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A NOTE ON “ON THE APPEARANCE OF EISENSTEIN
SERIES THROUGH DEGENERATION”
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Abstract

Let M =T'\H be a geometrically finite hyperbolic surface, realized as the quotient
of the hyperbolic upper half plane H by a geometrically finite discrete group of
isometries acting on H. To a parabolic element of the uniformizing group I', there is
an associated 1-form parabolic Eisenstein series. To a primitive hyperbolic element,
then, following ideas due to Kudla—Millson, there is a corresponding 1-form hyperbolic
Eisenstein series. In this article, we study the limiting behavior of these hyperbolic
Eisenstein series on a degenerating family of hyperbolic Riemann surfaces of finite type,
using basically the limiting behavior of counting functions associated to degenerating
hyperbolic Riemann surfaces. In this sense, we generalize the results obtained in
Garbin, Jorgenson and Munn (Comment Math Helv 83:701-721, 2008) to the case of
geometrically finite hyperbolic surfaces of infinite volume and form-valued parabolic
and hyperbolic Eisenstein series.

1. Introduction

There is a vast literature addressing problems in the study of spectral theory
degenerating hyperbolic Riemann surfaces and within, on degeneration of
Poincaré series and Eisenstein series, see [3], [7], [8], [15], [18], [19], [20] to
cite some examples.

Our context and our aim are the following. Let I' contained in PSL(2,R)
be a Fuchsian group finitely generated of the first or second kind acting on the
upper half plane H without elliptic elements. The quotient I'\H is a hyperbolic
geometrically finite surface. This means that I' admits a finite sided polygonal
fundamental domain in H. Throughout this article we refer to parabolic Eisen-
stein series p° associated to a parabolic element of the uniformizing group I
or equivalently to a cusp p and hyperbolic Eisenstein series ¢* associated to a
primitive hyperbolic element or equivalently to a simple closed oriented geodesic
c.
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Precise definitions and references to all concepts will be given in Section 2
below. However, with these comments made, we are able to state the main
result of the paper.

MAIN THEOREM
Let M; be a degenerating family of geometrically finite hyperbolic surfaces
with limit surface M,.
(1) Let ¢/ be the hyperbolic Eisenstein series on M, associated to a non-
separating simple closed geodesic of length [, then
1 i a
i e = =4
where p and q are the cusps arising from the pinching geodesic c;.

2) Let ¢ be the hyperbolic Eisenstein series on M, associated to the boundar
i yp V
of a funnel then

A S
e =

In all instances, the convergence is uniform on compact subsets of M, bounded
away from the developing cusps, and in half-planes of the form Re(s) > 1+ for
any 6 > 0.

Remark 1.1.  The main tool of the demonstration is the study of the limiting
behavior of counting functions as in [7].

In the cited article the authors are working with scalar-values hyperbolic
Eisenstein series. Casually we point out that there is a difference between scalar-
values Fisenstein series and form-valued Fisenstein series studied in [17] an in [3]:
if the degenerating Riemann surface has a single pinching geodesic which is non-
separating, then the associated hyperbolic Eisenstein series does not converge to
the sum of two parabolic Eisenstein series corresponding to the two newly formed
cusps but to the difference.

At the end of this paper, we make the remark that a same result occurs in
the general infinite volume case.

2. Background material

2.1. Geometrically finite hyperbolic surface. Let us recall the standard
geometric notations which will be used.

A topologically finite (i.e. finite Euler characteristic) surface is a surface
homeomorphic to a compact surface with finitely many points excised and a
geometrically finite hyperbolic surface M is a topologically finite, complete
Riemann surface of constant curvature —1. It can be decomposed into a
compact core K plus cusps C; and funnels F; ([1]):

M=KU(CiU--UGC,)U(F U---UF,).



EISENSTEIN SERIES THROUGH DEGENERATION 187

The boundary of K consists of ns closed geodesics (uniquely determined) and
n. horocycles (the choice of which is not unique) along which K is glued to the
funnel and cusp ends, respectively.

A hyperbolic transformation 7 € PSL(2,R) generates a cyclic hyperbolic
group {T». The quotient C; = (T)\H is a hyperbolic cylinder of diameter / =
[(T). By conjugation we can identify the generator T with the map o; : z — e'z,
and we define I';, to be the corresponding cyclic group. A natural fundamental
domain for T,, would be the region % = {ze H,1 <|z| <e'}. The y-axis is
the lift of the only simple closed geodesic on C;, whose length is /. The stan-
dard funnel of diameter / > 0, Fj, is the half hyperbolic cylinder I';\H, F; =
(RY), x (R\Z), with the metric ds> = dr® + I* cosh?(r) dx>.

