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DEGENERATION OF PERIOD MATRICES OF STABLE CURVES

Yu Yang

Abstract

In the present paper, we study the extent to which linear combinations of period

matrices arising from stable curves are degenerate (i.e., as bilinear forms). We give a

criterion to determine whether a stable curve admits such a degenerate linear combi-

nation of period matrices. In particular, this criterion can be interpreted as a certain

analogue of the weight-monodromy conjecture for non-degenerate elements of pro-l log

étale fundamental groups of certain log points associated to the log stack M log
g .
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Introduction

The anabelian geometry of hyperbolic curves concerns the problem of recon-
structing hyperbolic curves from their fundamental groups. In order to under-
stand these fundamental groups, many techniques of algebraic geometry are
applied. On the other hand, in the case of stable curves over algebraically closed
fields, an introduction of some ideas of a combinatorial nature allows one to
prove some results in much greater generality under very weak hypotheses (cf. [6],
[7], [15], [16]). By applying this point of view, we are able to discuss not only
phenomena that arise scheme-theoretically but also phenomena that arise purely
group-theoretically. Before we explain the main question that motivated the
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theory developed in the present paper, let us recall some basic facts concerning
period matrices.

Let X be a stable curve of genus g over an algebraically closed field k, GX

the dual graph of X , and l0 charðkÞ a prime number. Then one has a natural
exact sequence of free Zl-modules (cf. [15] Definition 1.1 (ii) and [15] Remark
1.1.3)

0!M ver
X !MX !M

top
X ! 0;

where MX :¼ pl-adm
1 ðXÞab, M

top
X :¼ pl

1 ðGX Þab, M ver
X :¼ Imð0

v A vðGX Þ p
l
1 ðXvn

NodeðX ÞÞab !MX Þ (cf. Notations and the beginning of Section 2.1), and
NodeðX Þ denotes the set of nodes of X . The stable curve X determines a mor-
phism from s :¼ Spec k to the moduli stack Mg, and the pull-back log structure
of the natural log structure on Mg determines a log structure on Spec k; denote
the resulting log scheme by s log which admits a chart ðSpec k;0

e A eðGX ÞNÞ.
The pro-l log étale fundamental group pl

1 ðs logÞ is naturally isomorphic to
0

e A eðGX ÞZlð1Þ. Therefore, we obtain a natural action of 0
e A eðGX Þ Zlð1Þ on

the extension 0!M ver
X !MX !M

top
X ! 0. This extension determines an ex-

tension class ½MX �, which may be regarded as a homomorphism, which we refer
to as the pro-l period matrix morphism of X (cf. Proposition 2.3, Definition 2.4,
and the surrounding discussion)

fX : pl
1 ðs logÞG 0

e A eðGX Þ
Zlð1Þ ! HomðM top

X nM
top
X ;Zlð1ÞÞ:

For each element a A 0
e A eðGX ÞZlð1Þ, we refer to fX ðaÞ as the pro-l period matrix

associated to a.
If a ¼ ðaeÞe A 0

e A eðGX ÞZlð1Þe is a positive definite element (cf. Definition

2.5), then the closed subgroup generated by a can be regard as the image of
the maximal pro-l quotient of the inertia group of a p-adic local field (cf. the
discussion after Remark 2.5.1). Thus, by applying Faltings-Chai’s theory (or
the weight-monodromy conjecture for curves), we know that the pro-l period
matrix fX ðaÞ is positive definite, hence also non-degenerate. This non-degeneracy
property of pro-l period matrices is the most non-trivial part in S. Mochizuki’s
proof of the combinatorial version of the Grothendieck conjecture (¼ ComGC)
for semi-graphs of anabelioids in the case of outer representations of IPSC-type
(cf. [15] Corollary 2.8). More precisely, Mochizuki proved that the pro-l period
matrix associated to a positive definite element of any finite admissible covering
X 0 ! X of X is non-degenerate. Moreover, Mochizuki gave a criterion to deter-
mine whether or not an isomorphism between fundamental groups of semi-graphs
of anabelioids that is compatible with the respective outer Galois actions by
inertia groups is graphic (i.e., the isomorphism preserves verticial subgroups
and edge-like subgroups). By considering the pro-l log étale fundamental groups
which arise from cusps and applying the ComGC in the IPSC-type case,
Mochizuki gave an algebraic alternative proof of an injectivity theorem in the
a‰ne case due to M. Matsumoto (cf. [16]). But if one wants to extend Matsu-
moto’s theorem to the projective case, it is natural to attempt to prove the
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ComGC in the case of outer representations of NN-type case (i.e., the outer
Galois action arising from a non-degenerate (¼ all the coordinates of the ele-
ment are nonzero) a ¼ ðaeÞe A 0

e A eðGX Þ Zlð1Þ (cf. [6] Definition 2.4 (iii))). On
the other hand, if one attempts to imitate the proof of the ComGC in the IPSC-
type case, one has to consider whether or not the pro-l period matrix arising
from a node is non-degenerate. Y. Hoshi and S. Mochizuki proved a version of
the ComGC in the NN-type case under certain assumptions. By applying this
version of the ComGC, they successfully extended the injectivity theorem to the
projective case (cf. [6]).

More generally, in the theory of combinatorial anabelian geometry, in order
to extend results (e.g., the ComGC) in the IPSC-type case to the NN-type case,
one has to consider whether or not the pro-l period matrix arising from a non-
degenerate element of pl

1 ðs logÞG0
e A eðGX ÞZlð1Þ is degenerate. It is di‰cult to

determine in general whether or not the pro-l period matrix associated to a given
non-degenerate element is degenerate. But at least we can ask which stable
curves admit a non-degenerate element that gives rise to a degenerate pro-l period
matrix. This question may be formulated as follows:

Question 0.1. Does there exist a criterion to determine whether or not
the given stable curve X admits an element a ¼ ðaeÞe A 0

e A eðGX ÞZlð1Þ such that

ae 0 0 for each e and, moreover, the pro-l period matrix fX ðaÞ is degenerate?

Our main theorem of the present paper is a criterion as follows (cf. Theorem
2.9):

Theorem 0.2. Let X be a stable curve over an algebraically closed field k
and GX the dual graph of X. Then X is a pro-l period matrix degenerate curve
(cf. Definition 2.6) if and only if the maximal untangled subgraph G�

X (cf. Definition
2.8) of GX is not a tree (i.e., rðG�

X Þ :¼ rankðH1ðG�
X ;ZÞÞ0 0).

The weight-monodromy conjecture for curves may be formulated as the
assertion that the pro-l period matrix associated to an element of the inertia
group associated with every stable curve is non-degenerate. Thus, our main
theorem may also be interpreted as a certain analogue of the weight-monodromy
conjecture for non-degenerate elements of pl

1 ðs logÞ (cf. Corollary 2.11).
In Section 1, we recall some basic facts concerning log structures and log

étale fundamental groups of stable curves.
In Section 2, we discuss the topic of degeneracy of pro-l period matrices

of stable curves and prove Theorem 0.2. Finally, we explain the relationship
between Theorem 0.2 and the weight-monodromy conjecture.
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Notations

Numbers:
If k is a field, we shall write ðcharðkÞ; nÞ ¼ 1 if charðkÞ and n are relatively

prime or charðkÞ ¼ 0. Write Z for the ring of rational integers, and Q for the
rational field. We always use the notation l to denote a prime number such that
l0 charðkÞ. The notations Zl and Ql denote the l-adic completions of Z and
Q, respectively.

Curves and their moduli stacks:
Let r and g be non-negative integers such that 2g� 2þ r > 0. A pointed

stable curve ðX ;DX Þ of type ðg; rÞ over a scheme S consists of a flat, proper
morphism p : X ! S, together with a set of r distinct sections DX :¼ fsi : S !
Xgri¼1 such that for each geometric point s of S:

(i) The geometric fiber Xs is a reduced and connected curve of genus g with
at most ordinary double points (i.e., nodes).

(ii) Xs is smooth at the points of siðsÞ ð1a ia rÞ.
(iii) siðsÞ0 sjðsÞ for i0 j.
(iv) For every nonsingular rational component E of Xs, the sum of the

number of points of E where E meets another component of Xs and the number
of points in fsiðsÞgri¼1 included in E is at least 3.

Let ðX ;DX Þ be a pointed stable curve of type ðg; rÞ over S. We shall call
DX the set of marked points of ðX ;DX Þ and X the underlying scheme of ðX ;DX Þ.
We shall say that ðX ;DX Þ is smooth if the morphism of schemes p : X ! S is
smooth. We shall say that ðX ;DX Þ is a stable curve over S if DX ¼ j (i.e.,
r ¼ 0). If ðX ;DX Þ is a stable curve over S, for simplicity we also use the nota-
tion X to denote the pointed stable curve ðX ;DX Þ.

Let Mg; r be the moduli stack of pointed stable curves of type ðg; rÞ over
Spec Z (cf. [10]) and Mg; r the open substack of Mg; r parametrizing pointed
smooth curves with the natural open immersion j : Mg; r !Mg; r. Then M log

g; r is
the log stack obtained by equipping Mg with the natural log structure asso-
ciated to the divisor with normal crossings Mg; rnMg; r �Mg; r relative to Spec Z
(i.e., the log structure determined by the sheaf of monoids j�O

�
Mg; r
\ OMg; r

). Let

Xg; r !Mg; r be the underlying stack of the universal pointed stable curve over

Mg; r. It is shown in [10] that Xg; r may be naturally identified with Mg; rþ1. Let
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us denote by X log
g; r the log stack obtained by pulling back the log structure on

M
log
g; rþ1 relative to this identification. Thus, we obtain a morphism of log stacks

X log
g; r !M log

g; r . In particular, if r ¼ 0 (i.e., in the stable curve case), we use the

notation Mg (resp. M log
g , Xg, X log

g ) to denote Mg;0 (resp. M
log
g;0 , Xg;0, X

log
g;0 ).

For more details on stable curves, pointed stable curves and their moduli
stacks, see [3], [10].

