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AN EFFECTIVE SCHMIDT’S SUBSPACE THEOREM FOR
HYPERSURFACES IN SUBGENERAL POSITION IN PROJECTIVE
VARIETIES OVER FUNCTION FIELDS

GIANG LE

Abstract

We established an effective version of Schmidt’s subspace theorem on a smooth
projective variety 2° over function fields of characteristic zero for hypersurfaces located
in m-subgeneral position with respect to %

1. Introduction

One of the cornerstones of modern Diophantine Approximation is the
Schmidt Subspace Theorem. In the number field case, there is still no effective
version of this theorem. On the other hand, with techniques from Nevanlinna
theory it has become possible to obtain effective version of several important
results in Diophantine approximation over algebraic function fields. In [1],
An and Wang obtained an effective Schmidt’s subspace theorem for non-linear
forms over function fields. In [9], Ru and Wang extended such effective results
to divisors of a projective variety 2 € PM coming from hypersurfaces in P in
general position with respect to Z. Our purpose is to generalize the above
results to the case in which hypersurfaces are located in m-subgeneral position
with respect to 2.

Here let 2 be a n-dimensional projective subvariety of P¥ defined over K
and m, g be positive integers with m >n and ¢ >m+ 1. Recall that homo-

geneous polynomials Qy,...,Q, € K[Xp,...,Xy] are said to be in m-subgeneral
position with respect to X if ﬂ,":lrl({Q,, =0})NZ(K) =0 for any distinct iy, ...,
ime1 € {1,...,q}, where K is the algebraic closure of K. When m = n, they are

said to be in general position with respect to X .

Recently, Chen, Ru, Yan (see [4]) and Levin (see [7], Theorem 5.1) estab-
lished Schmidt’s subspace theorem for hypersurfaces located in m-subgeneral
position over number fields and showed the analogous result for the case of
holomorphic curves. This paper is inspired by these works.

2010 Mathematics Subject Classification. 11J97, 11J61.
Key words and phrases. Schmidt’s subspace theorem, Function fields, Diophantine approximation.
Received March 29, 2016; revised March 7, 2017.

52



AN EFFECTIVE SCHMIDT’S SUBSPACE THEOREM FOR HYPERSURFACES 53

To state our results, we will recall some definitions and basic facts from
algebraic geometry.

Let k£ be an algebraically closed field of characteristic 0 and let V' be a
projective variety (always assumed irreducible), non-singular in codimension 1
and defined over k. For the rest of paper, we shall fix an embedding of V' such
that ¥V c P for some positive integer M.

Denote by K = k(V) the function field of V. Let Mg be the set of discrete
absolute values of the function field K obtained from the prime divisors of V.
Let p be a prime divisor of V' over k. Such a prime divisor determines its local
ring in the function field k(7") and this local ring is a discrete valuation ring.
Thus, we have the notion of order at p of a function x € K, x # 0, noted ord,, x.
We can associate to x its divisors

()= ordy(x)p.

peMg

By the degree of p, noted deg p, we shall mean the projective degree, i.e. the
number of points of intersection with a generic linear variety of complementary
dimension in the given projective embedding. Then we have the sum formula

deg(x) = Z ord,(x) degp =0

peMg

for all xe K*.
Let x = [xo:x:-:xy) e PY(K) and define

ep(x) 1= Og}isnM{ordp(xi)}.

We define the (logarithmic) height of x by:

h(x) = — Z ep(x) deg p.
pe Mg
By the sum formula, the height function is well-defined on P (K).
Let O =>",a;x! be a homogeneous polynomial of degree d in K[Xo,...,
Xu], where x! = xé“ .- le},’ and the sum is taken over all index sets I = {i, ...,
i} such that i; >0 and Z//Zo ij=d. For each pe Mg, we set

ep(Q) = min;{ord,(a;)}.