We can always conjugate a parabolic cyclic group {7') to the group I',,
generated by z+— z+ 1, so the parabolic cylinder is unique up to isometry. A
natural fundamental domain for T, is %, = {0 <Rez <1} C H. The stan-
dard cusp C,, is the half parabolic cylinder I'..\H, C,, = ([0, oo[), x (R\Z), with
the metric ds®> = dr’> + e~ dx?. The funnels F; and the cusps C; are isometric
to the preceding standard models.

2.2. Hodge operator. We define the Hodge operator (or conjugation oper-
ator) on smooth differential forms on a Riemann surface M as follows: for a
I-form w given in local coordinate z=x+iy on M by w= fdx+gdy, we
associate xw = —g dx + f dy. To define the operator * on functions and 2-forms,
we denote by vy = y~2 dxAdy the volume form. If f is a function, we set
xf = f(z)vy. For a 2-form Q, we set *Q = Q/vy.

We are interested primarily in 1-forms. If w is given in complex notation by
u(z) dz + v(z) dz, then xw = —iu(z) dz + iv(z) dz. We define a pointwise scalar
product at z of two l-forms ¢ and Y by ¢ A = (¢, dvy and the pointwise
norm of a 1-form w is defined by w A *® = ||®||“vy.

2.3. Hyperbolic and parabolic Eisenstein series. The study of parabolic
Eisenstein series is a classical part of mathematical literature (see [16] just to cite
one reference) and more precisely in the case of infinite area hyperbolic Riemann
surfaces the study of such series can be found also in [1], p. 102.

As underlined by Gérardin in [9], an explicit construction of hyperbolic
Eisenstein series can be found in [6] and the convergence of these Eisenstein series
can be found in [6], p. 184. Kudla and Millson give an invariant construction
of hyperbolic Eisenstein series that we follow here (for more details see [9] and
[4]). Let us recall the definitions of hyperbolic and parabolic Eisenstein series.

If X is an horocycle of H with the direct orientation, we denote by dx(z) the
oriented distance between X and ze H, (z: X) = e%©, vy the volume form on
X invariant under 'y, the stabilizer of X in I', py the orthogonal projection
from H to X. Then define a 1-form on H, wy = xpjvy such that ||wy| =
(z:X).

If Y is an oriented geodesic of H, we denote by dy(z) the oriented distance
between Y and ze H, (z: Y) = 1/cosh dy(z), vy the volume form on Y invariant
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under I'y, the stabilizer of Y in I', py the orthogonal projection from H to
Y. Then define a 1-form on H, wy = xpjvy such that |wy|| =(z:7Y).

Let ¢ an oriented horocycle on M associated to a point p and H(&) the set
of horocycles on H that project under the canonical projection H — M on .
The Eisenstein series associated to ¢ is the 1-form

E= " fwxlltwy,

XeH()

defined for Re s > 1 and called horocyclic Eisenstein series. .

If we denote by |¢| the width of the horocycle ¢ then the form [&|°¢* is
independent of the choice of the horocycle ¢ associated to the point p. We
denoted this series by p* and we will call it a parabolic Eisenstein series.

In the same way let # be a closed oriented geodesic on M and H(#) the set
of oriented geodesics on H that project to #. The Eisenstein series associated to
n is, up to some normalization, the 1-form

A= S eyl s

YeH(n)

defined for Re s > 1 and called hyperbolic Fisenstein series.
In each case, for se C, Res > 1, we define the I-form on M with Z =X
(respectively, Z = Y) and the notation [jwz|* 'w; = wi:

s
E wy

called an horocyclic Eisenstein series (respectively, an hyperbolic Eisenstein series).
Fix Yy in H(n) and denote by Ty, its stabilizer in T', then H(i) =TY, =
(T\I'y,) Yo

o N
7’ = E Wy,
}'Er\ryo

Choose and fix any point z € M, which we lift to a point ze H. As d,y,(z) =
dy,(y~'z), we have also

5 1 ddy, (62)
Je FYO \I" cosh d Yo (52) s cosh dYO (52) .

Remark 2.1. dy, is the Fermi-coordinate x; in [17].