Galois categories and their fundamental groups:
We denote the Galois categories of finite étale, finite Kummer log étale, and

finite admissible coverings of ‘‘ð�Þ’’ by Covð�Þ, Covðð�Þ logÞ, and Covadmð�Þ,
respectively. For any Galois category ð�Þ, write ð�Þl for the subcategory of ð�Þ
defined as follows: (i) the objects of ð�Þl are either empty object or the objects
of ð�Þ such that the Galois groups of their Galois closures are l-groups; (ii) for
any A;B A ð�Þl, Homð�Þ lðA;BÞ :¼ Homð�ÞðA;BÞ.

The notations p1ð�Þ; p1ðð�Þ logÞ, and padm
1 ð�Þ will be used to denote the

étale, log étale, and admissible fundamental groups of ‘‘ð�Þ’’, respectively; the
notations pl

1 ð�Þ, pl
1 ðð�Þ

logÞ, and pl-adm
1 ð�Þ will be used to denote the pro-l étale,

pro-l log étale, and pro-l admissible fundamental groups, respectively (i.e., the
maximal pro-l quotients of p1ð�Þ, p1ðð�Þ logÞ, and padm

1 ð�Þ, respectively); the
notation ð�Þab denotes the abelianization of a profinite group ð�Þ (i.e., the quo-
tient of ð�Þ by the closure of the commutator subgroup of ð�Þ).

For more details on Kummer log étale coverings, admissible coverings, log
admissible coverings, and their fundamental groups for pointed stable curves, see
[8], [13], [18].

1. Review of log étale fundamental groups of stable curves

In this section, we recall some basic facts concerning log structures and log
étale fundamental groups of stable curves.

1.1. Log structures on stable curves
In this subsection, we will recall some basic facts concerning log structures of

stable curves; for generalities on log schemes, see [8], [9].
Let X be a generically smooth stable curve over a complete discrete valua-

tion ring ðR;mRÞ with algebraically closed residue field k :¼ R=mR and p a
uniformizer of R. Write K for the quotient field of R and Xs (resp. Xh) for the
special fiber (resp. generic fiber) of X over R. Then the stable curve X ! S2 :¼
Spec R induces a morphism fX : S2 !Mg �Z R. The completion of the local
ring of Mg �Z R at the point fXs

: s :¼ Spec k !Mg �Z R is isomorphic to
R[t1; . . . ; t3g�3], where the t1; . . . ; t3g�3 are indeterminates (cf. [3]).

If we denote the number of nodes of Xs by m and assign labels i ¼ 1; . . . ;m
to each of the nodes, then the completion of the local ring of X at the node
labeled i is isomorphic to R[xi; yi]=ðxi yi � pni ), and the indeterminate ti may be
chosen so as to correspond to the deformations of the node of Xs labeled i.
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Then the log structure on S1 :¼ Spec R[t1; . . . ; tm; tmþ1; . . . ; t3g�3] induced by the
log structure of M log

g �Z R may be described as the log structure associated to the
following chart:

Nm ! R[t1; . . . ; tm; tmþ1; . . . ; t3g�3];

where ðaiÞi 7!
Q

iam taii . We denote the resulting log scheme by S
log
1 . More-

over, we also obtain a log structure on the closed point of S1 by restricting the
log structure of S

log
1 ; we denote the resulting log scheme by s

log
1 . On the other

hand, the closed point of S2 determines a log structure on S2, which admits a
chart

N! R

1 7! p:

We denote the resulting log scheme by S
log
2 . Write s

log
2 for the log scheme

obtained by restricting the log structure of S
log
2 to the closed point of S2. Thus,

we obtain a cartesian commutative diagram

X
log
2 ���! X

log
1 ���! X log

g???y
???y

???y
S

log
2 ���! S

log
1 ���! M log

g

—where X
log
1 (resp. X

log
2 ) is defined so as to render the right-hand (resp. left-

hand) square in the diagram cartesian; the underlying scheme of X
log
1 (resp. X

log
2 )

may be identified with Xg �Mg
Spec R[t1; . . . ; t3g�3] (resp. X ); for suitable choices

of the indeterminates t1; . . . ; tm, the lower horizontal arrow in the left-hand square
of the diagram may be described as follows: the morphism of underlying schemes
is

S2 ¼ Spec R! S1 ¼ Spec R[t1; . . . ; t3g�3]

pni 7!

ti ð1a iamÞ
0

7!

tj ðmþ 1a ja 3g� 3Þ;

and the morphism of charts is

N NmX
i

aini

7!ðaiÞ:

Note that S
log
1 and S

log
2 are log regular.

1.2. Log étale fundamental groups
For more details on the definition of the notion of a finite Kummer log

étale covering, see [8] Section 3. Let Y log be a connected fs log scheme and let
y log ! Y log be a strict geometric point (cf. [5] Section 2, Definition 1). Then
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there is a natural log geometric point ~yy log ! Y log, which is constructed as in [8]
p284, associated to y log ! Y log. We shall call ~yy log ! Y log the strict log geo-
metric point associated to y log ! Y log. Note that there is a natural morphism of
log schemes ~yy log ! y log which induces the identity on the underlying schemes.
Then the strict log geometric point ~yy log ! y log determines an associated log étale
fundamental group p1ðY logÞ.

Let l be a prime number that is 0 charðkÞ. For a proof of the following
specialization theorem for log étale fundamental groups, see [18] Theorem 2.2.

Proposition 1.1. Suppose that X
log
2 is as above. Let h :¼ Spec K ! Spec K

be a geometric point of Spec K. Write K t for the maximal tamely ramified
extension of K in K , RK t for the integral closure of R in K t, h t :¼ Spec K t,

ðSpec RK tÞ log for the log scheme obtained by equipping Spec RK t with the log
structure determined by the sheaf of nonzero regular functions, and ~tt log2 for the log
scheme

Spec k �Spec RK t ðSpec RK tÞ log

—where we identify the residue field of RK t with k. Thus, we obtain a natural
strict log geometric point ~tt log2 ! S

log
2 induced by h. Write ~ss log2 ! S

log
2 for the

strict log geometric point associated to s
log
2 ! S

log
2 . Note that ~tt log2 ! S

log
2 is iso-

morphic to ~ss log2 ! S
log
2 . Then there is a natural isomorphism between the pro-l log

étale fundamental groups at the respective fibers of X
log
2 over h and ~ss log2 , which is

well-defined up to composition with an inner automorphism, as follows:

pl
1 ððX

log
2 ÞhÞG pl

1 ððX
log
2 Þh tÞ ! pl

1 ððX
log
2 Þ~ss log

2

Þ :¼ lim �
l

pl
1 ðX

log
2 �

S
log
2

ðs log2 ÞlÞ;

where the projective limit is over all reduced covering points ðs log2 Þl ! s
log
2 (cf. [5]

Definition 1 (ii)).

Next, let Ui, i ¼ 1; 2, be the interior (i.e., the largest open subset (possibly
empty) of the underlying scheme of a log scheme on which the log structure is

trivial) of S log
i . Write Xi, i ¼ 1; 2, for the underlying scheme of X log

i . For any
ui A Ui, by the l-adic stable reduction criterion, we obtain that the image of the
natural morphism p1ðUiÞ ! AutðH1

�eetðXi �Si
ui;FlÞÞ arising from Xi �Si

Ui ! Ui is
an l-group, where ui is a geometric point over ui. Thus, [17] Proposition 2.2 (iii)
implies the following exact sequence:

1! pl
1 ðXi �Si

uiÞ ! pl
1 ðXi �Si

UiÞ ! pl
1 ðUiÞ ! 1:

Since, for i ¼ 1; 2, S log
i is a log regular log scheme, by applying the theorem of

log purity and the deformation theory of log schemes (cf. [5] Section 4, Corollary
1), we obtain a homotopy exact sequence as follows:

Corollary 1.2. Suppose that X
log
i ! S

log
i , where i A f1; 2g, is the morphism

discussed above. Let s
log
i ! S

log
i be the strict geometric point defined in Section
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1.1, and ~ss logi ! S
log
i the strict log geometric point associated to s

log
i ! S

log
i . Then

the following sequence is exact:

1! pl
1 ððX

log
i Þ~ss log

i

Þ :¼ lim �
l

pl
1 ðX

log
i �

S
log
i

ðs logi ÞlÞ ! pl
1 ðX

log
i �

S
log
i

s
log
i Þ ! pl

1 ðs
log
i Þ ! 1;

where the projective limit is over all reduced covering points ðs logi Þl ! s
log
i (cf. [5]

Definition 1 (ii)).

On the other hand, there is a classical scheme-theoretic description of the
group pl

1 ððX
log
i Þ~ss log

i

Þ that does not require one to apply the theory of log schemes,
namely, by means of the pro-l admissible fundamental group. We use the nota-
tion pl-adm

1 ðXsÞ to denote the pro-l admissible fundamental group of the special
fiber Xs. We have a proposition as follows.

Proposition 1.3. Let i A f1; 2g. Suppose that Xs, X
log
i , and ~ss logi are as in

Corollary 1.2. Fix a strict log geometric point ~xx log
i ! ðX

log
i Þs log

i

:¼ X
log
i �

S
log
i

s
log
i

associated to a strict geometric point whose image is a smooth point of the

underlying scheme of ðX log
i Þsi . Then there is a natural isomorphism of fundamental

groups, which is well-defined up to composition with an inner automorphism, as
follows:

pl-adm
1 ðXsÞG pl

1 ððX
log
i Þ~ss log

i

Þ

—where pl
1 ð�Þ is taken with respect to the base point determined by the strict log

geometric point ~xx log
i ! ðX

log
i Þs log

i

; pl-adm
1 ð�Þ is taken with respect to the base point

determined by the morphism of underlying schemes of ~xx log
i ! ðX

log
i Þs log

i

.

Proof. Write ðs1Þ logn (resp. ðs2Þ logn ) for the log scheme determined by the
morphism of monoids

1

n
�Nm ! k

a0 0 7! 0

0 7! 1

(resp.

