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ULTRA-DISCRETE EQUATIONS AND TROPICAL COUNTERPARTS
OF SOME COMPLEX ANALYSIS RESULTS

MIN-FENG CHENT, ZONG-SHENG GAO AND JI-LONG ZHANG

Abstract

A tropical version of Nevanlinna theory describes value distribution of continuous
piecewise linear functions of a real variable. In this paper, we present some results
on value distribution theory of tropical difference polynomials and uniqueness theory of
tropical entire functions. Application to some ultra-discrete equations is also given.

1. Introduction

For a general background concerning tropical mathematics, see [13].
Recently, Halburd and Southall [5] described continuous piecewise linear func-
tions of a real variable with one-side integer derivatives as tropical meromorphic
functions, and established tropical versions of Nevanlinna’s first main theorem,
the lemma on the logarithmic derivative and Clunie’s lemma. Laine and Tohge
[9] took an extended point of view to tropical meromorphic functions, showed
that tropical Nevanlinna theory also holds to piecewise linear functions with
arbitrary real slopes, and obtained a tropical version of Nevanlinna’s second main
theorem.

Recalling the standard one-dimensional tropical structure, the max-plus (or
tropical) semi-ring is the set RU{—o0} with (tropical) addition and (tropical)
multiplication defined by

X @® y :=max(x, y)
and

X®y:=x+y.
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We also use x©@ y:= x — y and x®* := ax, for all x € R. The identity elements
0, for tropical addition is 0, = —oo and the identity elements 1, for tropical
multiplication is 1, = 0. This structure fails to be a ring, since not all elements
have tropical additive inverses. In particular, the equation x@ 2 =1 has no
solution.

We assume that the reader is familiar with the notations and results of the
classical Nevanlinna theory [1, 6, 8] and the tropical Nevanlinna theory [5, 7, 9].
Now, we recall some basic notations as follows.

DEerINITION 1.1 ([5]). Let f(x) be a tropical meromorphic function, x € R
and

op(x) = lim ('(x+2) — f'(x — 2))

If wr(x) >0, then x is called a root (zero) of f(x) with multiplicity ws(x). If
wr(x) <0, then x is called a pole of f(x) with multiplicity —wy(x).

The tropical proximity function for meromorphic functions is defined to be

i, ) = LS TED,

where f(x):= max{f(x),0} for xe R. The integrated tropical counting func-
tion for poles in (—r,r) is defined to be

r

NG ) = | nte sy de=3 S b= )

0 |by|<r

where tropical counting function n(z, ) gives the number of distinct poles of f(x)
in the interval (—r,r), each pole multiplied by its multiplicity 7. Defining the
tropical characteristic function T'(r, f) as usual,

T(r,f)=m(r f)+N(rf).
The order of f(x) is defined as
R log T'(r, f)
p(f) := lim sup Togr
and the hyper-order of f(x) is defined as
L log log T'(r, f)
pa(f) = heriS;le T logr

Recall that tropical polynomials admit finitely many roots and no poles.
And tropical polynomials may be defined in the form

n

f(x) = Pla: @ x®) = a, @ x® @ 4,1 @x® 1 @ - @ ap ® x¥,

i=0
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that is,
f(x) = max{an + kpx, a1 + kn_1x, ... a0 + k()x},

where the coefficients «¢; are real constants and the exponents k; are real numbers,
i=0,1,...,n and ko < k; < -+ < k.

Equivalently, tropical rational functions admit finitely many roots and
poles. A natural definition of a tropical rational function is a function of the
form

R(x) = <@n—)(ai ® X®k")> %) (é(bj ® x®1f)>

i=0

=0
= {6, @ x% " @ a, 1 @x ' @ ®ag @ x®}
@ {bn @ X" @ by @ X1 @ - D by ® xO}
= max{a, + k,x,a,_1 + k,_1x, ..., a0 + kox}
—max{b,, + X, b1 + ly_1x,...,bo + lyx},

where the coefficients a;, b; are real constants and the exponents k;, /; are real
numbers, i =0,1,...,n, j=0,1,...,m, and ko <k <---<k,, hh<h<---<
I, see [7, Chapter 2].

Concerning tropical exponential functions, recall their definitions as follows,
see [9, Definition 8.1].