In the same way, fix Xy in H(£) and denote by I'y, its stabilizer in I', then
H(f) = FX() = (F\FXO)XO then

E@) = > w2

yel"\l")(0
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Choose and fix any point z € M, which we lift to a point ze H. As d,x,(z) =

dy,(y~'z), we have also

E) = > e ddy, (52).

§EFXO\T

2.4. Stieltjes integrals. In order to be consistent with the notations of [7]
we will fix Z in the set of oriented geodesics of H that project to # (respectively,
in the set of oriented horocycles of H that project to &) and we will write
dhyp(z,Zy) the geodesic distance and as before dgz,(z), the oriented geodesic
distance from z to Z;. With all this, we will re-write the counting functions in
[7], p. 705, in the following way: the hyperbolic counting function (respectively,
parabolic counting function associated to Xj) is define as

Nuyp, m,5(T5z) = card{o e 'y \I', =T < dy,(6z) < T}
(respectively, Npar,my,p(T;5z,E) = card{d e Iy \I', —T < dx,(dz) < T}).
As 75 is non-separating one needs to take into account that geodesic lengths

from z to # enter the cylinder about the pinching geodesic from the two different
sides.

N 1 ddy,(0z)
1 S(z) = 0
W 7 (;el—zye\rcosh dy, (6z)* " cosh dy, (0z)
1 ddy, (0z)

2 -2 T cosh dy,(59)
SETrA\T cosh dy, (0z)""" cosh dy,(0z
dy()(52)20

1 ddy, (6
+ Z s—1 YO( Z) :
dely,\l cosh dYo (52) cosh dYo ((SZ)
dy, (62)<0

Let then write
Nuyp, a5 (%5 2) = NhLyvaw(x; z)+ Ntf;p,M,,,(x; 2);
where
Nio .y (X:2) = card{6 € Ty, \I',0 < dy, (dz) < x}
and
Nkf;p,Mw(x? z) = card{d € I'y,\I', —x < dy, (0z) < 0}.

They are increasing step-functions and give rise to a Stieltjes measure
dNhyp. m.y (respectively, dNpar My ps thLyp7 Mo le{;p-, Mon)-



190 THERESE FALLIERO

If we denote wy,(x) , we can express the hyperbolic Eisenstein series

" cosh x
as a Stieltjes integral, namely

76 =] (o )H () dNugpar g (x:2)

o \cosh x

o \cosh x

o0 1 <S71)
= J ( ) wy, (x) thLyp’Mw(x; z)

0 1 (s—1)
- J < ) Wy, (x) dN}fipyM,”(x; z).

o \cosh x

We have the following inequality

1 (s=1)
(cosh x) W ()

© 1 (Re s)
= J ( ) ANnyp, M,y (X5 2).

o \cosh x

We can choose Xy such that Npu g, p(7;2,&) =card{d e Ty \I', =T <
dy,(0z) <0}. If we denote wy,(x) =e*dx, we can express the parabolic
Eisenstein series as a Stieltjes integral, namely

dNnyp, m,y(X; 2)

el < |

o0

E(E) = | () () Vo 52

and we have the same preceding remark.

3. Convergence

A family of degenerating geometrically finite hyperbolic surfaces consists of
a surface M and a smooth family (g;),., of Riemannian metrics that meet the
following assumptions:

(1) The Riemannian manifold M; = (M,g;) is a geometrically finite hyper-
bolic surface for each /.

(2) There are finitely many disjoint open subsets %;; C M that are diffeo-
morphic to cylinders R\Z x J; where J; C R is a connected neighborhood
of 0 with the metric (x,a) — (L(1)* +a2) dx>+ ((l(1)* + a*) " da® and
[;(l) >0 as [ — 0. The curve ¢; =R\Z x {0} is a closed geodesic of
length /;(/).

(3) The complement of (CiU---UGC,)U(FU---UF,)U;%,; where we
may have some F; C %, ; is relatively compact.

(4) On M, := M\, ¢;, the metrics g; converge smoothly to a hyperbolic
metric gy as [ — 0. Mj is a possibly non connected hyperbolic surface
that contains a pair of cusps for each i.
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In the following, we will assume that M; has a single family of degenerat-
ing geodesics; the more general situation is easily obtained with only a slight
modification of notation. More precisely we contemplate two cases: the case the
degenerating geodesic is non-separating and the case the degenerating geodesic
is the boundary of a funnel. In the first case we have for any 0 <& < 1/2,
1. =R\Z x ]—¢/2,+¢/2] with total volume equal to ¢. In the second case
%), = R\Z x |—¢/2,4+ 0] contains the funnel F;.

