂ − δi + δj )][Ej (yt − µ̂ − δi + δj )]Tpijπi .

The first term of the preceding expression can be rewritten as

d∑
j=1

Ej [(yt − µ̂)(yt − µ̂)T − (µj − µ̂)(µj − µ̂)T]πj ,

and adding the second term shows that the sum is identical to the variance given by (4.4).
By (3.1), we conclude that the log term in (A.1) equals 1

2�T
L�L = 1

2σ 2
L asymptotically.

Consider the last term in (A.1). By (3.14), we have

n∑
t=1

cxt−1,xt (yt )

n1/2
=

n∑
t=1

�T
L�

−1/2
θ̂

J T
µ̂

yt − µ̂ − δxt−1 + δxt

n1/2
= �T

L�
−1/2
θ̂

J T
µ̂

sn − nµ̂ − δx1 + δxn

n1/2
.

Note that the last two terms in the numerator are negligible after dividing by n1/2. By (4.3), the
preceding expression converges, in distribution, to a normal random variable with mean zero and
variance σ 2

L. This shows that (3.5) is satisfied, which completes the proof.

A.2. Asymptotic variance of Markov random walks

Let {Xn,n ≥ 0} be an aperiodic and irreducible Markov chain on a general state space D with
σ -algebra D. The irreducibility is with respect to a maximal irreducibility measure ϕ on D;
see Meyn and Tweedie ([22], page 89) for definition. Suppose that an additive component Sn =∑n

k=0 Yk with S0 = Y0 = 0, taking values in R
�, is adjoined to the chain such that {(Xn,Sn), n ≥

0} is a Markov chain on D × R
� and

P {(Xn+1, Sn+1) ∈ A × (B + s)|(Xn,Sn) = (x, s)}
= P {(X1, S1) ∈ A × B|(X0, S0) = (x,0)} = P(x,A × B)

for all x ∈ D, s ∈ R
�, A ∈ D and B ∈ B(R�), the Borel σ -algebra of R

�. The chain
{(Xn,Sn), n ≥ 0} is referred to as a Markov additive process, and its additive component Sn

as a Markov random walk.
Let ν be an initial distribution on X0 and let Eν and varν denote expectation and variance

under ν, respectively. If ν is degenerate at x, we simply write Ex(varx). If {Xn,n ≥ 0} has a
unique stationary measure π , let µ := ∫

D
Ex(ξ1)π(dx) denote the stationary mean.

For any real-valued non-negative kernel {K(x,A);x ∈ D,A ∈ D}, function h : D → R, and
measure � on (D,D), write

Kh(x) =
∫

D

K(x,dy)h(y), �K(A) =
∫

D

�(dx)K(x,A),
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�h(A) =
∫

A

�(dx)h(x) (a sign measure), (A.2)

�h = �h(D) (a real number).

Condition K1 Minorization. There exist a probability measure � on D × R
� and a measurable

function h on D such that
∫

h(x)π(dx) > 0,
∫

�(dx × R
�)h(x) > 0, and

P(x,A × B) ≥ h(x)�(A × B), (A.3)

for all x ∈ D, A ∈D, B ∈ B(R�).

For an aperiodic and irreducible Markov random walk satisfying Condition K1, by making
use of a splitting chain argument, there exists an equivalent Markov chain with a recurrent state;
see, for example, Meyn and Tweedie ([22], Chapter 5). Thus, without loss of generality, we
assume that there exists a recurrent state � in D such that the Markov chain Xn visits the state
� infinitely often. Let T� = inf{n ≥ 1 : Xn = �} be the first recurrent time.

Theorem 2. Let {(Xn,Sn), n ≥ 0} be a Markov random walk on state space D, satisfying Con-
dition K1. Assume

E�

(
T�−1∑
k=1

||Yk||2
)

< ∞ and E�T 2
� < ∞. (A.4)

Then

� := Eπ [(Y1 − µ)(Y1 − µ)T] + 2
∞∑

k=1

Eπ [(Y1 − µ)(Yk+1 − µ)T] (A.5)

is well defined. Furthermore, if � is positive definite, then

1√
n
(Sn − nµ) −→ N(0,�) in distribution. (A.6)

The asymptotic variance, � = [σ 2
ll′ ]l,l′=1,...,�, can be calculated via

∫
D

[Gll′ − �l�l′ ]π(dx) +
∫

D

[�l(x
′) − δxl + δx′l][�l′(x

′) − δxl′ + δx′l′ ]P(x,dx′)π(dx), (A.7)

where �l(x) = Ex(Y1l −µl),Gll′(x) = Ex(Y1l −µl)(Y1l′ −µl′) and δxl is a measurable function
from D to R for each l = 1, . . . , � satisfying the Poisson equation

(I − P)δxl = P�l(x), (A.8)

where I denotes the identity kernel and the operators in (A.8) are defined according to (A.2).
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Proof. By the regeneration method of Markov random walks developed in Ney and Num-
melin [23], and following a proof similar to Theorem 17.3.6 in Meyn and Tweedie [22], we
have the central limit theorem (A.6). To derive (A.7), we need to show (a) the existence of a
finite-valued solution δ to the Poisson equation (A.8); (b) the uniqueness of δyl − δxl for all
x, y ∈ D and l = 1, . . . , �; and (c) the validity of the variance formula (A.7).