1

n
�N! k

a0 0 7! 0

0 7! 1Þ;

where n is a positive integer such that ðcharðkÞ; nÞ ¼ 1. If n 0 and n 00 are positive
integers such that n 0 divides n 00, then we consider the morphism of log schemes

ðs1Þ logn 00 ! ðs1Þ
log
n 0 (resp. ðs2Þ logn 00 ! ðs2Þ

log
n 0 ) determined by the morphism of monoids
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1

n 0
�Nm ! 1

n 00
�Nm

a 7! a

(resp.

1

n 0
�N! 1

n 00
�N

a 7! aÞ:

If we allow n 0 and n 00 to vary, then these morphisms determine an inductive
system, and the reduced log scheme associated to the inductive limit is easily

seen to be isomorphic to ~ss log1 (resp. ~ss log2 ). In the following, we shall fix one
such isomorphism, which we shall use to identify this inductive limit with ~ss log1
(resp. ~ss log2 ).

To complete the proof of the proposition, it su‰ces to construct, in a
natural way, an equivalence between the Galois categories CovadmðXsÞl and

CovððX log
1 Þ~ss log

1

Þl (resp. CovððX log
2 Þ~ss log

2

Þl). Here, we note that CovððX log
1 Þ~ss log

1

Þl

(resp. CovððX log
2 Þ~ss log

2

Þl) may be identified with lim�! n CovððX log
1 Þ �s log

1

ðs1Þ logn Þ
l (resp.

lim�! n CovððX log
2 Þ �s log

2

ðs2Þ logn Þ
l). Since any finite Kummer log étale covering

of ðX log
1 Þ �s log

1

ðs1Þ logn (resp. ðX log
2 Þ �s log

2

ðs2Þ logn ) determines a multi-log admissible

covering (i.e., a disjoint union of log admissible coverings) after base-change to
ðs1Þ logm (resp. ðs2Þ logm Þ for some su‰ciently large positive integer m, the proposition
follows immediately from [12] Proposition 3.11. r

Remark 1.3.1. The isomorphism pl-adm
1 ððX2ÞsÞG pl

1 ððX
log
2 Þ~ss log

2

Þ can be also

deduced by applying the log purity theorem, the specialization theorem for log
étale fundamental groups, and the specialization theorem for admissible funda-
mental groups.

2. Degeneration of period matrices of stable curves

In this section, let k be an algebraically closed field.

2.1. Pro-l period matrices of stable curves and their functorial properties
In this subsection, we give the definition of the pro-l period matrix mor-

phism associated to a stable curve over k.
Let X be a stable curve of genus g over k. Write GX for the dual graph

of X , vðGX Þ for the set of vertices of GX , eðGX Þ for the set of edges of GX ,
and PX :¼ pl-adm

1 ðXÞ for the pro-l admissible fundamental group of X . We use
the notation Xv to denote the irreducible component of X corresponding to
v A vðGX Þ. Thus, for each v A vðGX Þ, Uv :¼ XvnNodeðXÞ is an open subscheme
of Xv, where NodeðXÞ denotes the set of nodes of X ; the pro-l étale fundamental
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group of Uv, which we denote by Pv :¼ pl
1 ðUvÞ, may be regarded as the decom-

position group � PX (which is well-defined up to PX -conjugation) associated
to Xv (cf. [14] Proposition 2.5 and [14] Example 2.10). For e A eðGX Þ, write
Pe ðGZlð1ÞÞ for the decomposition group � PX (which is well-defined up to
PX -conjugation) associated to the node corresponding to e. Write pl

1 ðGX Þ for
the pro-l completion of the topological fundamental group of the dual graph GX .
Finally, we use the notation MX (resp. M top

X , M ver
X , M edge

X ) to denote the abelia-
nization of PX (resp. the abelianization of pl

1 ðGX Þ, Imð0
v A vðGX ÞP

ab
v !MX Þ,

Imð0
e A eðGX ÞP

ab
e !MX Þ).

By the definitions given above, we obtain a filtration as follows:

0 �M
edge
X �M ver

X �MX :

Moreover, there are two natural exact sequences:

0!M ver
X !MX !M

top
X ! 0;

0!M
edge
X !M ver

X !M ver
X =M edge

X ! 0:

For more details on the first exact sequence, see [15] Definition 1.1 and [15]
Remark 1.1.4. Furthermore, we have the following proposition which can be
proved by using the structure of Picard schemes of stable curves (cf. [1] Section
9.2, Example 8) and the theory of Raynaud extensions (cf. [4] Chapter II, Section
1). On the other hand, for a purely group-theoretic proof, see [6] Lemma 1.4.

Proposition 2.1. For v A vðGX Þ, write X 0v for the normalization of Xv, JðX 0v Þ
for the Jacobian of X 0v , and ðDcpt

v Þ
ab

for the pro-l étale fundamental group of JðX 0v Þ
(i.e., the l-adic Tate module associated to JðX 0v Þ). Then, we have

M ver
X =M edge

X G 0
v

ðDcpt
v Þ

ab:

The stable curve X ! Spec k determines a classifying morphism Spec k!Mg

to the moduli stack Mg. Thus, we obtain a log structure on Spec k, naturally
associated to the stable curve X , by restricting the log structure of M log

g ; denote
the resulting log scheme by s

log
X . Thus, we have an isomorphism I

s
log
X

:¼ pl
1 ðs

log
X Þ

G0
e A eðGX Þ Zlð1Þe. We also obtain a stable log curve (for the definition of

stable log curves, see [7] Section 0) X log :¼ X log
g �

M
log
g

s
log
X over s

log
X whose under-

lying scheme is X . Furthermore, there are natural actions of I
s
log
X

on the exact

sequences 0!M ver
X !MX !M

top
X ! 0 and 0!M

edge
X !M ver

X !M ver
X =M edge

X

! 0. Denote the extension class corresponding to MX by

½MX � A Ext1I
s
log
X

ðM top
X ;M ver

X Þ:

By [11] Example 0.8, there is a spectral sequence converging to

ExtpþqI
s
log
X

ðM top
X ;M ver

X Þ
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whose E2-term is given by HpðI
s
log
X

;ExtqZðM
top
X ;M ver

X ÞÞ. In particular, we obtain a
long exact sequence as follows:

0! H1ðI
s
log
X

;HomZðM top
X ;M ver

X ÞÞ ! Ext1I
s
log
X

ðM top
X ;M ver

X Þ

! H0ðI
s
log
X

;Ext1ZðM
top
X ;M ver

X ÞÞ:

Since MX , M
top
X , M ver

X , M
edge
X are free Zl-modules of finite rank, we thus

conclude that the morphism H1ðI
s
log
X

;HomZðM top
X ;M ver

X ÞÞ ! Ext1I
s
log
X

ðM top
X ;M ver

X Þ is
an isomorphism. Thus, the extension class ½MX � may be regarded as an element
of H1ðI

s
log
X

;HomZðM top
X ;M ver

X ÞÞ.
Here, we observe that, for any two finitely generated free Zl-modules M, N,

we have natural isomorphisms

HomZðM;NÞG lim �
n

HomZ=l nZðM=lnM;N=lnNÞGHomZl
ðM;NÞ:

Thus, we shall use the notation Homð�;�Þ to denote HomZl
ð�;�Þ.

Proposition 2.2. In the notation of the above discussion, the actions of I
s
log
X

on M
top
X , M ver

X , M
edge
X , and MX=M

edge
X are trivial.

Proof. First, we have two exact sequences as follows:

0!M
edge
X !MX !MX=M

edge
X ! 0

and

0!M ver
X !MX !M

top
X ! 0:

By the Poincaré duality (cf. [15] Proposition 1.3), we have natural isomorphisms

M
edge
X GHomðM top

X ;Zlð1ÞÞ
and

M ver
X GHomðMX=M

edge
X ;Zlð1ÞÞ:

Thus, to complete the proof of our proposition, it su‰ces to show (since
M

edge
X �M ver

X , and I
s
log
X

acts trivially on Zlð1Þ) that the action of I
s
log
X

on M ver
X

(or MX=M
edge
X ) is trivial. Next, let us write X1 ! S1 for the restriction of the

tautological curve Xg over the moduli stack Mg to the spectrum of the completion
of the local ring at the point of Mg corresponding to X . For each vertex v of
vðGX Þ, write Uv :¼ XvnNodeðXÞ and Mv for the image in M ver

X of the decom-
position group associated to Xv. Since every open subgroup of Mv corresponds
to an abelian étale covering of the curve Uv, and every étale covering of Uv lifts
uniquely (up to unique isomorphism), without base change, to an étale covering
of the formal neighborhood of Uv in X1, the action of I

s
log
X

on M ver
X is trivial.

Then the proposition follows.
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Alternatively, the proposition may be verified by observing that every open
subgroup of MX=M

edge
X corresponds to an abelian étale covering of the stable

curve X , and every étale covering of X lifts uniquely (up to unique isomorphism)
to an étale covering of X1 without base change.