In both cases we consider a degenerating family of groups {I';} with M; =
H\T'; degenerating to the surface My, I'; containing the transformation o;(z) =
e’z and its stabilizer T',,, We also write g, for the associated closed geodesic.
Then the geodesic in H fixed by o; is the line Yy = {Re(z) =0} N H. For any
point z € M;, which we lift to a point z € H, let d;(z) denote the geodesic distance
from z to Yy. We denote by p and ¢ the two cusps of M, arising from pinching
g, the limit of respectively the right side and the left side of the g;-collar % ,.

To prevent burdensome notation, we write

NhYPa/ = Nhyp, M,

L(R) ._ ArL(R)
Nhyp-,l T Nhyp,Mz.,c/

In the case the degenerating geodesic ¢; is non-separating, we denote by 0%}~
(respectively, 0% R ) the left (respectively, right) boundary of the collar %, and the
corresponding counting functions Nhyp, 061 (x;z) = card{o e I';\I';,0 < dML (0z2)
< x} (respectively, Ny, o6F r(x;z) = card{5 e, \I'),—x < dogr (0z) < 0}).

In the case the degeneratmg geodesic ¢; is the boundary of the funnel F;
we are only interested in the right side of the collar and the corresponding
definitions.

3.1. Convergence of counting functions. We can rewrite Lemma 3.3 of [7]
in the following way

Lemma 3.1.  Assume & >0 is sufficiently small so that 6, . is embedded in
M. Let ©(e,l) being the half width of the collar %, ., then for any x > 0 we have:
(1) In the case the degenerating geodesic c¢; is non-separating

Nhyp,r';’%i(x; Z) = N}{;/p,l(x + ‘L'(S, Z)a Z);
%Lr% Nl{‘yp,l(x + T(Ea l);Z) = Npar, Mo.q(x§ Z, éq,z:)

with |&, .| = ¢/2.
In the same way

Nhyp, o2 (X3 2) = Nh];p,l(x + (e, 1); 2);
%E% le;p,l(x +1(e,1);2) = Npar‘M(nP(M Zy épws)

with |&, .| = ¢/2.
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(2) In the case the degenerating geodesic c; is the boundary of a funnel,
Nhyp,1(T5z) is equal to card{o e I';\I';, =T < d;(0z) <0} and we have

%in;)l Niyp,1(x + (&, 1); 2) = Npar, My, p(X;2,Ep )

In all instances, the convergence is uniform on compact subsets of the complement
Of (g/‘g.

We will denote by X, (respectively, X,) a horocycle in H corresponding to
&, (respectively, &, ).

Let us illustrate this result by a change of variables. To study the left side
of the collar use the change of variables /{ = —log(—z), with the principal branch:

Ld\ s dz| \' _ (1] :
then <7 ?> = (d{)” and <m> = (sin lb> for { =a+ib.

We consider ¢ the cusp of M limit of the left side of the g;-collar. Now, as
above, let /{ = —log(—z), z € H, and conjugate I'; by the map {(z) to obtain I}
acting on ;= {{|0 <Im{<n/l}. T;is a (non-Mobius) group of desk trans-
formations acting on %}; the quotient #\I'; is M.

There exist homeomorphisms f; from M; — {¢;} to My, with f; tending to
isometries C?-uniformly on compact subsets of the complement of %, .; f; has
a lift f;, a homeomorphism from a sub domain of .%; (containing the left half-
collar {-1<Re(=<0,c<Im(< 7z/2l}) to H; f; induces a group homomorphism

:Ty — I by the rule A —>f, '4f,, AeTy. We call p(A4) eI, the element
correspondlng to AeTy. Now by our normalizations for I'; and T, the trans-
lation { — { —1 corresponds to itself. If we specify the further normalization

£,(i) = i, then the lifts £, are uniquely determined and tend uniformly on compact
subsets to the identity, and thus for A4 € 'y, the corresponding elements p,(A4)
tend uniformly on compact subsets to 4.

