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GLOBAL UNIQUENESS RESULTS FOR GROUND STATES FOR
A CLASS OF QUASILINEAR ELLIPTIC EQUATIONS

SHINJII ADACHI, MASATAKA SHIBATA AND TATSUYA WATANABE

Abstract

In this paper, we are concerned with the uniqueness of ground states for a class
of quasilinear elliptic equations which arise in the study of plasma physics. We obtain
global uniqueness results in the sense that we don’t require any assumptions on the
parameter.

1. Introduction and main results

In this paper, we consider the following quasilinear Schrédinger equation:

(1.1) i% = —Az— 2] 2= kA(|z]H)z, (6,x) € (0,0) x RV,
where ¥ >0, N > 1 and p > 1. Our aim of this paper is to prove the uniqueness
and the non-degeneracy of ground states of (1.1).

Recently there has been a lot of studies on the quasilinear Schrodinger
equation (1.1). This problem arises in the study of superfluid film equation in
plasma physics, and also this type of quasilinear problems is known to be a
more accurate model in various physical phenomena compared with the standard
semilinear problem. For more physical backgrounds, see [4], [5], [13]. From
a physical as well as mathematical point of view, the most important topic is
the stability of standing waves of the form: z(¢,x) = u(x)e™, . >0, where
u:RY — R is a real valued function. Substituting this form for (1.1), we obtain
the following quasilinear elliptic problem:

(1.2) —Au+ u— kAW = [u'u in RV,

It is known that in the study of the stability of standing waves, the uniqueness
and the non-degeneracy of the ground state of (1.2) plays an important role.
(See [6], [9], [10] for the results on the (in)stability.)
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One of the main difficulty on the uniqueness and non-degeneracy of the

. 3N +2, .. .
ground state is the fact that p = N2 is a critical exponent for the existence of

.. . . . . N+2.
nontrivial solutions. More precisely, since the Sobolev critical exponent ) is

. 3N +2 .. . . N
in the range (1’N7—+2>’ the feature of the limit equation as x — 0 is drastically

changed. Indeed taking « — 0 formally in (1.2), we see that the problem reduces
to the following semilinear elliptic equation:

(1.3) —Au+Ju=|u”'u in RV.

It is well-known that the ground state (positive solution) of (1.3) is unique and

N+2 o N+2
N3 On the other hand, if )

is also well-known that there exists no nontrivial solution of (1.3). Thus in
view point of small perturbation problem of (1.3) for small x > 0, we have to

consider the uniqueness and non-degeneracy of the ground state of (1.2) for the

N+2  N+2_ 3N2
N_2MN 2P SN2

non-degenerate if 1 < p <

< p, then it

case 1 < p < respectively. We refer for instance

[3] and [22] for the case 1< p< N2
N+2 W+2 é\’ -2
N_2<p< v —5 and sma x> 0.

The main purpose of this paper is to obtain a global result, which means that
we prove the uniqueness and the non-degeneracy without any restriction on the
parameter x and 4. Especially our aim is to obtain the uniqueness of the ground
state of (1.2) for full range of p and for any K, A.

Although our main interest is in the problem (1.2), we consider general
quasilinear problems in this paper. More precisely as in [11], we study quasi-
linear elliptic problems of the form:

and small x>0, [2] for the case

1
(1.4) —div(a(u)Vu) +§a’(u)|Vu|2 +u=u""'u inRY

where N > 3, the quasilinear term «a(¢) has the form:
a(t) = aplt|]” + (1) (£ >0,ap =0,y e C*(R))
(/+1)N+2
N-2
We suppose that the following conditions hold for a(f) and y(¢):
al) inf a(r) >0, @’'(f) >0 for t > 1 and a(f) <a(l) for 0 <z < 1.

and the exponent p satisfies 1 < p <

( ) t>0

@) Jim 7~

(a3) 2y(t) —np'(t) >0 for 1 > 1.

(ad) (¢ —1)Y' (1) — " (1) <0 for t > 1.
(a5)

0

2y/a(l)
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Under assumptions (al)—(a2), the problem (1.4) has a positive radial solution.
(See Proposition 2.9 below.) In [l1], it was shown that the positive radial
solution is unique under some restriction on parameter, which is equivalent to
the condition aq is sufficiently large. The main result of this paper is to show
that the uniqueness holds without any restrictions on parameter. Indeed we have
the following result.