DerINITION 1.2. Let o be a real number with |«| > 1. Define a function
ey(x) on R by

x]—1
ex(x) = aP(x — [x]) + Z o = o (x — [x]+ ;>

o—1
j=—®

If o > 1, e,(x) is strictly increasing, and e,(x) is a tropical entire function, since it
has no poles. If a < —1, then e,(x) is tropical meromorphic, but not tropical
entire. For a real number f with |f| <1, f #0. Define a function eg(x) on R
by

() = S — AP~ 1) = 9 - 1),
! jz[] <1—/>’ )

If 0 <p <1, ep(x) is strictly increasing, and eg(x) is a tropical entire function,
since it has no poles. If —1 < f < 0, then eg(x) is tropical meromorphic, but not
tropical entire. B

In this paper, we frequently use the notations IT(x), II(x) etc. for tropical
meromorphic of 1-periodic, possibly meaning different functions at different
occasions. We also use the notations Z(x), Z(x) etc. for tropical meromorphic
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of 2-periodic and anti-1-periodic, again possibly meaning different functions at
different occasions. The remaining of this paper is now being organized as
follows. In section 2, we present several preliminary lemmas that are needed in
subsequent considerations. Section 3 is devoted to considering value distribution
theory of tropical difference polynomials. Section 4 is treating the uniqueness
theory of tropical entire functions. Section 5 will concentrate on applications to
ultra-discrete equations.

2. Some preliminary lemmas

LemMa 2.1 (See [9, Theorem 9.1]). The equation

2.1) y(x+1) = p(x)®

with ¢ € R\{0} admits a non-constant tropical meromorphic solution on R of hyper-
order p, < 1 if and only if ¢ = +1. Suppose that f(x) is a non-constant tropical
meromorphic solution to (2.1), then it can be extended onto R and

(i) if c=1, then f(x) is 1-periodic and f(x) = TI(x);

(i) if ¢ =—1, then f(x) is 2-periodic, anti-1-periodic and f(x)= E(x);

(iii) if ¢ #0,+1, then f(x) = Ly(e.(x — b)), where the notation Ly(e.(x — b))
is finite linear combinations of ijle[)’jec(x— bj), b={by,...,b,} C[0,1), the co-
efficients f; are constants.

Remark 2.1. According to the Definition 1.2, we see that e.(x+1—b) =
ce.(x —b). In particular, if 4 is a non-zero constant, then L;(Ae.(x —b)) =
Ly(e.(x — D)), bel0,1).

Lemma 2.2 (See [10, Theorem 4.1]). Let o, f be non-zero real numbers.
Suppose that f(x) is a non-constant tropical meromorphic solution to

(2.2) of (x)+pf(x+1) =1,

then it can be extended onto R and

() if a =B, then f(x) = E(x) ﬁ;
(i) if o= —p, then f(x)=TI(x) +%X;
(i) if" o # +p, then f(x) = Ly(e_y/p(x — b)) + ﬁ[)” bel0,1).

Lemma 2.3 (See [10, Proposition 3.3]). Suppose that f(x) is a non-constant
tropical meromorphic solution to

Jx+1)=f(x)=¢, ceR,
then it can be extended onto R and f(x) = TI(x) + cx.
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LemMa 2.4 (See [10, Proposition 3.23]). Suppose that f(x) is a non-constant
tropical meromorphic solution to

f(x+1)—f(x)=cx, ceR,
then it can be extended onto R and f(x) =1II(x)+ c(¥(x) — x), where

o) = @+ 1) x50

Remark 2.2. y(x) = ([x] + 1)(x — }[x]) is a tropical entire function of order
p(¥) =2 and satisfies the difference equation Y(x) —y(x—1)=x, see [10,
Proposition 3.22].

Lemma 2.5. Let o, f be non-zero real numbers and A, B be real constants.
Suppose that f(x) is a non-constant tropical meromorphic solution to

(2.3) af (x) + Bf (x + 1) = Ax + B,

then it can be extended onto R and

oo = i B—-4/2

() I %= . then f(x) = ) + 3+

(i) if a=-p, then f(x)=T(x) +élp(x) - ﬂx, where Y(x) =
(] + 1) (v = 1) ¢ el

iy A o+ p

(iii) if o # £, then f(x) = Ly(e_,p(x — b)) + (x+/)’x+ P belo,1).

Proof. 1f a=pf, then (2.3) can be rewritten as
(2.4) S+ 1)+ £(x) = Ax; B

Clearly, by Lemma 2.1(ii), the solution to f(x+ 1)+ f(x) =0 are 2-periodic,
anti-1-periodic functions, then f(x) = E(x). It is a trivial computation to verify

A B—4)2 . . .
that fo(x) = ﬁx+7 is a special solution to (2.4).
If o = —p, then equation (2.3) now is
Ax+ B
(2.5) Sl 1) = f () =T

It follows from Lemmas 2.3 and 2.4 that all tropical meromorphic solutions to
(2.5) may be written in the form

A A—-B

J(x) =TI(x) +ﬁ¢(X) o

where Y(x) = ([x] +1)(x — 1 [x]).
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If o # +f, then equation (2.3) is

. o . Ax+ B
(2.6) Sl )+ 2 =228
B B
The general solution Lj(e_,/z(x — b)) to the homogeneous equation f(x+ 1) +
Ap
B—
o A o+ p

f(x) =0 follows from Lemma 2.1(iii). Obviously, fo(x) =

B a+ﬁx+ o+ p

is a solution of (2.6).