3.2. Convergence of Eisenstein series. In this section, we prove the Main
Theorem.
First assume ¢; is non-separating. Let then write
¢(z) = ¢i(2) — Cir(2)

with

éma=f< 1XH$an%Nwa

cosh x

and corresponding definition for ¢/z(z). To begin, we write

. To+(e, 1) 1 (s=1) )
(3) C}\L (Z) = JO <COSh X> Wy, (X) thpr(x; Z)
" 1 \&D )
" JT +a(e,)) (Cosh x) wy, (X) dNyy (x5 2),
0+1(e,

where 7(e,[) is given in Lemma 3.1.
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For the integral over [Ty + 7(e, /), c0), we have

0 1 (s—1) © 1 Res
L 2 < INE . 7).
J ( > W) ANy 6:2))| < J Tott(,1) (cosh x> ANpgp1(:2)

To+1(e,1) cosh x
Now, we recall the fundamental geometric lemma which applies in our context
(see Lemma 1.4 of [14]):

LemmA 3.2. Let M =T\H be a hyperbolic Riemann surface of finite type.
For any point z € M with injectivity radius r and any x > Ty > r, we have

sinh? (x —; r) — sinh? (?)
(T(); Z) —+ .

4) Nnyp, a1,7(X52) < Nhyp, .y ,
sinh? (-)

From this lemma we deduce the following inequality, as in [7] p. 718, with
o =Res and r the injectivity radius of M; at z:

(5) 2’”6‘"(6"I>Jm ( ! )R“dNL (x;2) < el7otDT0 ¢ (G>
Ty+e(e,1) \COSh X by, [ = sinh?(r/2) \o — 1)

By choosing

1 e’ o
To=> o1 <ln,u+ln (sinhz(r/2) <0 - 1>>>’

we have that the upper bound in (5) can be made smaller than any x> 0.
In the same way,

5573(2) = J (eix)(j;wwz\’(x_x) dear,Mo.,q(x; Z)

0
e~ Tole=1) 2 sinh(r)
< ————\l+——= |
4 sinh”(r/2) sinh”(r/2)
can be made, for Tj sufficiently big, as small as we want uniformly on compact
subsets of M bounded away from the developing cusps and in half-planes of the

form Re(s) > 1+ for any J > 0.
For the first integral in (3), with an adequate T, chosen, we begin by writing

To+(e,1) 1 (s—1) )
JO (Cosh x> Wy, (%) thpr(x; z)

To 1 (s=1)
:L <h(x+(1))) Wr (¥ + 72 1) ANy, o, (52)-

Let us assume, for convenience, that 7, is a point of continuity of
Npar, My, q(X; 2, ), meaning there is no geodesic path from z to £, , on M, with

j () Dy, (=) dNgar 1y 4(5:2)
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length equal to 7y. Then, as lim;_ NhLyp,,(To +1(&,1);2) = Npar, m0,4(T05 2, &4, 0),
there exists Iy = lo(To,¢) such that, for I <k, N=Ng (To+1(el);z)=
Noar, mo,q(To32, &) Let {tx1,1 <k <m} C [0, To] (respectively, {#,1 <k <n}
C [0, Ty]) be the set of lengths on M; (respectively, M) such that for any # > 0
we have

NhLyp_,(lkJ +1(e,0) —m52) < N}gp,,(tm +1(e, 1) + 15 2).

(respectively, Npar,ar,q(tk — 152, Eq.e) < Npar, Mo, q(tk +152,E4.))-

We denote by {my ;1 <k <n} (respectively, {my,| <k < n}) the multi-
plicities of {#.;} (respectively, {t,1 <k < n}).

Then we have

To+t(e, 1) 1 (s—1) .
Jo (cosh x) Wy, (x) dNygy (x5 2)

n
=" cosh(tx; + (e, ) “mpd (i1 + (e, 1))
k=1

In the same way,

and

Ty n
J (e’x)(“fl)wxq(—x) dNpar, My, q(X52) = — Z e my diy.
0 =1

In the following take / < ly. As limj_o N (11 +2(e,1);2) = 0, 3 = L (1),
I <1, Nh[S/p.l(t] +T(8, l);Z) =0,s0 11 < .

In a similar way, lim;_ NhLyp_,(tg + t(¢,1);z) = my 0, for / sufficiently small,
NhLyp,l(lz + ‘L'(E, 1);2) =my,o > 0, ) >t

In conclusion there exists /, = hL(T>) < I and sufficiently small so that for
I<bh, ti<t1;<t) <ty and m; =mo. Repeating this argument there exists
l; sufficiently small so that for / </, Vj, 1 <j<i, t;<t; <ty and m;; =
mjo. As Y ;_ymg =Y, my,;, there exists /, sufficiently small so that for / < /,,
np=nand Vj, 1 <j<n, ; <t;; <t and m;; = m;o.