(+1)N+2
/ N-2
Assume further p > 3 if £ > 2. Then the positive radial solution of (1.4) is unique.

THEOREM 1.1.  Suppose that (al)—(aS) hold and 1< p<

A typical example of a(f) is given by a(f) =1 + ax|t|** % which can be

obtained by taking ap = ax, / =200 — 2 and y(¢) = 1. We can easily see that for
a(t) = 1 +oxf)™ %, (1.4) becomes

—Au+ u— kA(Ju|*)|u|*2u = |u”'u in RV.

We also note that since p > 1, the condition p > 518 automatically satisfied if

0 </ <2. This restriction on p has been already observed in [1], [2].

Now for a solution u of (1.2), we rescale u(x) = A" Di(i"2x). Then we
can see that u satisfies

—Aii+ i — k2P VA@)a = a”'a in RV,
Applying Theorem 1.1 to the case a(r) = 1 + 262?77 D12 we obtain the following
result for the ground state of (1.2).

3N +2
THEOREM 1.2. Suppose N >3 and 1 < p < ~ i

Then for any x >0

and 4 > 0, the ground state of (1.2) is unique (up to translation).

Recently in [23], the non-degeneracy of the ground state of (1.2) has shown
for all k and A under the additional assumption p > 3. Our second purpose of
this paper is to obtain the non-degeneracy for (1.4) under similar assumption
p=7+1. To this aim, we impose the following conditions on «(?) instead of
(al):

(al’) inf,;>9 a(?) > 0 and a'(¢) >0 for > 0.

In this setting, we have the following result.

(+1)N+2

N-2
Then the kernel of the linearized operator around the unique positive radial solution
u of (1.4) is given by

THEOREM 1.3.  Suppose (al’), (a2)—(a5) hold and £ +1 < p <

Ker(L) = span{au Ou }

ox;’ T oxy
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Especially u is non-degenerate in H} ((R"), that is, if L(¢) =0 and ¢ € H} (R"),
then ¢ = 0.

Here the linearized operator L of (1.4) is defined by

(1.5) L(g) = ~au)Ap — a()Vu -V — 3" ()| Vi
— dwAup+ ¢ — pury.

Finally we can also obtain the uniqueness and the non-degeneracy for
complex-valued ground state of (1.2). See Section 5 below for the result.

To prove Theorem 1.1, we adapt dual approach as in [1], [8]. More
precisely, we convert our quasilinear equation into a semilinear equation by
using a suitable translation f. We will see that the set of positive radial
solutions of (1.4) has one-to-one correspondence to that of the semilinear
problem. This enables us to apply the uniqueness result [24] for semilinear
elliptic equations. We can also show that there is a complete relation between
the linearized operator of the original quasilinear equation and that of the
converted semilinear equation. This enables us to reduce our analysis into the
study of the non-degeneracy for the converted semilinear problem.

The main idea to obtain the global uniqueness result is rather simple. We
have just shown an improvement inequality of a function related to the dual
transformation. (See Remark 2.4 below.) In order to prove the uniqueness,
we have to show that some function related to the nonlinear term is monotone.
Using the improved inequality carefully, we can show this monotonicity holds.
Once we could get the uniqueness, the non-degeneracy can be proved by ODE
analysis and spherical harmonic decomposition.

This paper is organized as follows. In section 2, we introduce the dual
approach of (1.4) and prepare some auxiliary lemmas. We prove the uniqueness
of positive radial solutions in section 3. We show the non-degeneracy of the
unique positive radial solution in section 4. In section 5, we state results on
complex-valued ground states of (1.2). Finally in section 6, we give some
comments on the quasilinear term a(¢) of (1.4).

2. Dual approach and auxiliary lemmas

2.1. Properties of functions related to (1.4)
First we begin with the following relations, which can be shown by a direct
consequence of the definition of a(¢).