The height of a homogeneous polynomial Q of degree d in K[Xy, ..., Xu] is
defined by the height of coefficients:

h(Q) = > —ey(Q) deg p.
pe Mg

From the sum formula, we have h(xQ) = h(Q) for all « € K*. Since we may
assume that one of the non-zero coeflicient of Q is 1, it follows that h(Q) > 0.
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The Weil function 4, ¢ is defined by

Ap,0(X) = (ordy(Q(x)) — dey(x) — €y(Q)) deg p = 0

for x e PM(K)\{Q = 0}.
Let Q1,0,,...,0, be homogeneous polynomials of degree d in K[Xjp,...,
Xu]. We define

ep(01,...,0Qy) =min{e,(01), ..., ep(Qy)}

and

h(Qla"'7Qq) = - Z ep(Qla"'7Qt]) degp

pe Mg

Let 2 be a n-dimensional projective subvariety of P defined over K. The
height of Z is defined by

W) = h(Fy),

where Fy is the Chow form of %.

In this paper, we will prove the following effective version of the generalized
Schmidt’s subspace theorem over K which corresponds to Chen-Ru-Yan’s result
[4] in number field case.

MAIN THEOREM. Let K be the function field of a nonsingular projective
variety V defined over an algebraically closed field of characteristic 0 and let S be
a finite set of prime divisors of V. Let 2 be a smooth n-dimensional projective
subvariety of PV defined over K with projective degree /\y. Let m, q be integers
with m>n and g>m+1. For all i=1,...,q, let Q; be homogeneous poly-
nomials of degree d; in K[Xy, ..., Xy] in m-subgeneral position with respect to Z.
Then for any given ¢ > 0, there exists an effectively computable finite union W,
of proper algebraic subsets of P (K) not containing X and effectively computable
constants Cg, C! such that for any x € Z(K)\W, either

h(x) < G,

or

SO di y0,(x) < (m(n+ 1)+ 2)h(x) + C.

i=1 peS

The algebraic subsets in W, and the constants C,, C, depend on ¢ and N, q, m,
K, S, Z and the Q;. Furthermore, the degrees of the algebraic subsets in W, can
be bounded above by

d
2(2n + l)d”“Ag-(< ;’VN) +q+ 1)81 +d,

where d = lem(dy, ..., d,).
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Remark 1.1. The constants C,, C/ will be given in (5.17) and (5.18). They
may depend on ¢, the degree of the canonical divisor class of V', the projective
degree of V, the degree of S (ie. >, gdegp), the projective degree of Z, the
dimension of %, the height of Z and the Q;, ¢ and m, N.

We would like to notice that Levin’s result (Theorem 5.1) gives us a hope
m(im—1)(n+1)

m+n—2
to have an effective version, we need to make everything explicit and effective.
The complexity of Levin’s method (using ‘lem’ of each pair of divisors instead
of individual divisor, applying Riemann-Roch’s theorem, e.t.c) causes us some
difficulty to do this task.

to improve the constant in front of /(x) to However, in order

2. Chow forms, Chow weights and Hilbert weights

2.1. Let % be a n-dimensional projective subvariety of PY defined over
K of degree Ay. To %, we can associate, up to a constant scalar, a unique
polynomial

Fy(uo, ..., u,) = Fy(uoo, ..., Uop; - 5Un0s - - Unis)

in (n+ 1) blocks of variables w; = (uy,...,upnr), i =0,...,n, which is called the
Chow form of %, with the following properties:

Fy is irreducible,

Fy is homogeneous in each block u;, i=0,...,n,

Fy(ug,...,u,) =0 if and only if # N H,, N---N H,, contains a K-rational
point, where H,, i=0,...,n are hyperplanes given by w;-X = ujoxo+---+
uiyxy = 0. It is well-known that the degree of Fy in each block u; is Agy.

Let ¢ = (co,...,cp) be a tuple of reals. Let ¢ be an auxiliary variable. We
consider the decomposition

ng(lcouoo, ey [CMM()M, ceey tc"uno, ceey l(’Ml/lnM)
= IEOGO(U(N ERR 7“/1) +oo+ lerGr‘(u0> .. '7“”)7

with Gy,..., G, eK[uoo,...,uOM;...;uno,...,unM} and ¢y > --- > ¢, Now, we
define the Chow weight of % with respect to ¢ by

6@/(C) = €.