Let N� = inf{n ≥ 0 : Xn = �}, and δxl = Ex(
∑N�

k=0 ul(Xk)), where ul(x) = P ExY0l −
µl = ExY1l − µl . Under the assumption (A.4), δxl is well defined, and we have Pδxl =
Ex(

∑N�

k=1 ul(Xk))I{x �=�} + E�

∑T�

k=1 ul(Xk) = Ex(
∑N�

k=1 ul(Xk))I{x �=�}. Therefore, for all

x ∈ D and l = 1, . . . , �, Pδxl = Ex(
∑N�

k=0 ul(Xk)) − ul(x) = δxl − P�l(x), so that the Pois-
son equation is satisfied, which establishes (a).

The proof of (b) follows from Proposition 17.4.1 of Meyn and Tweedie [22]. We now un-
dertake the proof of (c). By Theorem 17.4.2 of Meyn and Tweedie [22],

∫
D

∑∞
k=1 �i(x

′) ×
P k(x,dx′) is finite. Therefore, by a simple generalization of Theorem 3.3 of Billingsley [6],
we have

σ 2
ll′ = Eπ (Y1l − µl)(Y1l′ − µl′) + 2

∞∑
k=1

Eπ

[
(Y1l − µl)

(
Y(k+1)l′ − µl′

)]

=
∫

D

Gll′(x)π(dx) +
∫

D

�l(x)δ̃xl′π(dx) +
∫

D

�l(x
′)δ̃x′l′π(dx′), (A.9)

where

δ̃xl =
∫

D

�l(x
′)

∞∑
k=1

P k(x,dx′). (A.10)

Next, we show that δ̃xl satisfies the Poisson equation (A.8). That is, for all x ∈ D and l = 1, . . . , �,

(I − P)δ̃xl =
∫

D

�l(x
′)

∞∑
k=1

P k(x,dx′) −
∫

D

∫
D

�l(x
′)P (x,dz)

∞∑
k=1

P k(z,dx′)

=
∫

D

�l(x
′)

∞∑
k=1

P k(x,dx′) −
∫

D

�l(x
′)

∞∑
k=1

P (k+1)(x,dx′)

=
∫

D

�l(x
′)P (x,dx′) = P�l(x).

Write δl = δ·l ; then δl and �l are measurable functions on D. Let Pδl be the function and
π�l�l′ , πδl and πδlδl′ be measures defined according to (A.2), and write �lδl := �l(x)δxl . As-
suming that δl and �l satisfy (A.8), then we have∫

D

∫
D

[�l(x
′) − δxl + δx′l][�l′(x

′) − δxl′ + δx′l′ ]P(x,dx′)π(dx)

=
∫

D

∫
D

(
�l(x

′)�l′(x
′) − �l(x

′)δxl′ − �l′(x
′)δxl + �l(x

′)δx′l′ + �l′(x
′)δx′l
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+ δxlδxl′ + δx′lδx′l′ − δxlδx′l′ − δx′lδxl′
)
π(dx)P (x,dx′)

= πP�l�l′ − πδl′P�l − πδlP�l′ + πP�lδl′

+ πP�l′δl + πδlδl′P + πPδlδl′ − πδlP δl′ − πδl′Pδl

= π�l�l′ − πδl′(I − P)δl − πδl(I − P)δl′

+ π�lδl′ + π�l′δl + 2πδlδl′ − πδlP δl′ − πδl′Pδl

= π�l�l′ + π�lδl′ + π�l′δl

=
∫

D

�l(x)�l′(x)π(dx) +
∫

D

�l(x)δxl′π(dx) +
∫

D

�l′(x
′)δx′lπ(dx′). (A.11)

By (b), δx′l − δxl is uniquely determined; then we can replace δxl in (A.11) with δ̃xl of (A.10).
Adding the first term of (A.7) to (A.11) and making use of (A.9) establish the asymptotic variance
formula (A.7). �

A.3. LAN family for Markov random walks

The Markov chain discussed here is assumed to reside on a general state space D, whereas the
application in (3.4) requires only a finite state space. Let x ∈ D, ϑ = (ϑ1, . . . , ϑ�) ∈ R

�, and let
g be a bounded measurable function D. Define the linear operators Pϑ and P by