Remark 2.3. Clearly, we see that Lemmas 2.1 and 2.2 are special cases of
Lemma 2.5, when 4 = B=0 and 4 = 0, respectively.

LemmA 2.6 (See [9, Proposition 4.2]). Let f be a meromorphic function of
hyper-order p, < 1. Given d € (0,1 —p,) and c € R, then [ satisfies

m(r, f(x+¢) @ f(x)) = o(T(r, /) /"),

as r approaches to infinity outside of a set of finite logarithmic measure.

3. Value distribution theory of tropical difference polynomials

In this section, we will consider value distribution of tropical difference
polynomial of type /(x)®* ® P(x, f), for « > 0. Yang and Laine [16] posed the
following conjecture in 2010.

CONJECTURE. Let [ be an entire function of infinite order and n>2 be
an integer. Then a differential-difference polynomial of the form f"+ P,_(z, f)
cannot be a non-constant entire function of finite order. Here P,_i(z,f) is a
differential-difference polynomial in f of total degree at most n — 1 in f, its deriva-
tives and its shifts, with entire functions of finite order as coefficients. Moreover,
we assume that all terms of P,_\(z, f) have total degree > 1.

Li and Yang [11] studied the conjecture and obtained the following result.

THEOREM A. Let [ be an entire function of infinite order and n > 2 be an
integer. Suppose that p,(f) <1, then a differential-difference polynomial of the
Jorm "+ P,_(z, f) cannot be a non-constant entire function of finite order, where
P,_1(z,f) is as defined in the conjecture above.

Next, we proceed to consider tropical version of the conjecture. In fact, we
investigate the growth of tropical difference polynomial of type f(x)®* ® P(x, f)
for o > 0. Before proceeding to formulate this result, we need to define tropical
difference Laurent polynomials in a tropical function and its shifts, see [9, p. 899].
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Let 2= (40, 41,...,4n) be a multi-index of real numbers, and consider

S0 =@ flx+6)™
J=0
=dof(xX)+hf(x+c1)+ -+ Anf(x+cm)
with the shifts (0,cy,¢a,...,¢,) € R™T. Then an expression of the form
P(x.f)= @ @)@ f(xw)® = max fa;(x) +> 4 (x+¢)p, =0
seAlP] LeA[P] =
with tropical meromorphic coefficients a;(x) (1 € A[P]), over a finite set A[P] of
real indices, is called a tropical difference Laurent polynomial of total degree
deg(P) := Al(eR
eg(P) := max [|2][(€ R)

in f and its shifts, with [[A]] ;== A0+ 41+ + .
In what follows, we state a tropical counterpart to the conjecture.

THEOREM 3.1. Let o> 0, P(x, f) be a tropical difference Laurent polynomial
with tropical meromorphic functions of finite order as coefficients and deg(P) > 0.
If f(x) is a tropical entire function of infinite order such that p,(f) <1, then
F(x)®* ® P(x, f) cannot be a non-constant tropical meromorphic function of finite
order.

Proof. Suppose G(x):= f(x)®* ® P(x, f) is of finite order. Given r > 0,
let

Sy :={s: f(s)=0,|s|]=r} and S_:={s:f(s) <0,|s] =r},
such that S, US_ = {+r}. Then

(3.1) m(r, P(x, f)) = % (Z P(s, /)" + Z P(s, )+>

Let

For any xe S_, f(x) <0, deg(P) >0,

P(x, f) = max {a;L(X) + zm: A(f(x+¢) = f(x) + |)~||f(X)}

AeA[P) =0

= max {a,()) + max (/(x9¢) © /(x))® + deg(P)/ ()

< o {a; ()} + ma (7 (x 8 0) @ £ (x))*".
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So for se S_, using Lemma 2.6, we see that
+

52 P’ < (muwor) +(m e o)

LeA[P)
<2m (r, Alg/z\iél{al(s)g +2m (r, )21/@()} (f(xwe)o f(x))®;'>

— o(T(r, f)/1") + O()

for some constant x > 0, outside of an exceptional set of finite logarithmic
measure, where 0 <J < 1 — p,.
For any xe S;, f(x) =0, a >0,

G(x) = ()% ® P(x,[) = of (x) + P(x, f) = P(x, [).
When s e S, again using Lemma 2.6, we have
(3.3) P(s, )" < (G(s))" <2m(r,G(x)) = O(r")

for some constant : > 0 as r — o0.
It follows from (3.1)—(3.3) that

(3-4) m(r, P(x, f)) = o(T(r, f)/1") + O(r")

for some constant M = max{x,:} >0, outside of an exceptional set of finite
logarithmic measure, where 0 <J < 1 — p,.
An application of [9, Theorem 6.2] yields

(3-5) m(r, P(x, f)) = deg(P)m(r, f) + o(T(r, ) /r°) + O(r")

for some constant N > 0, outside of an exceptional set of finite logarithmic
measure, where 0 < <1 — p,.