2.2. Let % be a projective algebraic variety of PﬁM , defined over K of
dimension n and degree Ay. Denote by Iy the ideal of K[y, ..., yu] consisting
of all polynomials vanishing identically on %. For a positive integer m, let

K[yo,...,yml,, denote the vector space of homogeneous polynomials in K[yy, ...,
yu) of degree m (together with the zero polynomial) and put

(qu)m = I?[yo, ceey yMLn N1y.
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Then the Hilbert function of % is defined by

ng/(m) = dimlg(K[yo, R yM]m/(I"ﬂ)m)

for each m > 1.
By the usual theory of Hilbert polynomials, we have

n

(2.1) Hy(m) = Ay -%+ O(m™") as m — oo,

We define the m"-Hilbert weight sy(m,¢) of ¥ with respect to a tuple ¢ =
(co,...,ca) € RMHL by

sy(m, €) = max(ar + -+ ag,m) - €,

where the maximum is taken over all sets of monomials x*, ..., x*™ whose
residue classes modulo (Iz), form a basis of the K-vector space K|yy,...,

Vit (), -
According to Mumford [8], proposition 2.11 we have

i
sy(m,c) = ey(c) ST + O(m").
Together with (2.1), this implies that
(2.2) lim . sy(m,c) = . ey (c).
m—oo mHy (m) Ay -(n+1)
We call . sy(m,c) the m-th normalized Hilbert weight and

| mHzy(m)
m-e@(c) the normalized Chow weight of % with respect to c.

2.3. The estimate on Chow weight of a projective variety % [9, Lemma 3]
plays an essential role in the proof of Ru-Wang’s main theorem [9]. However,
Ru-Wang Lemma 3 only studies the case of % satisfying % N[, H; = 0 where
#I =dim % 4+ 1 and H;, iel be distinct coordinate hyperplanes. Thus, this
lemma is not suitable for our need. To deal with the m-subgeneral position case,
we need to give a lower bound for the Chow weight of a projective variety %
which may not satisfy the above-mentioned condition.

PropPoSITION 2.1. Let % be a n-dimensional projective algebraic subvariety
of PM defined over K of degree Ay. Let ¢ = (co,-..,cm) € Ri’”l. Let I be a
subset of {0,..., M} such that % is not contained in any coordinate hyperplane
H;:={y; =0} for all iel. Then,

ey(€) = Ay - max ¢;.
iel
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Proof. Without loss of generality, we can assume that 0 e/ and ¢y =
max;c; ¢;. Then, it is sufficient to prove that

ey(c) = Ay - co.

For each positive integer m, we consider the following filtration on the vector
space K[yo,...,Yml,,/Iw),, with respect to yo: The filtration

K[yo,.. .,yM]m/(Igy)m =WyD>W, D ---D W,
is defined by

Wi={g"|geK[yo,...,yml,, and y{|g},

where g* is the projection of g to K[yo,...,yuml,,/(Iz),, Take a basis y,...,
Vi, m)> (¥; € K[yo,-- s Yl j=1,..., Hy(m)) of the vector space W, in the
following way:

Since # ¢ Hy := {yo =0}, we have (y")" #0. Then, {(y")"} is a basis
for W,,. Choose y; =y

The finite set of vectors {(yg)", (& 'y1))",....(»& 'yu)"} generates
K-vector space W,,_;. Then, there exists a finite set I,_; C {1,..., M} such
that {y, (yg“*lyi)* :i€l,1} form a basis for W,,_;. Choose y, for k=2,...,
dim W,,_; so that

(e lk =2, dim Wy} = {3y |i€ Iyt ).

Similarly, for each j=m —1,...,1, the finite set of vectors

{(yé“)*v D) e O ) (T D) b = (0, by, bi),

i=

b[:m—j+l}

—

spans K-vector space W,_;. Then, there exists a finite ‘sqbset Iy C{(0,by,...,
bar) | M by =m — j+ 1} such that {y;, ..., ¥i., w (v ¥*)":beli} form a
basis for W;_;. Choose

(Wi Lk =dim W+ 1,...,dim W1} = {p{"y*|be [}
The basis ¥/, ..., lﬁ,w(m) of the vector space W, compatible with the filtration W,

i.e., for each i =0,...,m, it contains a basis of W,.
For each j=1,..., Hy(m), we can represent ; in the form
(2.3) v =yg-¥Y,
where a; = (0,4j1,...,au) € NM+1 " Notice that, there are exactly dim(W;/W;,,)
elements ¢; with j; =i in the set Yy,..., ¥y, (-

Now, we estimate the sum 377" i To do it, we need a lemma from

Chen-Ru-Yan [4], Lemma 2.2. We have included a proof of this lemma for the
sake of completeness.
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LEMMA 2.2.