Moreover as for all T, t; < T < t, we have lim;_ NhLpr(T+r(a, l);z) =
my,0, we deduce that lim;_o #;; = #; and the same for all others #;;, 1 < j <n.

Then for / < [, we can write,

To+1(e,1) 1 (s—1) i
L (cosh x) Wy, (%) dNpgp 1(X; 2)

= cosh(t; +t(e,0)) “md(tis + (e, 1)).
k=1
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Now we use the preceding change of variables /{ = —log(—z) to see that
limt—»OHd(lk,l + 7(87 l)) - dlk“ =0.
The hyperbolic metric on the collar is given in polar coordinates by ds®> =

dr? +r* do* . o
%. Then, with the substitution Inr=—la, 0§ =n—[b where (=
r? sin 2072 2 2 2
1= (d db . d db
a+ib, ds® :(af—klb)’ which tends to % as / tends to zero. The
sin
convergence is uniform for y bounded, and for instance is not uniform for
ly <m/2.
In Fermi coordinates sin 6 =

1 ! db
— and dx; = b db tends to % as /

tends to zero. Now, remember that, with simplified notations: # ;+ 7(¢,/) =
x2(Z) =d)(Z2), t, = —dx,(Z) for some Z=a+ib and |d(tx;+ (e, 1)) — dt| =
(Ib/sin(lb) — 1). 1t follows that ||d(,; + (¢, [)) — dtx|| tends to zero as / tends to
Zero.
Moreover for fixed x >0 and se C with Re(s) > 0, we have
lim 27%¢"((cosh(x +r)) " =™

r— 00

and the limit is uniform for all x>0 and Re(s)>1+0. Then
lim; g 2753 cosh(tg ; + t(e, 1)) ™ = e*% and lim;_o||d(t;) — d(#)| = 0 give

-0

lim (2“'67@’”“'2 cosh(tx, 1+ (e, 1)) *d(tr, 1 + t(e,1)) ) Ze e dtmy.

In other words we have

] ; To+t(e,l) 1 (s—1) .
}E% sef(e )s JO <Cosh x) wy, (X) thyp_’,(x; Z)

Ty
_ _J () Dy, (—x) dNpar, 1.4 (53 2)
0

and the convergence is uniform on compact subsets of the complement of %,
and in half-planes of the form Re(s) > 1+ for any J > 0.
Then we write

1 AS 1 2s s STE
lv IL( ) Fesf(&;)z @ I)CIL( )
We have
/2 do e e\
w(e. ) Lotw,) smg % (21+ <2l> Rk
such that

120 2 )
F—EST<3-,1> = ;(1 —SO(I ))

converges uniformly on compact subsets of Re(s) > 1 to (—) .
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Now

q‘\' — ‘ngrség‘e
s oTh
-5 )0y, (—x) dN, .
_<2> HO (™) wx, (—x) dNpar, My, ¢(x; 2)

.
@ g (-2) i)
To

We now use (5), (6), the preceding limit and the triangle inequality in order to
prove that

1
: S ~8
lim ¢, = =4,

uniformly on compact subsets of the complement of %;, and on compact subsets
of Re(s) > I.
To study the right side of the collar, use the change of variables /v = log(z),

2 2 2
with the principal branch: then (; dz> = (dw)* and ( -] ) = <Z|dco|> for w =
z

. Im:z in
u—+iv. sin /v

The hyperbolic metric on the collar is given in polar coordinates by

dr? +r* do?
ds? :}’;.71’20 Then, with the substitution Inr=1/u, =10 and ds>=
r2 sin
1>(da® + db? . da® + db* .
(af—klb)’ which tends to % as [ tends to zero. The convergence is
Sin

uniform for y bounded. In the same way we show that
: _AS 5
hm 75 Cir = =P

In the case ¢; is the boundary of the funnel F;, for z away from the
developing cusps, we have only to consider the right side of the g;-collar,
Nhyp1(T5z) = N}f;p’,(T; z), and from the preceding study

lim Lo pe
—¢ = p'.
o= P

3.3. Final remarks. For geometrically infinite surfaces, that is to say a
surface of infinite genus or homeomorphic to a compact surface with infinitely
many points removed, the notion of geometry ‘at infinity’ is ill-defined, and there
is virtually nothing we can say about the spectral theory of the Laplacian.
However we can make the following remarks.