Since f(x) is tropical entire and deg(P) > 0, by combining (3.4) and (3.5),
it follows that

T(r,f)=m(r, f) = o(T(r, )/r’) + O(")

for some constant L = max{M,N} >0, a contradiction.

Remark 3.2. Why we choose the form f(x)®*® P(x,f) rather than
7(x)®" @ P(x, f), that is because f(x)®* @ P(x,f) > of(x) always holds for
o >0, and then the conclusion of Theorem 3.1 is trivial.

Laine, Liu and Tohge [10] investigate the value distribution of a tropical
entire function of type f(x)®*® f(x+c¢), where o >0, and obtained the
following Theorems.

THEOREM B. If f(x) is a non-linear tropical entire function and o > 0, then
F(xX)®*® f(x +¢) must have at least one root.
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THEOREM C. If f(x) is a tropical transcendental entire function and o > 0,
then f(x)®* ® f(x+c) must have infinitely many roots.

We improve Theorems B and C, and prove the results as follows.

THEOREM 3.3. Let A= (Ao, 1,...,4m), Where the J;s are non-negative real
numbers, be a multi-index with respect to the shifts (0,c1,...,cy) € R Let

Fxwe)® = 20f(x) + Af(x+c1) + -+ Anf (X + cm).

If f(x) is a non-linear tropical entire function and o >0, then f(x)®*®
f(xL+Jc)®}' must have at least one root.

Proof. Let

F(x) = f(x)®® f(x5c)®
= (a+240)f(x) + A f(x+ 1)+ 4 dnf(x+ cm).

Suppose F(x) has a pole at xp, say. If f(x) has no root at xo, then f(x) must
have a pole at xo+¢; (j=1,...,m), a contradiction. If (a+ 49)f(x) has a
root at xp, then —(x+ 49)f(x) has a pole at xp, thus, A f(x+c)+---+
Imf (X + cm) = F(x) — (04 A9) f(x) has a pole at xo, then f(x) must have a
pole at xo +¢; (j=1,...,m), a contradiction. Hence, F(x) is tropical entire as
well. Assume that F(x) has no roots. Then F(x) should be a linear function
Ax + B, thus

(o+A)f(x)+f(x+c1)+ -+ Anf(x+cm) = Ax+ B,

where A, B are real constants. Since f(x) is a non-linear tropical entire func-
tion, which implies that (o + 4¢) f(x) has at least one root, say at xo. Then f(x)
must have a pole at xo+¢; (j=1,...,m), a contradiction.

THEOREM 3.4. If f(x) is a tropical transcendental entire function and o > 0,
then f(x)®* Q@ f(xwc)®* must have infinitely many roots, where f(x\c)®* is
defined as Theorem 3.3.

Proof.  As proof of Theorem 3.3, we see that F(x) = f(x)®* ® f(x & 0)®* is
tropical entire. Contrary to the assertion, if F(x) has only finitely many roots,
then F(x) is a tropical polynomial. Let xi,...,x, be its roots. If (x+ o) f(x)
has a root at x such that x; < x < x;;1, then F(x) is linear around x, hence
f(x) must have a pole at x+¢; (j=1,...,m), a contradiction. Therefore, the
only possible roots of f(x) are at {x,..., X, X1 +¢1,.- ., Xp +Clyevey X1+ Comye ey
Xn + ¢m}, implying that f(x) is a tropical polynomial, a contradiction.

Remark 3.5. 1If o <0, Theorem 3.4 is not true. For example, if o = —3,
then the tropical exponential function e;;(x) satisfies —3e;/»(x) + ej2(x) +
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2e1(x+ 1) +4eyp(x+2) =0. This implies that e;,(x)® ® (e)0(x) +
2e1/5(x 4 1) +4ey2(x +-2)) has no roots.

If Z0,41,...,4n <0, Theorem 3.4 is also not true. For example, if o = 3,
the tropical exponential function e;(x) satisfies 3es(x) —ex(x) —lea(x+1) —
ley(x+2) =0. This implies that ex(x)®’ ® (—ea(x) —Lea(x +1) —Les(x +2))
has no roots.