Hy(m) n+1

Z ” SCERIE (1+o0(1)),
where the function o(1) depends only on the variety ¥.

Proof. 1t is clear that there are exactly dim(W;/Wi1) elements y; with

ij=1iin the set y,..., ¥y, Hence,
Hy(m m
(2.4) Z = i-dim(Wi/ Wi.1),

j=1 i=1

~.

in which W, = {0}.

Next, we claim that dim W; =dim K|yo,..., yml,_;/U#), ;- To see it
notice that each element  of W; can be represented as ¥ = yj. g with ge
K[yo,...,¥ml,_;- Furthermore, two polynomials g;, g» such that yj.g1 = y{.g2
in W; iff pi(g1 — g2) vanishes identically in %, that means, g; —g> vanishes
identically in #%. Therefore dim W; = Hy(m —i). In view of (2.1), for each
positive integer L,

n

- L -
dim K{yo, ..., yulp/(Iy)p = D -~ + O(L" h.

Hence,

Zi-dim(ﬂ/i/I/I/iH) Zz(dlmW dim W)

i=1 i

1 i=1

\
@
1
/—\
\/
=
§
=
S~—

gl 1
A?’n’!” (Lu_z) dt+o(1))+0( )
Therefore
m . ) Aﬂ/ mn+l
2.5 ~dim(W; /Wiy :‘71 1)).
(23) > dim( i/ Wir) = = (1 o)

Combining (2.4) and (2.5), we obtain the desired result. O
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Now, we continue with the proof of Proposition 2.1. Set e =(1,0,...,0) €
Zgo“, in which all coordinates of e are 0 except the first one. In view of (2.3),
the monomials y%™¢ j=1,..., Hy(m) form a basis of W,. Now, we consider
the sum

sz/(m)
(aj +ije) - c.
j=1
We have
Hy(m) Hy(m)
(aj +ije) - c = ie-c
j=1 j=1
Hy(m) Aﬂ/ . mn+l
= (0 o= (o)«
j=1
By definition of the m™-Hilbert weight sz (m,¢), we have
Ny - mn+1
Sgy(m,c) > W(l + 0(1)) < CQ.
In view of (2.1), it implies that
A .mn+l
ﬁ(l‘Fo(l))'Co |
lim T()Sev(m,c) > lim X 'm” =
m— oo 7 m— oo ay "
miam m Jn| (1+o(1)) "
Together with (2.2), this implies that
;e (¢) = ! ¢
Ny - (n+1) =
Hence, we have
ey(€) = Ay - cp.
This completes the proof. O

2.4. We recall an estimate on heights of Chow forms, due to Ru-Wang
[9, Lemma 8§].

LEMMA 2.3. Let & be a projective variety of PM defined over K with
dimension n > 1 and degree /\y. Let W : % — PR be a finite morphism given by
V(x) = [go(X) : -+ : gr(X)], where go, . .., gr are homogeneous polynomials of degree
d in K[Xo,...,Xu]. Let % =y(%). Then,

h(Fy) < d"'h(Fz) + (n+1)d" Arh(go, - -, gr)-
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3. Canonical polynomials from Chow form

Let 2 be a n-dimensional projective subvariety of P* defined over K. Let
Iy be the homogeneous prime ideal defining #. Brownawell [2] has shown a
canonical way to find polynomials from the Chow form of % which have the
same zero set as Iy. We now recall this construction from [2].

First of all, we note that a generic hyperplane passing through a given point
x has the form Sx for a skew-symmetric matrix.

Let Fy be the Chow form of #. We now consider how closely the Chow
form Fy determines Iy .

Let SO sM . SO be (n+1) generic skew symmetric (M + 1) x (M + 1)
matrices, SU) = (sj(,i)), 0 <i<n, and write

(3.1) Fr(SVx,...,8"x) = " P,(x)o

ce Ml

where .# be the set of all monomials in the 7+ 1 blocks of variables s =
(sj’k :0<j<k< M), (0<i<n), which are homogeneous of degree Ay in each
block. We note that the coefficients of Fy are in K since 2 is defined over K.
Therefore, the coefficients of P,(x) are in K for all 6 € .#. We define P,, g € ./
as the canonical polynomials.