First note that it has already been pointed out (see [14]) that one can find
results for spectral counting functions on degenerating hyperbolic surfaces of
infinite volume analogues to those obtained for finite volume surfaces and with
the same techniques.
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The parabolic and hyperbolic Eisenstein series p* and ¢°, we work with are
well defined. For Res > 1, il follows from the fundamental lemma (see [12],
p. 178, [10], p. 27):

PRrOPOSITION 3.1.  For any Fuchsian group T, there exists a €(q,T) such that
for all ze H,

y(yz)?

The constant €(q,I") depends only on q and T.

In fact these series converge for Res>dJ where ¢ is the exponent of
convergence of the (relative) Poincaré series

0= inf{s >0, Z o—sdETw) oo}

Tell

for some z,we H, where d(z,w) again denotes the hyperbolic distance from
zeH to we H. We have 0 < <1 for a geometrically infinite surface.

There is no decomposition in a finite number of trousers and funnels as in
the geometrically finite case, we have the following result though. First we recall
the definition (see [13], p. 84)

DerINITION 3.1. A family Y of simple closed curves on a surface S is called
a multicurve if the elements of Y are disjoint, no two are homotopic to each
other, and none is homotopic to a point.

And then give the theorem (see [13], p. 84)

THEOREM 3.1. Let X be a connected hyperbolic Riemann surface that is not
simply connected, with its hyperbolic metric. Then there exists a multicurve Y
on X such that if Z denotes the closure of Z = {xey,ye Y}, then the closure of
X — Z is isometric to either

(1) a trouser, with anywhere from zero to three cusps,

(2) a half-annulus |z| > 1 in {1/R < |z| < R} for some 0 < R < oo, with its

hyperbolic metric, or

(3) a half plane Re z <0 in H, with its hyperbolic metric.

Moreover, each component of Z — Z is a simple infinite geodesic bounding a half
plane (i.e., case 3 above).

A geometrically infinite hyperbolic surface contains an infinite multicurve
or case 3 is checked, or both. This decomposition allows us to construct a
degenerating family of geometrically infinite surfaces (M;),.,, M;=T;\H, by
letting the lengths of a finite number of geodesics approaching zero as / tends to
zero. These pinching geodesics can be taken as boundary components of a finite
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number of trousers appearing in Theorem 3.1. Denote by P; the union of such
trousers, in the general case the injectivity radius of M; may not be always strictly
positive outside the collars of the small geodesics and a thick-thin decomposition
is no more possible, however, using the same methods, we obtain the previous
results of degeneration on every compact of M;\P;.

In the following we give a more precise description of this claim. We may
suppose without loss of generality that there is only one pinching geodesic, ¢;, of
length /, which is the boundary of a trouser of the previous decomposition. The
existence for any 0 < & < 1/2, of the collar %, (see Section 3 (2)) is found for
example in [13], p. 90. With this collar, one can construct homeomorphisms f;
(see end of Section 3.1) from M; — {¢;} to My, with f; quasi-isometries outside a
tiny neighborhood of ¢;, tending to isometries C?-uniformly on compact subsets
of the complement of %) . in analogous manner to the geometrically finite case
(see for example [2], Proposition 3.1 p. 359, [5], [11], Theorem 1.18 p. 50). The
proof of Lemma 3.1 Section 3.1, in the case of geometrically infinite hyperbolic
surfaces, follows. Proof of Lemma 3.2 Section 3.2, which essentially uses the
universal covering H and the fact that I'; is a discrete subgroup of PSL(2,R) is
also adapted to this case. The following theorem ensues

THEOREM 3.2. Let (M)),., be a degenerating family of geometrically infinite
hyperbolic surfaces with limit surface My, as described above. Let ¢ be the
hyperbolic Eisenstein series on M; associated to a simple closed geodesic of length
1, with 6. the associated collar.

(1) If ¢; is non-separating, then

: 1 AS A8 ~S
%E% I_Scl =p — 49,

where p and q are the cusps arising from the pinching geodesic c.
(2) If ¢ is the boundary of a funnel, then

1' 1 AS ~S,
1= s 1= P

and the convergence is uniform on compact subsets of the complement of €, . and
in half-planes of the form Re(s) > 1+9 for any 6 > 0.
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