LemMMa 2.1. For t > 0, functions a' and a” can be written as follows:
() ta'(1) = Cale) — (£9(1) — 19'(1).
(i) 2a"(t) = (£ = D)a(t) — (£ = 1)y (2) — ap' (1)) — (£ = D' (2) — " (1)).
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Next let f(s) be a unique solution of the following ODE:

1
2.1 '(5) = ———— for s>0, f(0)=0.
@) S0 = s for s3>0, 10)

We extend f(s) as an odd function for s < 0. We can see that f(s) is monotone
and hence the inverse f~! exists.
Now by the definition of f(s), we have the followings.

Lemma 2.2. For s >0, f” and f" can be written as follows:
(i) S(s) = =3/ (f(s))S"(s)*.
(i) /() = =3a"(f () S"(s)° +a'(f()*f"(s).

The next lemma is the key to prove our global uniqueness result, which is an
improvement of already known inequality. (See Remark 2.4 below.)

LemMA 2.3.  Assume (al), (a3)—(a5). Then the following inequalities hold for
s> f7H(1):
() 5/'(s) < /().
Moreover if in addition (al’) is satisfied, then the same inequality holds for
s> 0.

- '(s)? /
@) )+ 2L o) - o rom = o).

Proof. (i) Since f is monotone, it follows that f(s) > 1 for s> f~!(1).
Then by (al) and Lemma 2.2 (i), we have

(f =of) = =" =3 (f)f"* >0.

Moreover by (al), we also have fol Va(t) dt < +/a(l). Putting t = f(s), we get
1
B R —— —sf'(s) > =f71(1). i

() < 70 and hence f(s) —sf'(s) >0 at s= f~'(1). Thus the claim
holds for s > f~!(1).

If (al’) is satisfied, then (f —sf”)" >0 for s > 0. Since (f — sf')|,_, = 0, we
get the same inequality for s > 0. This completes the proof of (i).

(ii) Since f’ >0, it suffices to show that

A A i

H(s) =570 =5 = B (W) = W (1) 20 for 5= /7 (1),
First we observe by Lemma 2.1 that
1) =525 = L - I vatr) - (1)
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and (a5), it follows that

Then by f~'(1) = [, \/a(t)dr, f'(f~'(1)) = \/;w(lﬁ)

H(f7'(1)) > 0. Next by a direct calculation, we get

" 12
H'(s) ="~ +j§‘,2 L - re)
f Vi f 12

() = SV () =T (€ = DY) = S ()
By Lemmas 2.1 (i), 2.2 (i) and (2.1), it follows that

D = =3 = =31l ) — (W) = W)

12

 f /
=55 () = S

Thus from (al), (a3) and (a4), we obtain

14 12
16 = "SIy 1y - () L= W) - 1) 20
This completes the proof. ]
Remark 2.4. When a(t) = 1 +t>, we have / =2 and y(¢) = 1. Then the

inequality in Lemma 2.3 (ii) reduces to

F()+ F(5)f"(5)% < 257(s).

We notice that it is already known that the inequality f(s) < 2sf’(s) holds (see
[8]). Our inequality is a simple improvement of it but this improvement enables
us to obtain the global uniqueness result.

Finally in this subsection, we give asymptotic behavior of f(s) at infinity,
which will be used in section 4. For the proof, we refer to [11].

LemMa 2.5.  f(s) satisfies the following properties:

/+2 2/(£+2) . £'(s) ) /42 2/(0+2)
T s §2/(042)-1 /+2 2\/% ’

s—»oc sz/

Sf()ii

m ) 742

2.2. Dual approach and its correspondence
Now we consider the following semilinear elliptic problem:

(2.2) —Av+ f(0)f'(v) = |f ()" f(v)f'(t) in RV,
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which we call a dual problem of (1.4). Then we can show the following relation
between (1.4) and (2.2).

PROPOSITION 2.6. ue X N C*(RY) is a positive radial solution of (1.4) if and
only if v=f"Yu)e H' N C*RY) is a positive radial solution of (2.2).

For the proof, we refer to [11]. Proposition 2.6 tells us that if (2.2) has
a unique positive radial solution v, then u = f(v) is a unique positive radial
solution of (1.4). Thus we have only to study the uniqueness of the positive
radial solution of the semilinear problem (2.2).