Since S©®x,...,S"Wx are (n+1) generic hyperplanes through x,
Fr(SOx,...,8Mx) =0 if and only if x € Z(K).

But clearly from (3.1), we have Fy(S©x,...,S™x) =0 if and only if
Py(x)=0 for all o€ . 4.

Therefore, the ideal generated by {P,|o e .#} determines Z'(K) set theo-
retically. By Hilbert’s Nullstellensatz, we have that I is the radical of the ideal
generated by P,, ae .M.

We also recall the following result of Catanese [3].

TurorEM 3.1 (Catanese [3]). If 2 is a smooth projective variety in PM then
the polynomials P,, (g€ .#) cut out X scheme-theoretically. In other words, if
Do,i denotes the dehomogenization of P, in the affine piece X; #0 for i =0,...,n
the ideal generated by ps;, (o€ .U) equals to the ideal Iyny, where U; =
{X; #0}.

We end this section by listing some information on P,. First, clearly from
(3.1) that the degree of P, is (n+ 1)Ax. Moreover, the coefficients of P, are
Z-linear combinations of coefficients of the Chow form Fj,, hence

(3.2) es(Py) = ey(Fy).
It is obvious that the number of generating polynomials P, is at most
1
MM -1)\"
DAy + ————=
(3.3) (n+ Dba+—=

(n+ 1)Ly
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4. Some effective results
Now, we recall the following version of an effective Hilbert’s Nullstellensatz
(See [5], [6]).

THEOREM 4.1 (Jenolek [5], Kollar [6]). Let Po,...,P; be homogeneous
polynomials in K[Xy,...,Xu| of total degree at most d such that Py vanishes
at all common zeros (if any) of Py,...,P; in KM*'\. Then there exist a positive
integer u < (4d) M*2 and homogeneous polynomials Ay, ..., A; in K[Xo,...,Xu| of
total degree at most (4d)™*, such that

oaPY = A\P| + -+ AP
for some non-zero element o of K. Furthermore, there exists a positive integer
ly < 1(4(4d) ™ )M
such that
min{ord, (), e,(41),...,ep(A41)} =1 - 1min {ep(P)}

<i<l

for each p e M.

By using the same method as in Ru-Wang [9, Lemma 16], we will prove a
slight generalization of this result from general position to sub-general position.

Lemma 4.2. Let % be a smooth n-dimensional projective subvariety of
PY defined over K of degree Ay. Let m, q be integers with m>n and q >
m+1. Let Qy,...,0, be homogeneous polynomials in K[Xy, ..., Xy] of degree
d, in m-subgeneral position with respect to 2. For given pe Mg, and X e
Z\UL {0 =0}, we assume that

(4.1) ordy (Q1(x)) > -+ > ordy(Qy(x)).
Then

ord,(Qi(x)) deg p — d - e,(x) deg p
< (6 max{(m + 1) Ay, d}) " VMM (W(EL) + h(O1,. .., Oy))
for pe My and m+1<i<gq.

Proof. As h(Fy) = h(aFy) for o € K*, we may assume that one of coeffi-
cients of Fy is 1. Similarly, since 2(Qy, ..., Q,) = h(aQ;,...,20,), we can make
the same assumption for Q). Therefore, we have

eD(F’I’) <0, min eP(Qi) <0,
1<i<q

for each p e M.
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Let Py,..., P € K[Xy,..., Xy be the canonical polynomials from the Chow
form Fy of % defined in (3.1). Let

d' = max{deg Py,...,deg P, d}.

Since Q1,...,Q, are in m-subgeneral position with respect to 2" C PY, then
Pi,...,P., Q1,...,0n1 have no common zeros in PM(I?). Theorem 4.1 tell us
that there exists a constant u < (4d’)M+2 and polynomials 41, ..., 4, Aj 41, ..,
Aj rimi1 € K[Xp, ..., Xy of total degree at most (4d’)M+2 such that for 0 < j <
M, we have

G Xt = ApPrt -+ AP+ Aj 1 Q1 -+ A1 O

for some non-zero elements «; of K. Furthermore, there exists a positive
integer

(4.2) lo < (r+m+1)(44d)" )M
such that

(4.3) min{ord, (%), . ..,ordy(oar), ep(Aj1),s - -, ep(Aj rime1)}

> Iy min{en(P).ey(0)) = Iy - (em-) + min ep<Ql->)

1<i<q

for each p e Mk.