If there are different signs among Ay, 41, ..., 4,, Theorem 3.4 is still not true.
For example, if o = 1, then the tropical entire function ¥(x) (see [10, Proposition
3.22]) satisfies (x) +W(x+1) —2y(x — 1) = 3x+ 1. This implies that (x)®' ®
(Y(x+1)—2¢(x — 1)) has no roots.

The above three examples are also available for Theorem 3.3 and the
functions ey(x), ej/»(x) may be added by a linear function to obtain a non-
vanishing and linear f(x)®* ® f(xw¢)®”, too.

4. Uniqueness theory of tropical entire functions

In this section, we study the uniqueness theory of tropical entire functions.
As regards the uniqueness problems for entire functions, Fang and Hua [2] and
also Yang and Hua [15] obtained some results. We now recall the following
result.

THEOREM D. Let [ and g be non-constant entire functions, and let n > 6
be an integer. If f"f' and g"g' share 1 CM, then either f(z)=cie“ and
g(z) = c2e™, where ¢, ¢ and ¢ are three constants satisfying (cic2)"" ¢ =
or f =tg for a constant t such that t"*' = 1.

Qi, Yang and Liu [12], Theorem 1.2, proposed a difference analogue to the
Theorem D, proving

THEOREM E. Let [ and g be transcendental entire functions of finite order,
and ¢ be a non-zero complex constant. Let n > 6 be an integer. If f"f(z+ ¢)
and g"g(z + ¢) share 1 CM, then fg =1t or f = tag for some constants t, and t
that satisfy 1" =1, i=1,2.

We consider a tropical counterpart to the preceding Theorem E, and obtain
the result as follows.

THEOREM 4.1.  Let f(x) and g(x) be tropical entire functions, a € R be fixed
and suppose that max{f(x)®* @ f(x +1),a} and max{g(x)®* ® g(x + 1),a} have
the same roots with the same multiplicity for all x e R, oo > 0. Then one of the

following three cases holds.
(i) If a =1, then

f(x¥) = =) +§x+%ﬁl/z (4 <0)
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or
- A B—A/2
£ —g(0) =20 + L+ A2,
2 2
if o # 1, then
A
Y a+B_oc+1
F0) = Lafeoslor = b)) + At —— 2L (4 <)
or
_ A
) = 9(x) = Ly(e olx — b)) + —ey + —2E 1
) ) o+ 1 o+1 7
bel0,1), for all x approach to —oo.
(i) If =1, then
A +B—A/2
f0) =20+ Gx+ EZAR 450
or
A B—A/2
J(x) = g(x) =E(x) +Tx+ 2.
2 2
if «#1, then
f(x):Lb(e,m(x—b))+a+1x+ PO (4>0)
or
A
B
4 o+ 1

F0) = g(x) = Lo(eslx = 1)) + S x - —23

bel0,1), for all x approach to +oo.
(iii) If o =1, then

F() = g(x) = B0x) + T4 =

if a1,
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bel0,1), for all x such that |x| is large enough. Here A, B are real numbers,

E(x) is a tropical 2-periodic, anti-1-periodic function, Ly(e_4(x — b)) is as defined
in Lemma 2.1.

Proof. An application of [9, Proposition 7.3] implies, max{f(x)®* ®
f(x+1),a} @ max{g(x)®* ® g(x + 1),a} is linear, then

(4.1) max{f(x)®"® f(x+1),a} = max{g(x)®* ® g(x + 1),a} + Ax + B,

for some real numbers 4, B. As f(x) and g(x) are tropical entire, they cannot
be upper bounded. We consider three cases: case 1, limy_,, f(x) e RU{—00};
case 2, limy,_ ., f(x) e RU{—o0}; case 3, when x — o0, f(x) — +co0.

Case 1. limy_ ;o f(x) eRU{—c0}. In this case, we discuss three sub-
cases: subcase 1.1, lim,_..,, g(x) e RU{—o0}; subcase 1.2, lim,_._ . g(x)e
RU{—o0}; subcase 1.3, when x — 400, g(x) — +o00.

SuBcase 1.1, limy_io f(x) eRU{—00} and lim,. ., g(x) eRU{—c0}.
When x — +o0, it follows from (4.1) that 4 =0. Then for x approaches to
—o0, (4.1) may be written in the form

af (x) + f(x+1) =ag(x) +g(x+ 1)+ B.
Set h(x) = f(x) —g(x). Rewrite the equation above as
oh(x) +h(x+1) = B.

If o =1, it follows from Lemma 2.2(i) that

If o #1, it follows from Lemma 2.2(iii) that

W) = S(0) ~ g(x) = e a(x— ) + <. be 1)

SuBcase 1.2. limy;o f(x) eRU{—00} and lim,, . g(x) e RU{—o0}.
When x — +4o0, it follows from (4.1) that 4 < 0. For x approaches to —oo,
f(x) = +o0 and if g(x) — —oo, then (4.1) takes the form

oaf (x) + f(x+1)=Ax+a+ B.
If o =1, it follows from Lemma 2.5(i) that

A a+B—-A)2

f(x) =E(x) —i—zx + 3
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If o # 1, it follows from Lemma 2.5(iii) that

A
A a+ B—

1T € [0,1).