This completes the proof of our proposition. r

By using Proposition 2.2, we can prove a proposition as follows:

Proposition 2.3. In the notation of the above discussion, the natural map

H1ðI
s
log
X

;HomðM top
X ;M edge

X ÞÞ ! H1ðI
s
log
X

;HomðM top
X ;M ver

X ÞÞ
is injective, and (if, by abuse of notation, we identify the domain of this injection
with its image via the injection, then) the extension class ½MX � is contained in

H1ðI
s
log
X

;HomðM top
X ;M edge

X ÞÞ:

Proof. The short exact sequence 0!M
edge
X !M ver

X !M ver
X =M edge

X ! 0 of
I
s
log
X

-modules determines a long exact sequence

0! HomðM top
X ;M edge

X Þ
I
s
log
X ! HomðM top

X ;M ver
X Þ

I
s
log
X

! HomðM top
X ;M ver

X =M edge
X Þ

I
s
log
X ! H1ðI

s
log
X

;HomðM top
X ;M edge

X ÞÞ

! H1ðI
s
log
X

;HomðM top
X ;M ver

X ÞÞ ! H1ðI
s
log
X

;HomðM top
X ;M ver

X =M
edge
X ÞÞ ! � � �

—where the superscript ‘‘I
s
log
X

’’ denotes the submodule of I
s
log
X

-invariants. Since

the functor HomðM top
X ;�Þ is exact, and the actions of I

s
log
X

on M
top
X , M ver

X , and

M ver
X =M edge

X are trivial (cf. Proposition 2.2), the morphism

HomðM top
X ;M ver

X Þ
I
s
log
X ! HomðM top

X ;M ver
X =M edge

X Þ
I
s
log
X

is a surjection. Thus, the morphism

H1ðI
s
log
X

;HomðM top
X ;M edge

X ÞÞ ! H1ðI
s
log
X

;HomðM top
X ;M ver

X ÞÞ
is an injection.

Since the action of I
s
log
X

on MX=M
edge
X is trivial (cf. Proposition 2.2),

it follows formally that the image of the extension class ½MX � via the mor-

phism H1ðI
s
log
X

;HomðM top
X ;M ver

X ÞÞ !H1ðI
s
log
X

;HomðM top
X ;M ver

X =M edge
X ÞÞ is 0. This

implies that

½MX � A H1ðI
s
log
X

;HomðM top
X ;M edge

X ÞÞ:
This completes the proof of the proposition. r

Remark 2.3.1. Let Y � :¼ ðY ;DÞ be a pointed stable curve over Spec k.
Then just as in the non-pointed case, we have a filtration as follows:

0 �M
cusp
Y � �M

edge
Y � �M ver

Y � �MY � !!M
top
Y � :¼MY �=M

ver
Y � ;
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where MY � denotes the abelianization of pl-adm
1 ðY �Þ; M ver

Y � (resp. M edge
Y � , M cusp

Y � )
denotes the closed subgroup of MY � generated by the subgroups that arise from
the irreducible components (resp. nodes and cusps, cusps). Similar arguments to
the arguments given in the proofs of Proposition 2.2 and Proposition 2.3 imply
that the actions of I

s
log

Y �
on M

top
Y � , M

ver
Y � , M

edge
Y � , MY �=M

edge
Y � are trivial, and, more-

over, that we obtain a corresponding extension class

½MY � � A H1ðI
s
log

Y �
;HomðM top

Y � ;M
edge
Y � ÞÞ:

Since H1ðI
s
log
X

;HomðM top
X ;M edge

X ÞÞGHomðI
s
log
X

;HomðM top
X ;M edge

X ÞÞ (cf. Prop-
osition 2.2), by the Poincaré duality (cf. [15] Proposition 1.3), the extension class
½MX � corresponds to a continuous group homomorphism

fX : I
s
log
X

! HomðM top
X nM

top
X ;Zlð1ÞÞ:

Definition 2.4. We shall refer to the morphism fX discussed above as the
pro-l period matrix morphism associated to X . For an element a A I

s
log
X

, we shall
refer to the quadratic form fX ðaÞ on M

top
X as the pro-l period matrix associated

to a. Note that fX ðaÞ is a symmetric quadratic form on M
top
X for each a A I

s
log
X

(cf. [4] Chapter III Section 8).

In the next two remarks, we will explain the functorial properties of period
matrices.

Remark 2.4.1. We discuss a certain functorial property that relates the pro-
l period matrix morphism associated to a stable curve to the corresponding mor-
phism associated to a stable ‘‘sub-curve’’.

Let X be a stable curve over s :¼ Spec k which is sturdy (i.e., the genus of
the normalization of each irreducible component of X isb 2), GX the dual graph
of X , and V a subset of vðGX Þ [ eðGX Þ. Suppose that UV :¼ Xnðð

S
v AV XvÞ [

ð
S

e AV eÞÞ is a connected curve. Write XV for the compactification of UV (i.e.,
the closure of UV in the scheme obtained by normalizing the closure of UV in X
at the nodes of X contained in XnUV ). Thus, the pair ðXV ;XVnUV Þ determines
a pointed stable curve X �V of type ðgV ; rV Þ, which may be regarded as associated

to V . Thus, if we write s
log
X (resp. s

log
V ; ðsUV Þ

log) for the log scheme whose
underlying scheme is s, and whose log structure is obtained by pulling back the
log structure of the log stack M log

g (resp. M log
gV

; M log
gV ; rV

) via the classifying mor-

phism s (resp. sV ; sU
V ) associated to X ! s (resp. XV ! s; X �V ! s, i.e., for a

suitable choice of ordering of the cusps), then we obtain a stable log curve

X log ! s
log
X ðresp: X

log
V ! s

log
V ;X �logV ! ðsUV Þ

logÞ

by pulling back the morphism of log stacks X log
g !M log

g (resp. X log
gV
!M log

gV
;

X log
gV ; rV

!M log
gV ; rV

). If S is a Deligne-Mumford stack over Spec Z, write Ss for

the stack S�Spec Z s over s. Then the geometry of the stable curve X , together
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with the original choice of a subset V of vðGX Þ [ eðGX Þ, determine a clutching
morphism of moduli stacks (i.e., for a suitable choice of ordering of the cusps):

c : N :¼ ðMgV ; rV Þs �s

Y
v AV

ðMgv; rvÞs ! ðMgÞs:

Let N log be the log stack whose underlying stack is N, and whose log
structure is the pull-back of the log structure of ðMgÞ logs by c. On the other
hand, we also have a log structure determined by the divisor given by the union
of pull-backs to N of the divisors at infinity of each of the factors ðMgV ; rV Þs and
ðMgv; rvÞs, for v A V ; write N

log
V for the resulting log stack, which, as is easily

verified, is isomorphic to the log stack ðMgV ; rV Þ
log
s �s

Q
v AV ðMgv; rvÞ

log
s . We have

a natural morphism between the two log stacks N log and ðMgV Þ
log
s obtained by

composing the following three morphisms:

N log !N
log

V ! ðMgV ; rV Þ
log
s ! ðMgV Þ

log
s :

Here, the first morphism of log stacks is obtained by forgetting the portion of the
log structure of N log that arises from the irreducible components of the divisor
ðMgÞsnðMgÞs which contain the image of ðMgV ; rV Þs �s

Q
v AV ðMgv; rvÞs. The sec-

ond morphism of log stacks is the natural projection. The third morphism of log
stacks is obtained by forgetting the marked points.

Next, let us describe the local structure of the morphisms N log !
ðMgV ; rV Þ

log
s ! ðMgV Þ

log
s . First, let us observe that the geometry of X determines

a morphism t : s!N such that s ¼ c 	 t. Then for suitable charts defined
over étale neighborhoods of t, sU

V and sV , the morphisms N log ! ðMgV ; rV Þ
log
s !

ðMgV Þ
log
s may be described in terms of morphisms of monoids as follows:

0
e ANodeðXV Þ

Ne ! 0
e ANodeðUV Þ

Ne ! 0
e ANodeðX Þ

Ne:

Here, the first arrow is induced by the natural bijection NodeðUV Þ !@ NodeðXV Þ;
the second arrow is the assignment ðaeÞe ANodeðUV ÞÞ 7! ððaeÞe ANodeðUV ÞÞ; 0; . . . ; 0Þ
induced by the natural inclusion NodeðUV Þ ,! NodeðXÞ. Thus, the associated
morphisms of pro-l log étale fundamental groups may be written as follows:

pl
1 ðs

log
X ÞG 0

e ANodeðXÞ
Zlð1Þe ! pl

1 ððsUV Þ
logÞG 0

e ANodeðUV Þ
Zð1Þe

!@ pl
1 ðs

log
V ÞG 0

e ANodeðXV Þ
Zlð1Þe;

where the morphisms are the natural projections.
Write ðX log

V Þs log
X

for the stable log curve X
log
V �

s
log
V

s
log
X . Write ðUV Þ log for

the log scheme over s logX whose underlying scheme is UV , and whose log structure
is the pull-back of the log structure of X log. Thus, we have a commutative
diagram of log schemes as follows:
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X
log
V  ��� ðX log

V Þs log
X
 ��� ðUV Þ log ���! X log???y

???y
???y

???y
s
log
V s

log
X s

log
X s

log
X �����

Choose a strict log geometric point ~ss logX (resp. ~ss logV ) over s
log
X !M log

g (resp.
s
log
V !M log

gV
) (cf. Section 1.2). Thus, by a similar argument to the argument

given in the proof of Proposition 1.3, we have a natural (outer) isomorphism

pl
1 ðððX

log
V Þs log

X

Þ~ss log
X

ÞG pl
1 ððX

log
V Þ~ss log

V

Þ induced by the morphism of log schemes

ðX log
V Þs log

X

! X
log
V . Moreover, the natural (outer) homomorphism pl

1 ððUV Þ log
~ss log
X

Þ !
pl
1 ðððX

log
V Þs log

X

Þ~ss log
X

Þ induced by the morphism of log schemes ðUV Þ log ! ðX log
V Þs log

X

is

a surjection. Note that since pl
1 ððUV Þ log

~ss log
X

ÞG pl
1 ððX

�log
V Þ~ss log

X

Þ, we use the notation

MUV
(resp. M ver

UV
, M

edge
UV

, M
top
UV

, M
cusp
UV

) to denote the group MX �
V

(resp. M ver
X �

V
,

M
edge
X �

V
, M

top
X �

V
, M

cusp
X �

V
) defined in Remark 2.3.1.