We may assume that A4;, (1 <i<r+m+ 1) are homogeneous polynomials
and therefore the degrees of A4, ,y1,...,4; 4my1 are u—d.

Let xe Z(K)\UL,{Qi =0}. Then

OCjX.;/ = Aj, r+1 (X) Ql (X) +- 4+ Aj,r+;11+1 (X) Qm+1 (X)
and hence, for all j, we have
ordy (o) +u-ordy(x;) >  min  ord,(4; ,1i(x)0i(x))
I<i<m+l

> min ordy(4; (X)) + min ord,(Q;(x))

1<i<m+l 1<i<m+l
> (= d)ey() + o+ (eoFr) + min ()
1<i<gq
+ ordy (Om1(x)).
(Here, the last inequality follows from (4.3) and (4.1)). Hence
(44)  01dy(Qpr () < degx) + max, ford ()} ~ o+ (e(Fr) + min 65(0)

for pe Mg. Since o; #0, (0 <j< M), from the sum formula and (4.3) we
have
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ordy(o) degp=— > ordy(e;) degq
qe Mg\{p}
<= 5 (e + min o(0)) dexa
ae Mx\ (v} =r=d

Combining with (4.4), we have

ordy(Qe1) degp < d-ey(x)degp— > - (eq(Fyx) + min eq(Q,-)> deg q

qe Mg\{p}
—1Ip- (ep(F%) + min ev(Qi)) deg p
1<i<gq

=d-ey(x)deg p+1l- (h(Fz)+h(O,...,0)).

Now, we estimate /y introduced in (4.2).
We first estimate the number r introduced in (3.3). This number r can be
bounded by

(4 1)ag ¢ MM =D\
4.5) r< ) 2 < (5(n+ 1) Ay )IMM=1/2,
(n+ 1) Ay

Here, we use the following inequality
A+BY _ (A+B)"F LB 4 A B<eB LA B
A )~ A4BE A B) ~ B)’
where A, B are positive integers and e is the natural exponential number.

Since the degree of P, is (n+ 1)Ag, we have d’ <max{(n+ 1)Ag,d}.
Therefore,

(4.6) 4(4d")M? < (6d")M? < [6 max{(m + 1)Ly, d} M2
By (4.5), we have
(4.7) rem41< (5(n+ 1)Ay) " THMM=N2 4 4 1)
S (6("’1 + 1)&%')<H+I)M(M_l)/2
< [6 max{(m + 1) Ay, d})" MM =1/2.
Combining (4.6) and (4.7) and (4.2), we have
lo < (6 max{(m+ 1)Ay,d}) DO +M) O

5. Proof of main theorem

We first recall the following theorem, due to Ru-Wang [9, Theorem 23].



64 GIANG LE

THEOREM 5.1 (Ru-Wang [9]). Let K be the function field of a nonsingular
projective variety V defined over an algebraically closed field of characteristic O.
Let S be a finite set of prime divisors of V. Let % be an n-dimensional smooth
projective subvariety of P™ defined over K. For every pe My and 'y =[yo:---:
yu), we let ¢, i(y) = (ord, (i) —ep(y)) -degp (0 <i < M) and c,(y) = (cp,0(y);-- -,
co.m(y)). Then for a given ¢ >0, there exists an effectively computable finite
union %, of proper algebraic subsets of PM(K) not containing % and effectively
computable constants a,, a. such that for any y € % (K)\Z. either

h(y) < a;(h(Fy) + 1)

> ewles(y) < (n+ 1+ &)l - h(y) + al(h(Fy) +1).
pes

The algebraic subsets in &%, and the constants a,, a, depend on ¢ and M, K, S
and %.  Furthermore, the degrees of the algebraic subsets in &, can be bounded
above by 1+2(2n+ 1) Ay(M + 1)e7!.