J(x) = Lo(e—s(x = b)) +

For x approaches to —oo, f(x) — +oo and if lim,__, g(x) eR and also if
og(x) + g(x + 1) < a, the same to the conclusion above. If ag(x) +g(x+1) > a,
then (4.1) takes the form

af (x) + f(x+ 1) =ag(x)+g(x+ 1)+ Ax + B.
Denote /(x) = f(x) — g(x) and rewrite the equation above as
ah(x) + h(x+1) = Ax + B.
If o =1, it follows from Lemma 2.5(i) that

—_ A B—A4/2
M) = £(3) — 9(x) = 20) + 5+ 22
If o # 1, it follows from Lemma 2.5(iii) that
A
— _ — _ A e
M) = £03) = glx) = Lo(ealr—B) + —Zx+—2EL o)

SuBcase 1.3. limy_.o f(x) e RU{—o0} and g(x) — +oo for x — too.
When x — +o0, limy ;o f(x) e RU{—00} and ¢g(x) — +oo, it follows from
(4.1) that 4 <0. For x approaches to —oo, f(x) — 400 and if g(x) — +o0,
rewrite (4.1) as

af (x) + f(x+1)=ag(x)+g(x+ 1)+ Ax + B.
Similarly, we can conclude that

A B—A)2

f(x) —g(x) =E(x) +Ex+ DR for « =1,
and
A B_uﬁl
f(x)—g(x)ZLb(é’fa(X—b))-ﬁ-aJrl)C-&- PR bel0,1), for o # 1.

Case 2. Similar reasoning applies to the case of lim,_,_., f(x) e RU{—w0}.

Case 3. When x — +oo, f(x) — +oco0. In this case, we also take into
account three subcases: subcase 3.1, lim,.,, g(x) e RU{—o0}; subcase 3.2,
lim,_,_, g(x) e RU{—c0}; subcase 3.3, when x — +o0, g(x) — +o0.
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SuBcase 3.1.  When x — +o0, f(x) = 4o and lim,_; g(x) e RU{—0},
it follows from (4.1) that 4 > 0. For x approaches to —oo, f(x) — +oo and if
g(x) — +o0, then (4.1) takes the form

af (x) + f(x+ 1) =ag(x)+g(x+ 1)+ Ax + B.

Solving this equation above, if o =1,

1) - ) =20 + 5o+ 242,
and if o # 1,
B A
f(x)—g(x)=Lb<e,a<x—b>>+aﬁlx+ 2L el

SuBcase 3.2. When x — —o0, f(x) — 400 and lim,_,_, g(x) e RU{—0},
it follows from (4.1) that 4 < 0. For x approaches to +o0, f(x) — +oo and if
g(x) — +oo, then (4.1) takes the form

af (x) + f(x+ 1) = 2g(x) + g(x + 1) + Ax + B.
We can obtain similar conclusion of subcase 1.3.

SuBcase 3.3. When x — +oo, f(x) — 4o and g(x) — 400, it follows
from (4.1) that 4 e R and

af (x) + f(x+ 1) =ag(x) +g(x+ 1) + Ax + B.

We also obtain similar conclusion as above.

5. Applications to ultra-discrete equations

In the final section, we study some ultra-discrete equations. Yanagihara
[14, Theorem '] investigated the difference equation

(5.1) y(z+1) = R(z,¥(2)),

where R(z, y(z)) is a rational function in z and y. If equation (5.1) possesses
a transcendental meromorphic solution y(z) of finite order, then deg, R(z, y(z))
<1l

Halburd and Korhonen [4, p. 197] are concerned with the difference Riccati

equation of the form

A +ey(z)
5.2 z4+1)=——"o7,
(52) yern =510

where A4 is a polynomial, ¢ = +1.
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Grammatics et al. [3, p. 3817] considered d — Py equation

P(yn)
O(yn)’

(5.3) (Yt + Yn)(n + Y1) =

where P(y,) and Q(y,) are polynomials in y,.
In this paper, we consider the ultra-discrete equations

(5.4) y(x+1) = P(y(x)) © O(y(x)),
(5.5) yl+ 1) = max{A, y(x)} 0 max{0, ~y(x)}, (4 #0)
and

(5.6)  max{y(x+1), p(x)} +max{y(x), y(x — 1)} = P(y(x)) @ Q(»y(x)),

where P(y(x)) and Q(y(x)) are tropical polynomials in y(x) with no common
roots. We mainly investigate the tropical meromorphic solutions of ultra-discrete
equations (5.4)—(5.6) and obtain the results as follows.