(Pϑg)(x) = Ex{eϑ ·Y1g(X1)}, (Pg)(x) = Ex{g(X1)}, (A.12)

where “·” denotes the inner product. We assume that Eπ eϑ ·Y1 < ∞ for all ϑ ∈ � ⊂ R
�, where �

is an open set containing 0.
Under Condition K1, Theorem 4.1 of Ney and Nummelin [23] shows that Pϑ has a simple

maximal eigenvalue λ(ϑ) with associated right eigenfunction r(·;ϑ). Furthermore, there exists
a set F ⊂ D with maximum irreducibility measure ϕ(F c) = 0 such that �(ϑ) = logλ(ϑ) is
analytic and strictly convex on �, and r(·;ϑ) is uniformly positive, bounded and analytic on �

for each x ∈ F . Now, for ϑ ∈ �, define the ‘twisting’ transformation for the transition probability
of {Xn,n ≥ 0},

Pϑ(x,dx′) = r(x′;ϑ)

r(x;ϑ)
e−�(ϑ)+ϑ ·Y1P(x,dx′). (A.13)

If the function �(ϑ) is normalized so that �(0) = d�/dϑ |ϑ=0 = 0, then P0 = P is the transi-
tion probability of the Markov chain {Xn,n ≥ 0} with invariant probability measure π .

For all ϑ ∈ �, let a(t) be a probability distribution on the set of non-negative integers, and
let Ka

ϑ = ∑∞
t=0 a(t)P T

ϑ , where P T
ϑ denotes the t-step transition of Pϑ . A set E ⊂ D is called

νa-petite if there exists a non-trivial measure νa on D such that Ka
ϑ(x,A) ≥ νa(A) for all x ∈ E

and A ∈D.

Condition K2 Drift. There exists a function w :D → [1,∞), a petite set E ∈ D, a con-
stant b < ∞, and an extended real-valued function V :D → [0,∞] such that, for all x ∈ D,
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PϑV (x) ≤ V (x) − w(x) + bIE(x), where PϑV (x) = ∫
V (x′)Pϑ(x,dx′) and I denotes the indi-

cator function.

The following lemma characterizes the constants in (A.13) via a Poisson equation.

Lemma 2. Assume that Conditions K1 and K2 hold for the Markov chain {Xn,n ≥ 0} with cor-
responding V , w and b, such that

∫
D

V (x)π(dx) < ∞. Assume that Eπ eϑ ·Y1 < ∞ for all ϑ ∈ �.
Let µ = EπY1. Then the partial derivatives of r(·;ϑ) with respect to ϑk , ∂r(x;ϑ)/∂ϑk|ϑ=0, for
k = 1, . . . , �, are bounded on F ⊂ D, and are the solutions of the Poisson equation

(I − P)g = P(ExY1 − µ),

where I is the identity operator and P is the operator defined in (A.12).

The proof of Lemma 2 can be found in Fuh and Hu ([11], Theorem 3).

Theorem 3. Under the assumptions of Lemma 2, let ϑn = η/
√

n and define the transition prob-
ability Q

η
n = Pϑn through (A.13). Then Q

η
n is LAN. In particular,

lim
n→∞

dQ
η
n

dP
= exp

(
Z − 1

2
ηT�η

)
,

where Z is a normal random variable with mean zero and variance ηT�η.

Proof. By Theorem 4.1 of Ney and Nummelin [23], �(·) and r(x, ·) are analytic on � for each
x ∈ F ⊂ D. A straightforward Taylor expansion gives

�

(
η√
n

)
= �(0) + η√

n
�′(0) + 1

2n
ηT�′′(0)η + o

(
1

n

)
= η√

n
µ + 1

2n
ηT�η + o

(
1

n

)
,

log r

(
x,

η√
n

)
= log r(x,0) + r ′(x,0)

r(x,0)

η√
n

+ o

(
1√
n

)
= r ′(x,0)

η√
n

+ o

(
1√
n

)
.

Applying the two preceding expansions to (A.13), we obtain

dQ
η
n

dP
= exp

{
η√
n

·
[
Sn − n�

(
η√
n

)]
+ log r

(
Xn,

η√
n

)
− log r

(
X0,

η√
n

)}

= exp

{
η√
n

· [Sn − nµ + r ′(Xn,0) − r ′(X0,0)
] − 1

2
ηT�η + op

(
1√
n

)}
. (A.14)

The first term in the exponent of (A.14) converges in distribution to a normal random variable
with mean zero and variance ηT�η. The proof is completed. �

To apply Theorem 3 to (3.4), we only need to check that
∫

fj (y, θ)eθ ·yν(dy) < ∞ in an open
set of R

�, as Markov chains in Sections 2 and 3 are of finite state so Conditions K1 and K2
obviously hold.
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