We first use Theorem 5.1 and Proposition 2.1 to prove Theorem 5.2. Then,
we will show that the main theorem is an implication of Theorem 5.2.

THEOREM 5.2. Let K be the function field of a nonsingular projective variety
V' defined over an algebraically closed field of characteristic 0. Let S be a finite
set of prime divisors of V. Let % be an n-dimensional smooth projective sub-
variety of PM defined over K. Denote by Iy the subset of {0,..., M} consisting
of all ie{0,..., M} such that % is not contained in coordinate hyperplane Y.
Let mgy be a positive integer with my < |Iy| and ¢ > 0. Then there exists an effec-
tively computable finite union R, of proper algebraic subsets of P™(K) not con-
taining % and effectively computable constants b,, b] such that for any y € Y\ R,
either

h(y) < b.(h(Fy) +1)

Zm}axzzp’ vi(y) < (mo(n+ 1) + &) Ay - h(y) + b(h(Fy) + 1).
pesS iel

Here the maximum is taken over all subsets I of Iy with cardinality my.

The algebraic subsets in R, and the constants b, b, depend on ¢ and M, K, S
and %. Furthermore, the degrees of the algebraic subsets in R, can be bounded
above by 1+2(2n+1)Ay(M + 1)e7!

Proof. For every pe Mg and y=[yo:---: yul, we let
¢p.i(y) = (ordy(yi) —ep(y)) -degp (0 <i< M)
and ey (y) = (¢p,0(¥): -+ cp m(¥))-
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Theorem 5.1 implies that for a given ¢ > 0, there exists an effectively
computable finite union %, of proper algebraic subsets of P¥(K) not contain-
ing % and effectively computable constants a,,,, a, I such that for any ye
% (K)\Z, either

h(y) < agpm,(h(Fy) + 1)

or

51 Senlenls) = (4 145 ) 20 hly) + al (0 +1),

peS

Let I be an arbitrary subset of {0,..., M} with cardinality my such that %
is not contained in coordinate hyperplanes Y; for all ie /. It follows from
Proposition 2.1 that

(5.2) > il

iel

"0 ey (e ().

a?

On the other hand, by the definition, /Ip,y,(y) = ¢p,i(y). Hence,

(5.3) > ary) < Teyley(y):
iel %
Therefore,
(5.4) Z max Z Jp, ¥, ( (cp(y
pes iel

Set #, = %,. By combining (5.1) and (5.4), we have

Somax > A n(y) < (mo(n+1)+)- h(y)+as’/mOZ—;(h(qu)+ 1.

pesS iel

for all y € #\A..
The constants b, and b in the assertion can be given by

(5.5) b, = Ae/my> b =my-a,

e/mg?
where a, and a are constants from Theorem 5.1. This completes the proof of
Theorem 5.2. O

Now, we will show that Theorem 5.2 implies the main theorem.

Proof of the main theorem. Let d is the lcm of d/, 1 <i<g, and let
My, ..., My, be all the monomials in Xp,..., Xy of degree d. We define the
map

(5.6) o — PV y(x) = [Mo(x): - My, (x): O]/ (x) : - - Q/(x)].
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Let % = (%). Then this map is an embedding and % is a smooth projective
subvariety of PV defined over K with dim % =n and deg % =: Ay < d"Ay.
It follows from Lemma 2.3 that

h(Fy) < d" " h(Fy) + (n+ 1) 2qd"h(Q]", ..., 04/%).

Since & Z {Q; =0} then we have ¥ € Yy,4i, i =1,...,9. We apply Theorem
5.2 to % e PV and the coordinate hyperplanes Yvit15-- YN4q and my = m.
Then, for a given ¢ > 0, there exists an effectively computable finite union %, of
proper algebraic subsets of P17(K) not containing % and effectively computable
constants b,, b, such that for any y(x) e #\%, either

(5.7 h(Y(x)) < be(h(Fy) + 1)
< b(1+d" " h(Fy) + (n+ 1) 0gd"h(Q)", ..., Q)
< bi(h(Fz) +1)

(5-8) > max D e nily) < (m(n+ 1) + )h(Y(x)) + b (h(Fy) + 1)

pes iel
< (m(n+ 1)+ e)h(Y(x)) + bl(h(Fr) + 1).