THEOREM 5.1.  Let P(y) =max{ao +koy, a1 +kiy,...,a, +k,y} and Q(y) =
max{bo + loy,b1 + liy,..., by + l,y} be two tropical polynomials with no common
roots, and a;,b;, ki, l; (i=0,1,...,p,j=0,1,...,q) be real numbers such that
O<ky<hki<---<k,and 0<Ily <l <---<l, If equation (5.4) admits such
a tropical meromorphic solution f(x) that is sufficiently large for all x larger than
some number K, then f(x) may be represented in the following forms for all x > k:

if ky—1,=1, then
f(x) =I1(x) + (a, — by)x when a, > b, and
if ky—1,>1, then

Zﬂmek 1, (X = bp) + I—(k[iql) bnel0,1) and p,>0,m=1,...,r

If equation (5.4) admits such a tropical meromorphic solution f(x) that is suffi-
ciently large for all x less than some number 1, then f(x) may be represented in the
following forms for all x < 1

if ky —1, =1, then
f(x) =II(x) + (a, — by)x when a, < b, and
if 0<k,—1, <1, then

N _b
x) = Vnk,—1,(X — Cu) +———=~, ¢, €[0,1) and y,>0,n=1,....s
2 1)

Here TI(x) is a tropical 1-periodic function.
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Proof. 1If y is sufficiently large for all x larger than some number x, then
(5.4) reduces to

Yx 1) = (ky = lg) y(x) +ap = by,

for all x > «, and k, > I;, otherwise, which yields a contradiction. If k, — /[, =1,
it follows from Lemma 2.2(ii) that

S(x) = T(x) + (a — by)x.

When g, > b,, then f(x) can be a tropical meromorphic solution of equation
(5.4). If k, —1,> 1, it follows from Lemma 2.2(iii) that

! a, —b
f X) = ﬁmekp—lq X — bm +Aa
()= 2 Pl 6= bo) + T 25

Since f(x) is sufficiently large for all x > k, then f,, > 0.
Similarly, if y is sufficiently large for all x less than some number :, then
(5.4) reduces to

bnel0,),m=1,...r.

y(x+1) = (k, = l,)y(x) +a, — by,

for all x <1, and k, > [,, otherwise, which yields a contradiction. If k, — /[, =1,
then

f(x) =I(x)+ (ap, — by)x, a, < b,.
If 0 <k,—1; <1, then

s a, —b
f’ x) = ynekp*]q X — C}’l) + A7
()= 2 i =1,

an€el01),y,>0,n=1,...,s.

THEOREM 5.2. Let A be a non-zero real number. Then the equation (5.5)
admits a non-constant tropical meromorphic solution f of the form f(x) = TIl(x),
when and only when f satisfies f(x) > max(4,0) on R. Here Il(x) is a tropical
1-periodic function.

Proof. 1If f is a non-constant tropical meromorphic solution of (5.5) and
satisfies f(x) > max(4,0) on R, then f(x) > A(#0), f(x) >0 and —f(x) <0.
Rewrite (5.5) as f(x+ 1) = f(x), by Lemma 2.1(i), we have f(x)=II(x).

If (5.5) admits a non-constant tropical meromorphic solution f of the form
f(x) =TI(x), then f(x+1)=TI(x+ 1) =TI(x). It follows from (5.5) that

max{A4,I1(x)} = II(x) + max{0, —II(x)} = max{II(x),0}.

Since 4 # 0, from the equality above, we have I1(x) > max(4,0) on R.

THEOREM 5.3. Let P(y) = max{ao+ koy,a1 +kiy,...,a,+k,y} and Q(y) =
max{bo + loy,b1 + hy,...,by+1,y} be two tropical polynomials with no common
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roots, and a;,b;, ki, l; (i=0,1,...,p,j=0,1,...,q) be real numbers such that
O0<ko<hki<---<k,and 0<ly<ly <---<l, If equation (5.6) admits such
a tropical meromorphic solution f(x) that is sufficiently large for all x larger than
some number i, then f(x) may be represented in the following forms for all x > k:

if ky—1, =2, then
f(x) =1I(x) + (a, — by)x when a, > b, and
if ky—1,>2, then

Zﬁ e_ k,, lL, x b )

m=
ap — by
Tty — 7 v
2- (kp - lq)
If equation (5.6) admits such a tropical meromorphic solution f(x) that is suffi-

ciently large for all x less than some number 1, then f(x) may be represented in the
following forms for all x < 1.