By considering the right-hand square of the commutative diagram discussed
above, together with the natural projection M

edge
X !M

edge
UV

(cf. also Remark 2.3.1)
and the natural morphism M

top
UV
!M

top
X induced by the natural open immersion

UV ,! X , we obtain a commutative diagram:

pl
1 ðs

log
X Þ ���! HomðM top

X ;M edge
X Þ����

???y
pl
1 ðs

log
X Þ ���! HomðM top

UV
;M

edge
UV
Þ:

Note that the natural open immersion UV ,! XV induces natural isomorphisms
M

top
UV
!@ M

top
XV

and M
edge
UV
!@ M

edge
XV

lM
cusp
UV

. Thus, by applying a similar argu-
ment to the argument applied to obtain the commutative diagram of the pre-
ceding display, we obtain a commutative diagram

pl
1 ðs

log
X Þ HomðM top

UV
;M edge

UV
Þ����

???y
pl
1 ðs

log
X Þ HomðM top

XV
;M edge

XV
Þ����

???y
pl
1 ðs

log
X Þ ���! HomðM top

XV
nM

top
XV

;Zlð1ÞÞ;

������!

������!

where the lower vertical arrow on the right-hand side HomðM top
XV

;M edge
XV
Þ !

HomðM top
XV

nM
top
XV

;Zlð1ÞÞ is the isomorphism induced by the Poincaré duality.

On the other hand, since the actions of pl
1 ðs

log
X Þ and pl

1 ðs
log
V Þ on 0!M ver

XV
!

MXV
!M

top
XV
! 0 are compatible, we thus obtain a commutative diagram
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pl
1 ðs

log
X Þ ���! HomðM top

XV
nM

top
XV

;Zlð1ÞÞ???y
����

pl
1 ðs

log
V Þ ���! HomðM top

XV
nM

top
XV

;Zlð1ÞÞ;

where the lower horizontal arrow is the pro-l period matrix morphism (cf.
Definition 2.4) associated to XV . So we have a functorial property of pro-l
period matrix morphism as follows:

pl
1 ðs

log
X Þ ���!fX HomðM top

X nM
top
X ;Zlð1ÞÞ

uV

???y vV

???y
pl
1 ðs

log
V Þ ���!fX HomðM top

XV
nM

top
XV

;Zlð1ÞÞ;

where the vertical morphism of the left-hand side is the natural projective, and
the vertical morphism of the right-hand side is the morphism determined by the
pro-l completion of the natural morphism of topological fundamental groups
p1ðGXV

Þ ! p1ðGX Þ which is induced by the embedding GXV
,! GX .

Remark 2.4.2. In this remark, we will explain a functorial property that
relates the various pro-l period matrix morphisms associated to deformations of
a stable curve.

First, let us explain how to deform a stable curve along a set of nodes.
Let R be a complete discrete valuation ring with algebraically closed residue field
k, K the quotient field of R, and K an algebraic closure of K . Write S :¼
Spec R for the spectrum of R and h :¼ Spec K ,! S (resp. s :¼ Spec k ,! S) for
the subscheme determined by the generic point (resp. closed point) of S. Let
X be a stable curve over s of genus g, GX the dual graph of X , and m :¼
aeðGX Þ.

Let L be a subset of eðGX Þ. We claim that we can deform the stable curve
X along L to obtain a new stable curve over h :¼ Spec K such that the set of
edges of the dual graph of the new stable curve may be naturally identified with
eðGX ÞnL. Write fs : s!Mg for the classifying morphism determined by X ! s.
Thus the completion of the local ring of the moduli stack Mg �Z R over R at
s!Mg �Z R induced by fs is isomorphic to R[t1; . . . ; t3g�3]. Furthermore, the
indeterminates t1; . . . ; tm may be chosen so as to correspond to the deformations
of the nodes of X . Write ft1; . . . ; tdg for the subset of ft1; . . . ; tmg corresponding
to the subset L � eðGX Þ. Now fix a morphism S ! Spec R[t1; . . . ; t3g�3] over S
such that tdþ1; . . . ; tm 7! 0 A R, but t1; . . . ; td map to nonzero elements of R.
Then the composite morphism nLf : S ! Spec R[t1; . . . ; t3g�3]!Mg determines a
stable curve nLX over S. Moreover, the special fiber of nLX is naturally isomor-
phic to X over s. Write nLX for the geometric generic fiber nLX�h h and GnLX
for the dual graph of nLX . It follows from the construction of nLX that we have
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two natural maps

vðGX Þ ! vðGnLX Þ; eðGX ÞnL!@ eðGnLX Þ

(the latter of which is a bijection); we shall denote this pair of maps by the
notation

GX ! GnLX

which we shall refer to as the contracting morphism associated to the deformation.
Similarly, we can deform the stable curve X along eðGX ÞnL (i.e., by taking ‘‘L’’
to be eðGX ÞnL). This yields a new stable curve, which we denote by LX, over S
such that the set of nodes eðG

LX Þ of the dual graph of the geometric generic fiber

LX of LX may be naturally identified with L, together with a natural contracting
morphism

GX ! G
LX :

Furthermore, we have a classifying morphism Lf : S !Mg determined by

LX! S.
On the other hand, we have a log scheme nLS

log (resp. LS
log) whose under-

lying scheme is S, and whose log structure is the log structure obtained by pulling
back the log structure of M log

g via nLf (resp. Lf). Thus, we obtain a stable log
curve nLX

log :¼ X log
g �

M
log
g
nLS

log over nLS
log (resp. LX

log :¼ X log
g �

M
log
g

LS
log over

LS
log) whose underlying scheme is nLX (resp. LX). Write

h
log

nLX
:¼ S

log

nLX
�S h; s

log
X :¼ S

log

nLX
�S s

ðresp: h
log

LX
:¼ S

log

LX
�S h; s

log
X :¼ S

log

LX
�S sÞ;

where we observe that the log schemes S
log

nLX
�S s and S

log

LX
�S s are naturally

isomorphic. Thus, we have a natural injection of log fundamental groups as
follows:

I
h
log

nLX

:¼ pl
1 ðh

log

nLX
ÞG 0

e A eðGnLX Þ
Zlð1Þe ,! pl

1 ðnLS logÞG I
s
log
X

:¼ pl
1 ðs

log
X ÞG 0

e A eðGX Þ
Zlð1Þe;

(resp.

I
h
log

LX

:¼ pl
1 ðh

log

LX
ÞG 0

e A eðG
LX Þ

Zlð1Þe ,! pl
1 ðLS logÞG I

s
log
X

:¼ pl
1 ðs

log
X ÞG 0

e A eðGX Þ
Zlð1ÞeÞ;

where the 0
e A eðGnLX Þ Zlð1Þe (resp. 0

e A eðG
LX Þ Zlð1Þe) maps to the portion of

0
e A eðGX ÞZlð1Þe indexed by eðGnLX Þ (resp. eðG

LX Þ).
Write MnLX , M

LX and MX for the abelianizations of the pro-l admis-
sible fundamental groups of nLX , LX and X , respectively. By applying the
specialization theorem (cf. Proposition 1.1), we obtain a commutative diagram as
follows:
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0 M ver
LX

M
LX M

top

LX
0x???

x???
x???

0 M ver
X MX M

top
X 0???y

???y
???y

0 ���! M ver
nLX

���! MnLX ���! M
top

nLX
���! 0;

���! ���! ���! ���!

���! ����! ����! ���!

where the vertical morphisms in the middle (resp. on the right-hand side; on the
left-hand side) are the isomorphisms induced by the inverses of the respective
specialization isomorphisms (resp. surjective morphisms induced by the respective
contracting morphisms; injective). From the commutative diagram above, it
follows immediately, by considering the respective actions of I

h
log

LX

,! I
s
log
X

 -I
h
log

nLX

on the relevant modules in the above commutative diagram, that we obtain the
following commutative diagram of pro-l period matrix morphisms:

I
h
log

LX

HomðM top

LX
nM

top

LX
;Zlð1ÞÞ

Li

???y L j

???y
I
s
log
X

HomðM top
X nM

top
X ;Zlð1ÞÞ

nLi

x??? nL j

x???
I
h
log

nLX
���!fnLX

HomðM top

nLX
nM

top

nLX
;Zlð1ÞÞ:

����!f
LX

����!fX

2.2. Degeneration of pro-l period matrices
In this subsection, we study the degeneracy of pro-l period matrices of stable

curves. We continue to use the notation of Section 2.1.

Definition 2.5. An element a ¼ ðaeÞe A I
s
log
X

G0
e A eðGX Þ Zlð1Þ is called non-

degenerate if ae 0 0 for each e A eðGX Þ. A non-degenerate element a ¼ ðaeÞe A
I
s
log
X

G0
e A eðGX Þ Zlð1Þ is called positive definite if, for any e1; e2 A eðGX Þ, it holds

that ae1=ae2 A Q>0 � Q�l .

Remark 2.5.1. Let S log
2 ! S

log
1 be a morphism of log schemes defined at the

ending of Section 1.1 and pl
1 ðS

log
2 Þ ! pl

1 ðS
log
1 ÞG pl

1 ðs
log
X Þ the morphism of log

étale fundamental groups induced by the morphism S
log
2 ! S

log
1 . Then the dis-

cussion at the ending of Section 1.1 implies that all the elements of the image of
pl
1 ðS

log
2 Þ ! pl

1 ðS
log
1 ÞG pl

1 ðs
log
X Þ are positive definite.

Given a positive definite element a ¼ ðaeÞe A I
s
log
X

G0
e A eðGX ÞZlð1Þ, observe

that, for a suitable choice of generator x A Zlð1Þ, it holds that ae A N � x for each
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e. In particular, one verifies immediately that, in the notation of Section 1.1,
there exists a morphism S

log
2 ! S

log
1 such that a is contained in the image of

pl
1 ðS

log
2 Þ ! pl

1 ðS
log
1 ÞG pl

1 ðs
log
X Þ. Thus, the pro-l period matrix fX ðaÞ associated

to a is a positive definite matrix (cf. [4] Chapter III Corollary 7.3, or, alter-
natively, the explicit computations given in the proof of [4] Chapter III Theorem
8.3), hence, in particular, non-degenerate. The fact that fX ðaÞ is non-degenerate
may also be regarded as a special case of the weight-monodromy conjecture for
curves.