Here the maximum is taken over all subsets I of {N;+1,...,N; +¢} with
cardinality m and the constants b, and b, are given by

(5.9) by = b, - (d" + (n+ 1) 2gd"h(Q4,..., 0/4))
and
(5.10) By = bl (@ + (n+ 1) 2gd"h(Q]', ... 0/ )).

Here b, and b, are the constants from Theorem 5.2 with M = N; +¢q. Notice
that the degrees of the algebraic subsets in %, can be bounded by

(5.11) 202n+1)Agy(M +1)e™' +1<2(2n+ 1)dm,¢-<(d J]FVN) +q+ 1>£1 + 1.

For a given xe 2\ J,{0; =0} and a fixed pe S, we may reindex the Q;
so that (d/d;) ord,(Qi(x)) >--- > (d/d,) ord,(Q,(x)). Since Qi,...,Q, are
in m-subgeneral position with respect to 2 we can apply Lemma 4.2 to
Q]d/d',...,Qf,j/d“. Then, for all m+1 < j <¢q, we have

d
(5.12) E/ ord, (Q;(x)) deg p < d - ey(x) deg p + ¢,

where

(5.13) ¢ = (6 max{(m+ 1)A,d}) "™ VYN (n(Ey) + a0, .., QI4)).
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Notice that ¢; > 0. Thus,

ep(V(x) de p = min{ d - €,(x), 5 01 (Q1(0). ..., 0r(Q,(x) | deg

q
<d-ey(x) deg p.
Hence, for 1 <i <gq,
) d
G149 g ) = (§ (@) - ep(v(x) ) degv

1

> <jl ord, (Qi(x)) —d - ep(x)) deg p.

On the other hand,

4 d
Zdw )= (§ (@)~ ¢ esx) ~ @) ) e
i=1 !
is smaller than

1.7/d ] d
> <— Ordp(Qf(X))—d~ep(X)) degp—c2| —¢ min —ey(Q;) degp+q-c

i d; 1<i<q d;

which by (5.12) does not exceed

[/d | d
3[4 orau(@) - ) dee n - o] —a min Sesi0) degp-ce

1<i<gq d

Combining with (5.14), we have

! d
(5.15) § g
< E Ao vy (W(X)) —mey — g rmn de(Q)degp+q e
= e T o g e
d
Smaxg Jo,v,(W (X)) — ¢ min —ey(Q;) degp + (g —m) - ca.

=1 1<1<qd

Here the maximum is taken over all subsets I of {N;+1,...,N;+ ¢} with
cardinality m. Combining with (5.8), we have

(5.16) ZZ zp (m(n+1) + &)h(Y(x)) + b/ (h(Fz) + 1)

peS i=

+4q- h(Qld/dl7' (R Qj/dq) + (q - m)|S| s 2.
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We may conclude the proof of the theorem by the following facts. Firstly, if P
is one of the homogeneous polynomials in K[Yy,..., Yy,44] defining Z,, then
G = Poy is a homogeneous polynomials of degree d-deg P in K[Xp, ..., Xy]
and all such G form an effectively computable finite union #; of proper algebraic
subsets of PY(K) with degree bounded above by

2(2n + 1)d"+1A,T<(d ;N) +q+ 1),3—1 +d

by (5.11). Secondly, it is easy to check that
dh(x) < h(}(x)) < dh(x) +h(Q{/" ..., Q).

Hence, (5.16) becomes

ZZ I 0,(X) < (m(n + 1) + &)dh(x) + b.(h(Fy) + 1)

peS i=
+ g+ (mn+1) +e)-h(O]'",...,09%) + (g —m)|S]| - s
and (5.7) becomes

h(x) < élig(h(F%») +1).

Combining with (5.5) and (5.9), (5.10) the constants C,, C, in the assertion can be
given by

(5.17) Cszéae/m-(d”“—&-(n—&—l)Aggd”h(Qf/dl L Q4 - (h(Fir) + 1)

and

1
(518)  Cl=—al,-m: (d™ + (n+ 1) 2gd"h(Q'" ..., Q%)) - (h(Fy) + 1)

2o (g mln 1) +0) WO ) 1 (g = mlS] e,

where a/,, and a, are the constants from Theorem 5.1.

e/m
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