if ky—1,=2, then
f(x) =II(x) — (a, — by)x when a, > b, and
if ky =1, > 2, then

bnel0,1),5,>0,m=1,....r

ap — by , _
Zyne 1/ (= (k1)) (X — n)+m7 awel01),7,>0,n=1,...s

If equation (5.6) admits such a tropical meromorphic solution f(x) that is suffi-
ciently large for all x larger than some number K or less than some number 1, then
f(x) may be represented in the following forms for all x >k or x <

if ky—1,=2, then
f(x) = l:I(x) + O (x, IT) + T1(0)x + (a, — by)(Y(x) — x) when a, > b,,
where

O 1) = (TIGH) ~ T10) and ) = (1 + 1) (x - 3 )

if ky—1,>2, then

! s a,—b
= Mmeu(X = b) + Vne/f(x — ) + Aa
2 2 1)

bnel0, 1), u,>0,m=1,....r,¢,€[0,1), v, >0,n=1,....s,

where o, B are the roots of J* — (k, —1,)A+1=0. Here TI(x), TI(x) are tropical
1-periodic functions.
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Proof. 1If y is sufficiently large for all x larger than some number x, then
(5.6) reduces to y(x+1)+ y(x) = (k, — ;) y(x) +a, — b, for all x>x, and
ky, > 1l;, otherwise, which yields a contradiction.

When y(x+1) + y(x) = (k, — ;) y(x) +a, — by, k, — I, # 1, or else y(x) is a
constant. If k, — [, =2, then y(x+ 1) — y(x) = a, — b, it follows from Lemma
2.2(ii) that

S(x) =T(x) + (a — by)x.

When g, > b,, then f(x) can be a tropical meromorphic solution of equation
(5.6). If k, —1,# 1,2, by Lemma 2.2(iii), we have

f(x) = Zﬁm&(p(krm)(x — b))
m=1

a, — by,

+ g,
2= (kp = 1y)

bnel0,1),5,>0,m=1 ... r
Since f(x) is sufficiently large for all x > x, then —(1 — (k, — [,)) > 1, i.e. k, — [,
> 2.

Similarly, if y is sufficiently large for all x less than some number :, then
(5.6) reduces to y(x)+ y(x—1) = (k, —l;)y(x)+a, — b, for all x<i, and
k, > l;, otherwise, which yields a contradiction.

When y(x) + y(x — 1) = (k, — ;) y(x) +a, — by, k, —I; # 1, or else y(x —1)
is a constant. If k, —/, =2, then

f(x) =II(x) — (a, — by)x when a, > b, and
if k, —1, #1,2, then

J a,—b
f(x) = Zynefl/(lf(kpfl{/))(x_ Cn) +%7 Cph € [Oa l)a n > 07 n= 17 s S
n=1 2_( 72 l])

Since f(x) is sufficiently large for all x <, then 0 < —ﬁ

ky —1, > 2. — (K —1y)
If y is sufficiently large for all x larger than some number x or less than

some number 7, then (5.6) reduces to y(x+ 1)+ y(x—1) = (k, — I,) y(x) +a, —

by for all x>k or x <1, and k, > [,, otherwise, which yields a contradiction.
When

(5.7) Yx+1) +y(x = 1) = (ky = ) y(x) + ap — by,
if k, — 1, =2, following the ideas in [10, pp. 934-935], then

J(x) = T(x) + ®(x, TT) + T1(0)x + (ap — by) (Y(x) — x),

<1, ie.

where

O(x,I) := [x](TI(x) — T1(0)) and Y(x) = ([x]+1) (x - % [x])
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When g, > b,, then f(x) can be a tropical meromorphic solution of equation
(5.6).

Let fi(x) = f(x) %, then (5.7) can be rewritten as
» g

Nilx+1) = (kg = ) fi(x) + filx = 1) = 0.
If k, — 1, > 2, an application of [9, Theorem 10.1(iii)] yields

A0 = D tealx = ba) + > el — ) = f(x) = 52—
m=1 n=1

bnel0, 1), 4, >0,m=1,....r,¢,€[0,1),v,>0,n=1,....s,
then
ap — by

1) = Y tnenlx = ) 4 3 menlx — ) + £
=1 P q

m=1

where o, 8 are the roots of 2* — (k, —1,)A+1=0. If 0 <k, 1, <2, following
the ideas in [9, p. 918], we have
cos(0[x])(cos 0 — 1) + sin(0[x]) sin 0

2(1 — cos 6) ’

Ji(x) = cos(0[x]) (x — [x]) +

or
sin(0[x])(cos § — 1) — cos(0[x]) sin O

2(1 — cos ) ’
which implies fi(x) is kept bounded as x >x or x < then f(x)= fi(x)+

ap — by
2—(ky—1y)

Si(x) = sin(0[x]) (x — [x]) +

is also kept bounded as x > x or x <, a contradiction.
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