If a A I
s
log
X

is an arbitrary (i.e., not necessarily positive definite) non-degenerate

element, then fX ðaÞ will not necessarily be a non-degenerate matrix. It is easy to
construct a counterexample (for instance, see [7] Remark 5.9.2).

Definition 2.6. The stable curve X over s :¼ Spec k will be called a pro-l
period matrix degenerate curve if the dual graph GX is not a tree (i.e., rðGX Þ :¼
rankðH1ðGX ;ZÞÞ0 0), and, moreover, there exists a non-degenerate element
a A I

s
log
X

such that the pro-l period matrix fX ðaÞ is degenerate.

Next, we prepare for the proof of our main theorem. We begin by observ-
ing that for Question 0.1, we can assume without loss of generality that X is
sturdy. More precisely, we have the following lemma.

Lemma 2.7. Let X be a stable curve over k of type ðgX ; 0Þ and GX the dual
graph of X. Then there exist a sturdy stable curve Y over k and a finite morphism
c : Y ! X over k such that the following two properties hold: (i) the morphism of
dual graphs GY ! GX induced by c is an isomorphism; (ii) the pro-l period matrix
morphisms fY and fX fit into the following commutative diagram:

I
s
log
Y

G0
e A eðGY Þ Zlð1Þe ���!fY HomðM top

Y nM
top
Y ;Zlð1ÞÞ

l

???y l

???y
I
s
log
X

G0
e A eðGX Þ Zlð1Þe ���!fX HomðM top

X nM
top
X ;Zlð1ÞÞ;

where the vertical arrow on the right-hand side is the multiplication by l relative
to the identification of HomðM top

Y nM
top
Y ;Zlð1ÞÞ with HomðM top

X nM
top
X ;Zlð1ÞÞ

by the isomorphism M
top
Y !@ M

top
X induced by the isomorphism GY !@ GX of (i), and

the vertical arrow on the left-hand side is the morphism determined by multiplying
by l.

Proof. Let v A vðGX Þ. Then we shall write Xv for the irreducible compo-
nent of X associated to v, nv : X

�
v ! Xv for the normalization morphism asso-

ciated to Xv, and Pv for the set

n�1v ðXv \NodeðXÞÞ
which is a subset of the set of closed points of X �v . In the following, we shall use
the notation ð�Þcl to denote the set of closed points of ð�Þ. Choose a finite
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nonempty set

Qv � X �clv

such that Qv \ Pv ¼ �, and, moreover, the cardinality of the set ½v� :¼ Qv [ Pv

is a positive even number 2mv such that mv g l. Thus, we obtain a pointed
smooth curve ðX �v ; ½v�Þ of type ðgXv

; rXv
Þ, where gXv

denotes the genus of X �v and
rXv
¼a½v� ¼ 2mv. For simplicity, we use the notation X �½v� to denote the resulting

pointed smooth curve.
Recall that the pro-l admissible fundamental group of X �½v� admits a presen-

tation as follows:

pl-adm
1 ðX �½v�ÞG fasgs¼1;...;gXv ; fbtgt¼1;...;gXv ; fcigi¼1;...;2mv

����Y
t

½at; bt�
Y
i

ci ¼ 1

* +l

;

where h�il denotes the pro-l completion of the group h�i. We construct a
surjective morphism hv : p

l-adm
1 ðX �½v�Þ ! Z=lZ as follows: for s; t A f1; . . . ; gXv

g,
hvðasÞ ¼ hvðbtÞ ¼ 0; hvðc1Þ ¼ 1; hvðc2Þ ¼ �1; . . . ; hvðc2i�1Þ ¼ 1, hvðc2iÞ ¼ �1; . . . ;
hvðc2mv�1Þ ¼ 1, hvðc2mv

Þ ¼ �1. Thus, we obtain a connected Z=lZ-admissible
covering cv : Y

�
v ! X �½v� that is totally ramified over all the marked points in ½v�

and étale over X �v n½v�. We denote the underlying curve of Y �v by Yv.
Write QX for the set

S
v A vðGX Þ Qv. Thus, we obtain a pointed stable curve

X � :¼ ðX ;QX Þ of type ðgX ; rX Þ, where rX ¼aQX . By gluing the fYvgv along the
set

S
v A vðGX Þ c

�1
v ðPvÞ in a fashion that is compatible with the gluing of the fXvgv

that gives rise to X , we obtain a stable curve Y over s. Write QY for the setS
v A vðGX Þ c

�1
v ðQvÞ. Thus, we obtain a new pointed stable curve Y � :¼ ðY ;QY Þ of

type ðgY ; rY Þ, where gY :¼ dimk H
1ðY ;OY Þ and rY ¼aQY ¼aQX ¼ rX , together

with an admissible covering c 0 : Y � ! X �. It follows from the construction of
Y and the Hurwitz formula that Y is sturdy, and, moreover, that the morphism
of dual graphs GY ! GX induced by c 0 is an isomorphism.

On the other hand, we have a morphism from s to the moduli stack MgX ; rX

(resp. MgY ; rY ) determined by X ! s (resp. Y ! s). By pulling back the log

structure of X
log

gX ; rX
and M log

gX ; rX
(resp. X

log

gY ; rY
and M

log

gY ; rY
) to X and s (resp. Y and

s), respectively, we obtain a stable log curve X �log ! s
log
X (resp. Y �log ! s

log
Y ).

One verifies immediately that the log scheme s
log
X (resp. s

log
Y ) admits a chart

ðSpec k;NrÞ (resp. ðSpec k; 1
l
�NrÞ), where r ¼aeðGX Þ (resp. r ¼aeðGY )). Thus,

it follows from [12] Section 3.9 that the admissible covering c 0 determines a
commutative diagram as follows:

Y �log ���! X
�log
l :¼ X �log �

s
log
X

s
log
Y ���! X �log???y

???y
???y

s
log
Y s

log
Y s

log
X ;�����������!
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where, for a suitable choice of charts for s
log
X and s

log
Y , the morphism of log

structures induced by the morphism s
log
Y ! s

log
X may be described as the morphism

of log structures induced by the morphism of charts determined by the morphism

of monoids Nr ! 1

l
�Nr such that ð0; . . . 0; 1; 0; . . . ; 0Þ 7! ð0; . . . ; 0; 1; 0; . . . ; 0Þ,

and Y �log ! X
�log
l is the log admissible covering determined by the admissible

covering c 0.
Next, write MX � , MY � , MX , MY for the abelianizations of the pro-l

admissible fundamental groups of X �, Y �, X , Y , respectively. Then we obtain
a commutative diagram as follows (cf. Remark 2.3.1):

0 ���! M ver
Y � ���! MY � ���! M

top
Y � ���! 0???y c 0M

???y
???y

0 ���! M ver
X � ���! MX � ���! M

top
X � ���! 0;

where c 0M denotes the morphism induced by the admissible covering c 0. By
forgetting the marked points in QY and QX , we conclude that c 0 determines a
finite morphism c : Y ! X . Moreover, there is a natural surjection MY � !MY

(resp. MX � !MX ) whose kernel is M cusp
Y � (resp. M cusp

X � ) (cf. Remark 2.3.1). Note
that the image c 0MðM

cusp
Y � Þ is contained in M

cusp
X � , so we obtain a commutative

diagram by passing to quotients as follows:

0 ���! M ver
Y ���! MY ���! M

top
Y ���! 0???y

???y
???y

0 ���! M ver
X ���! MX ���! M

top
X ���! 0:

Moreover, since c : Y ! X is totally ramified over all the nodes of X , we obtain
that the image of the morphism M

edge
Y !M

edge
X induced by c is l �M edge

X �
M

edge
X . Since this commutative diagram is compatible with the actions of I

s
log
Y

:¼
pl
1 ðs

log
Y Þ ! I

s
log
X

:¼ pl
1 ðs

log
X Þ, the pro-l period matrix morphisms associated to X

and Y fit into a commutative diagram

I
s
log
Y

G0
e A eðGY Þ Zlð1Þe ���!fY HomðM top

Y nM
top
Y ;Zlð1ÞÞ

l

???y l

???y
I
s
log
X

G0
e A eðGX Þ Zlð1Þe ���!fX HomðM top

X nM
top
X ;Zlð1ÞÞ;

where the vertical arrow on the right-hand side is the multiplication by l relative
to the identification of HomðM top

Y nM
top
Y ;Zlð1ÞÞ with HomðM top

X nM
top
X ;Zlð1ÞÞ

by the isomorphism M
top
Y !@ M

top
X induced by the isomorphism GY !@ GX of (i),

and the vertical arrow on the left-hand side is the morphism determined by
multiplying by l. This completes the proof of the lemma. r
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Definition 2.8. Let X be a stable curve over k and GX the dual graph of
X . For any edge e A eðGX Þ, write vðeÞ for the set of vertices which abut to e.
Write

e	ðGX Þ :¼ fe	 A eðGX Þ javðe	Þ ¼ 1g

for the set of edges which form loops of GX . Note that avðeÞ ¼ 2 for each
e A eðGX Þne	ðGX Þ. We shall refer to the subgraph G�

X :¼ GXne	ðGX Þ as the
maximal untangled subgraph of GX .

Theorem 2.9. Let X be a stable curve over k and GX the dual graph of X.
Then X is a pro-l period matrix degenerate curve if and only if the maximal
untangled subgraph G�

X of GX is not a tree (i.e., rðG�
X Þ :¼ rankðH1ðG�

X ;ZÞÞ0 0).

Proof. By Lemma 2.7, we can assume that X is sturdy.
If GX is a tree, then by definition, X is not a pro-l period matrix degenerate

curve. Hence, we can assume that GX is not a tree.
First, let us prove the ‘‘only if ’’ portion of the theorem. Write L :¼ e	ðGX Þ.

Let R be a complete discrete valuation ring with residue field k and K an
algebraic closure of the quotient field K of R. By applying Remark 2.4.2, we
can deform the stable curve X along L (resp. eðGX ÞnL) so as to obtain a new
stable curve nLX (resp. LX ) over K such that the set of edges eðGnLX Þ (resp.
eðG

LX Þ) of the associated dual graph may be identified with eðGX ÞnL (resp. L).
It is easy to see that the restriction of the contracting morphism GX ! GnLX

to G�
X is an isomorphism. Suppose that G�

X is a tree. Thus, the rank of GnLX
(i.e., the rank of H1ðGnLX ;ZÞ as a free Z-module) is 0. By applying Remark
2.4.2, we obtain a commutative diagram of pro-l period matrix morphisms fX ,
fnLX , f

LX as follows:

I
h
log

nLX

G0
e A eðGX ÞnL Zlð1Þe 0

nLi

???y nL j

???y
I
s
log
X

G ð0
e A eðGX ÞnL Zlð1ÞeÞl ð0e AL Zlð1ÞeÞ ���!fX HomðM top

X nM
top
X ;Zlð1ÞÞ

Li

x??? L j

x???
I
h
log

LX

G0
e AL Zlð1Þe HomðM top

LX
nM

top

LX
;Zlð1ÞÞ;

��������������������!fnLX

������������!f
LX

where L j is induced by the contracting morphism GX ! G
LX . Moreover, L j is

an isomorphism. Thus, it follows immediately from this commutative diagram
that, by replacing X by LX , we may assume without loss of generality that
X ¼ LX .

Let l A eðGX Þ. Then we can also deform the stable curve X along
eðGX Þnflg. This yields a stable curve lX whose set of nodes is flg, together
with a commutative diagram of pro-l period matrix morphisms f

lX , fX as
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follows:

I
h
log

l X

GZlð1Þl HomðM top

lX
nM

top

lX
;Zlð1ÞÞGZlð1Þ

l i

???y l j

???y
I
s
log
X

G ð0
e A eðGX ÞnflgZlð1ÞeÞlZlð1ÞlÞ HomðM top

X nM
top
X ;Zlð1ÞÞ:

�������������!f
l X

�������!fX

Furthermore, we have M
top
X G0

e A eðGX ÞM
top

eX
. Then for any non-degenerate

element a ¼ ðaeÞe A 0
e A eðGX ÞZlð1Þe, we have a quadratic form

hX :¼ fX ðaÞ ¼
X

e A eðGX Þ
h

eX ;

where we write h
eX :¼ e jð feX ðaeÞÞ. Since h

eX restricts to a non-degenerate form
on M

top

eX
and to 0 on 0

e 0 A eðGX ÞnfegM
top

e 0X
, it follows that hX is a non-degenerate

quadratic form. That is to say, X is not a pro-l period matrix degenerate curve.
This completes the proof of the ‘‘only if ’’ part of the theorem.

Next, let us prove the ‘‘if ’’ part of the theorem. Let R be a complete
discrete valuation ring with residue field k and K an algebraic closure of the
quotient field K of R. Since G�

X is not a tree, one verifies immediately that there
exists an element l A eðG�

X Þ such that l is not of separating type (cf. [7], Definition
2.5 (i)). By applying Remark 2.4.2, we can deform the stable curve X along l
(resp. eðGX Þnflg) so as to obtain a stable curve nlX (resp. lX ) over K such that
the set of edges of the associated dual graph may be identified with eðGX Þnflg
(resp. l). One verifies immediately that since l is not of separating type, it
follows that l, regarded as an element of eðG

lX Þ, is a loop, and hence that the
rank of M

top

lX
is 1. Let us consider the pro-l period matrix morphisms of nlX

and lX with Ql-coe‰cients. By applying Remark 2.4.2, after tensoring with Ql,
we obtain a commutative diagram of pro-l period matrix morphisms of X , lX
and nlX over Ql as follows:

I
h
log

l X

nQlð1ÞGQlð1Þl HomðM top

lX
nM

top

lX
;Zlð1ÞÞnZl

Ql

l i
Ql

???y l j
Ql

???y
I
s
log
X

nQlð1ÞGQlð1Þl l ð0e A eðGX ÞnflgQlð1ÞeÞ ����!f
Ql
X

HomðM top
X nM

top
X ;Zlð1ÞÞnZl

Ql

nl i
Ql

x??? nl j
Ql

x???
I
h
log

nl X
nQlð1ÞG0

e A eðGX ÞnflgQlð1Þe HomðM top

nlX
nM

top

nlX
;Zlð1ÞÞnZl

Ql;

�����������!f
Ql

l X

�������!f
Ql

nl X

where f
Ql

lX
(resp. nl j

Ql ) is an isomorphism (resp. the natural isomorphism induced
by the isomorphism M

top
X !@ M

top

nlX
). By applying the commutative diagram

above, for any element a :¼ ðal ; ðaeÞe0lÞ A Qlð1Þl l ð0e0l
Qlð1ÞeÞ, we obtain a
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quadratic form hX :¼ f
Ql

X ðaÞ on M
top
X :

hX ¼ h
lX jM top

X
nM

top
X
þ hnlX ;

where we write h
lX (resp. h

lX jM top
X

nM
top
X
, hnlX ) for the quadratic form f

Ql

lX
ðalÞ (resp.

l j
Qlð f Ql

lX
ðalÞÞ, nl jQlð f Ql

nlX
ððaeÞe A eðGnl X ÞÞÞ) on M

top

lX
(resp. M

top
X , M

top
X ).

Write pl for the node of X corresponding to l, Xl for the stable curve
obtained from the (sturdy) stable curve X by normalizing at pl , and GXl

for the
dual graph of Xl . Note that since l is not of separating type, GXl

may be
regarded as a connected subgraph of GX whose rank (i.e., the rank of H1ðGXl

;ZÞ
as a free Z-module) is rðGX Þ � 1. By applying Remark 2.4.1, we have a com-
mutative diagram of pro-l period matrix morphisms of Xl and X over Ql as
follows:

Qlð1Þl l ð0e A eðGX ÞnflgQlð1ÞeÞÞ ���!f
Ql
X

HomðM top
X nM

top
X ;Zlð1ÞÞnZl

Ql

u
Ql
l

???y v
Ql
l

???y
0

e A eðGX ÞnflgQlð1Þe HomðM top
Xl

nM
top
Xl

;Zlð1ÞÞnZl
Ql:��������!f

Ql
Xl

On the other hand, it follows immediately from the structure of the graphs GX ,
G

lX , and GXl
that we have a natural exact sequence as follows:

0!M
top
Xl
!M

top
X !M

top

lX
! 0:

Thus, we obtain a quadratic form hXl
:¼ f

Ql

Xl
ððaeÞe A eðGX ÞnflgÞ on M

top
Xl

which

is equal to the quadratic form given by the restricted forms hX jM top
Xl

nM
top
Xl

¼
hnlX jM top

Xl
nM

top
Xl

.

Here, we follow the notational conventions of the discussion preceding
Lemma 2.10 below. Write

detðhX Þ A 5 �MM top
X n5 �MM top

X

ðresp: detðhnlX Þ A 5 �MM top
X n5 �MM top

X ;

detðhXl
Þ A 5 �MM top

Xl
n5 �MM top

Xl
;

detðh
lX Þ A 5 �MM top

lX
n5 �MM top

lX
Þ;

for the determinants associated to the quadratic forms introduced above.
If GnlX and GXl

are not trees, then the rank of M
top
X is b 2. Thus, by

applying Lemma 2.10 to hX ¼ hnlX þ h
lX jM top

X
nM

top
X
, we obtain that

detðhX Þ ¼ detðhnlX Þ þ detðhXl
Þ5detðh

lX Þ:

Let us take ðaeÞe0l A 0
e0l

Qlð1Þe to be positive definite and al A Qlð1Þl to be
arbitrary. This implies that the quadratic forms hnlX and hXl

are positive definite
(cf. [4] Chapter III Corollary 7.3). Hence, in particular, detðhnlX Þ and detðhXl

Þ
are 0 0 and, moreover, (by definition) independent of the choice of al . Thus,
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since the pro-l period matrix morphism f
Ql

lX
is an isomorphism, we may modify

al A Qlð1Þl (which determines detðh
lX Þ ¼ f

Ql

lX
ðalÞ) so that

f
Ql

X ððal ; ðaeÞe0lÞÞ ¼ detðhX Þ ¼ detðhnlX Þ þ detðhXl
Þ5detðh

lX Þ ¼ 0:

Finally, by clearing denominators, we conclude that we may choose a non-
degenerate element

ða 00l ; ða 00e Þe0lÞÞ A 0
e A eðGX Þ

Zlð1Þ

such that the quadratic form fX ðða 00l ; ða 00e Þe0lÞÞ is degenerate. This completes the
proof of the theorem in the case under consideration.

If GXl
is a tree, then M

top
Xl

is 0, so M
top
X GM

top

lX
GM

top

nlX
is of rank 1. Then,

by applying Lemma 2.10 to hX ¼ hnlX þ h
lX jM top

X
nM

top
X
, we obtain that

detðhX Þ ¼ detðhnlX Þ þ detðh
lX jM top

X
nM

top
X
Þ A �MM top

X n �MM top
X :

Let us take ðaeÞe0l A 0
e0l

Qlð1Þe and al A Qlð1Þl to be positive definite. This
implies that detðhnlX Þ and detðh

lX jM top
X

nM
top
X
Þ are non-zero (cf. [4] Chapter III

Corollary 7.3). Since detðhnlX Þ is (by definition) independent of the choice of al ,

we can modify al A Qlð1Þl (which determines detðh
lX jM top

X
nM

top
X
Þ ¼ l j

Qlð f Ql

lX
ðalÞÞ)

so that detðhX Þ ¼ 0. Finally, by clearing denominators, we conclude that we
may choose a non-degenerate element

ða 00l ; ða 00e Þe0lÞÞ A 0
e A eðGX Þ

Zlð1Þ

such that the quadratic form hX is degenerate.
If GnlX is a tree, then GX , hence also G�

X , is a tree. This contradicts our
assumption that G�

X is not a tree. This completes the proof of the theorem.
r

Let W be an n-dimensional vector space over a field kW and Q : W nW !
kW a quadratic form on W . Then Q induces a morphism W ! �WW from W to
the dual space �WW :¼ HomðW ; kW Þ. Thus, by forming n-th exterior powers, we
obtain a natural morphism

detQ : kW !5
n

�WW n5
n

�WW :

We use the notation

detðQÞ A 5
n

�WW n5
n

�WW

to denote detQð1Þ. We have a lemma as follows.

Lemma 2.10. Let 0! V1 ! V0 ! V2 ! 0 be an exact sequence of vector
spaces of finite dimension over a field kV . Suppose that dimðV0Þ ¼: nb 1 (resp.
dimðV1Þ ¼ n� 1, dimðV2Þ ¼ 1). Let A1

0 ;A
2
0 A HomðV0 nV0; kV Þ (resp. A1 A
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HomðV1 nV1; kV Þ, A2 A HomðV2 nV2; kV Þ) be two symmetric quadratic forms on
V0 (resp. a quadratic form on V1, a quadratic form on V2). Furthermore, we
suppose that the following conditions are satisfied: (i) A1

0 jV1nV1
¼ A1; (ii) A2

0 ¼
A2jV0nV0

(so A2
0 jV1nV1

¼ 0). Let A0 :¼ A1
0 þ A2

0 . Then we have

detðA0Þ ¼ detðA1
0Þ þ detðA2

0Þ; if n ¼ 1;

detðA0Þ ¼ detðA1
0Þ þ detðA1Þ5detðA2Þ; if nb 2:

Proof. Choose a basis of V0 that extends a basis of V1. Then the lemma
follows from an elementary matrix computation. r

2.3. Relationship with the weight-monodromy conjecture
In this subsection, we explain the relationship between Theorem 2.9 and the

weight-monodromy conjecture for curves.
Let K be a p-adic local field (i.e., a finite extension of Qp), K an algebraic

closure of K , R the ring of integers of K , k the residue field of R, Runr the
integral closure of R in the maximal unramified extension of K in K , and k the
residue field of Runr. Let X be a projective hyperbolic curve over K of genus
g. Suppose that X admits a stable model XR over R. Write XK (resp. Xk, Xk

)
for the geometric generic fiber (resp. special fiber, geometric special fiber) of
XR. Then the reduction curve X

k
! Spec k determines a classifying morphism

Spec k !Mg. Write s
log
X

k

for the log scheme whose underlying scheme is Spec k
and log structure is the pull-back log structure of M log

g .
Write MX

K
and MX

k
for the respective abelianizations of the pro-l admissible

fundamental groups pl-adm
1 ðXKÞ and pl-adm

1 ðX
k
Þ (cf. the discussion immediately

preceding Proposition 1.3). Note that there is a natural isomorphism MX
K
GMX

k

induced by the specialization morphism of the pro-l admissible fundamental
groups pl-adm

1 ðXKÞ and pl-adm
1 ðX

k
Þ (cf. Proposition 1.1). Recall the natural exact

sequence

1! IK ! GK ! Gk ! 1;

where IK , GK , and Gk denote the inertia group of K determined by K , the
absolute Galois group of K determined by K , and the absolute Galois group of
k determined by k, respectively. By the l-adic cohomology criterion for stable
reduction of curves (cf. [3] Theorem 2.4 and [1] Theorem 7.4.6), the action of the
inertia group IK of GK on W :¼MX

K
nQl is unipotent. Thus, any lifting to GK

of the Frobenius element A Gk determines a filtration on W (corresponding to
weights b 2, b 1, b 0), which is called the weight filtration, and which does not
depend on the choice of the lifting, as follows:

0 �W2 �W1 �W : ð�Þ

Since the action of the inertia group IK of GK on W is unipotent, the action of IK
factors through the maximal pro-l quotient of IK , which we denote by I lK . Write

rl
IK

: I lK ! GLðWÞ
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for the resulting Galois representation. Since the action of I lK on W is unipotent,
for any generator a of I lK , there exists a uniquely determined monodromy operator
Na : W !W such that rl

IK
ðaÞ ¼ expðNaÞ. Note that Remark 2.5.1 implies that a

induces a positive definite element ~aa A pl
1 ðs

log
X

k

Þ.
For the geometric special fiber X

k
, we have the following filtration defined in

Section 2.1:

0 �M
edge
X

k
nQl �M ver

X
k
nQl �MX

k
nQl GW : ð��Þ

Since M
edge
X

k

is isomorphic to a direct sum of copies of Zlð1Þ, the weight of M edge
X

k
is equal to 2. Furthermore, by applying Proposition 2.1 and the Weil conjecture
for abelian varieties, the weight of M ver

X
k
=M edge

X
k

is equal to 1. Since MX
k
=M ver

X
k
G

M
top
X

k

(cf. the discussion at the beginning of Section 2.1), the weight of MX
k
=M ver

X
k

is 0. Thus, the filtration (*) coincides with the filtration (**). Since any con-
nected étale covering of the geometric special fiber X

k
lifts uniquely to an étale

covering of XR �Spec R Spec Runr whose domain is a stable curve over Spec Runr,

the action of I lK on W=W2 GMX
k
=M edge

X
k

nQl GHomðM ver
X

k
;Zlð1ÞÞnQl G

HomðW1;Qlð1ÞÞ (where the second isomorphism is the isomorphism arising
from the Poincaré duality discussed at the beginning of the proof of Proposition
2.2) is trivial, so we have ðrl

IK
ðaÞ � 1Þ2 ¼ 0. Since rl

IK
ðaÞ � 1 may be written as

the product of Na with an invertible matrix that commutes with Na, this implies
that N 2

a ¼ 0, ImðNaÞ �W2 �W1 � KerðNaÞ. Thus, we obtain a monodromy
filtration associated to a as follows (cf. [2] Proposition 1.6.1):

0 � ImðNaÞ � KerðNaÞ �W :

Write Na for the isomorphism W=KerðNaÞ !@ ImðNaÞ induced by Na. Thus,
rankðNaÞ ¼ dimQl

ðW=KerðNaÞÞ ¼ dimQl
ðImðNaÞÞÞ ¼ rankð fX

k
ð~aaÞÞ, where fX

k
ð~aaÞ

is the pro-l period matrix associated to ~aa, and

dimQl
ðM top

X
k

nQlÞ ¼ dimQl
ðW=W1Þ ¼ dimQl

ðW2Þ;

where the equalities follow from the discussion at the beginning of the proof of
Proposition 2.2. The weight-monodromy conjecture asserts that the weight filtra-
tion coincides with the monodromy filtration associated to a. To prove this asser-
tion, let us first recall that by Faltings-Chai’s theory, fX

k
ð~aaÞ is non-degenerate.

Thus, we have rankðNaÞ ¼ rankð fX ð~aaÞÞ ¼ dimQl
ðM top

X
k

nQlÞ ¼ dimQl
ðW=W1Þ ¼

dimQl
ðW2Þ: These equalities, together with the inclusions ImðNaÞ �W2 �W1

� KerðNaÞ, imply that W1 ¼ KerðNaÞ and W2 ¼ ImðNaÞ. Thus, the weight-
monodromy conjecture for curves holds.

On the other hand, let us consider the action of pl
1 ðs

log
X

k

Þ on W induced by
the homotopy exact sequence of pro-l log étale fundamental groups of stable
log curves (cf. Corollary 1.2). Moreover, by the l-adic cohomology criterion for
stable reduction, this action is unipotent. For any non-degenerate element b in
pl
1 ðs

log
X

k
Þ, by applying similar arguments to the arguments discussed above, we can

define a monodromy operator Nb associated to b such that N 2
b ¼ 0, and b acts

on W as expðbÞ ¼ 1þNb; moreover, Nb determines a monodromy filtration. On
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the other hand, the Frobenius element of Gk determines, by applying similar
arguments to the arguments discussed above, a filtration on W , which is called
the weight filtration, and which, in fact, as can be easily verified, coincides with the
weight filtration (*) discussed at the beginning of the present subsection. On the
other hand, by Theorem 2.9, if the maximal untangled subgraph of the dual
graph of X

k
is not a tree, then there exists a non-degenerate element b A pl

1 ðs
log
X

k

Þ
whose pro-l period matrix is degenerate. Thus, we have dimQl

ðW=KerðNbÞÞ ¼
rankðNbÞ ¼ rankð fX

k
ðbÞÞ < dimQl

ðM top
X

k
nQlÞ ¼ dimQl

ðW=W1Þ, which implies

that KerðNbÞ0W1. In particular, the weight filtration does not coincide with
the monodromy filtration defined by b. Put another way, we have shown that
Theorem 2.9 implies that if the maximal untangled subgraph of the dual graph of
X

k
is not a tree, then there exist non-degenerate elements of pl

1 ðs
log
X

k
Þ for which

the weight-monodromy conjecture does not hold. Moreover, we obtain an equiv-
alent form of Theorem 2.9 as follows.

Corollary 2.11. Let X be a smooth projective hyperbolic curve over a
p-adic local field K , K an algebraic closure of K, R the ring of integers of K , k
the residue field of R, Runr the integral closure of R in the maximal unramified
extension of K in K , and k the residue field of Runr. Suppose that X admits
a stable model XR over R. Write Xk for the special fiber of XR, X

k
for the

geometric special fiber of XR, and GX
k
for the dual graph of X

k
. The geometric

special fiber X
k

determines a classifying morphism Spec k !Mg, and we shall

write s
log
X

k

for the log scheme whose underlying scheme is Spec k, and whose
log structure is the pull-back of the log structure of M log

g . Then the weight-

monodromy conjecture for X holds for all the non-degenerate elements of pl
1 ðs

log
X

k

Þ
(i.e., the weight filtration on W coincides with the monodromy filtration on W
defined by an arbitrary non-degenerate element of pl

1 ðs
log
X

k

Þ) if and only if the
maximal untangled subgraph of GX

k
is a tree.
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