Next we study the correspondence of the linearized operators of (1.4) and
(2.2). Now let L: H*(R") — L*(R") be a linearized operator of (2.2), which is
defined by

(23) L(g) = ~Ad+ (/' (0)* + () /" (0))§ = (pf (0)""f'(0) + f (0)"f " (1))

Then we have the followmg relation, which was already obtained in [2] for the
case a(f) =1+ |f*

LemMMA 2.7. Suppose that ue X N C*(RY) is a positive solution of (1.4) and
put v=f"Yu). Let L and L:H*(RY) — L*(R") be the linearized operators
defined by (1.5) and (2.3) respectively. Finally for ¢ e H*(RY), we put ¢ =
Va(u)p.  Then it follows that

(2.4) L(p) =

Proof. By direct computations, we have

()¢
Vé = \/a(u)V
¢ = ¢+ \/_

;. (u) ' a'(u)Au
A¢_\/a(u)A¢+—mVu V¢+2\/m¢

NAOLZ IO\
2/alw) " 4(/atw)’

Next by Lemma 2.2 and from (2.1), we also have

02+ 10 @) = (10 - 30 COW 00§

1
= Va2 Jaw)
(BP0 + £ () = DL g L
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Thus from (1.4), (1.5) and (2.3), we obtain

L(g) = —Ad+ (f*+ ") — (pf " f 72+ £71")d

_ (—a(u)A¢ —a'(u)Vu - V¢ — la”(u)|Vu|2¢
a(u) 2
)+ g ')
__aw (—a(u)Au — la’(u)|Vu|2 +u-— u”>¢
2(+/a(u))’ 2
1
= et L(¢).
This completes the proof. O

By Lemma 2.7, we obtain the following result.

PROPOSITION 2.8.  Suppose that ue X N C*(RY) is a positive solution of (1.4)
and put v = f~"(u). Then 3 )

(i) ¢eKer(L) if and only if ¢ = /a(u)¢ € Ker(L).

(i) wu is non-degenerate if and only if v is non-degenerate.

A NN N
(ii) Ker(L) = span{ﬂ} if and only if Ker(L) = span{ﬁ} .
0xi ) iy 0xi ) i

Proof. (i) From (2.4), we have L(#) =0« L(¢)=0. Thus the claim
holds.
(i) The claim follows from (i). PN
(i) We assume that Ker(L) = span{—x} . Suppose by contradiction
i) i=1

A NN
that span{ov} # Ker(L). Since —;j e Ker(L) for i=1,...,N, we have

=
0x; i=1 i

ooV . L
span{a—u} C Ker(L). Thus there exists ¢ # 0 such that

Xi) =1
$ e Ker(L) \ span @ !
p 6x,» i:ll
Since ¢ € Ker(L), we have L(¢#) = 0. Putting ¢ = \/a(u)p, we c;\lfotain L(g)=0
by Lemma 2.7. Then by the assumption Ker(L) = span a , there exist
c1,...,cy such that Xi) i=1
ou u
¢ = (] 6)(:1 + CNm.
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Now since u = f(v), it follows that

ou PN I ov
—= — = — fori=1,...,N.
é’x,- f (U) 6)(?,‘ a(u) 6x,~ ot ’ ’

Thus we have

] +- 4 v € span v )
0x1 Noxy P oxi) .,

N
.. .. - v
This is a contradiction and hence Ker(L) = span{a—} .
) .. Xi ) i=1
We can show the converse in a similar way. ' O

By Proposition 2.8, we have only to study the non-degeneracy of the unique
positive radial solution of the semilinear problem (2.2).

2.3. Existence of a positive radial solution

In this subsection, we study the existence of a positive radial solution of
(1.4). Indeed we are going to show the existence of a ground state of (1.4). To
this aim, we define the energy functional 7/ : X — R by

I(u) = %JR a(u)|Vu|* + u® dx — ﬁLN |t dx,

where

X = {ue H'RY);a(u)|Vu|* € L'(RM)}.
A solution u of (1.4) is called a ground state if it satisfies

I(u) = inf{I(w);I'(w) = 0,w e X\{0}}.
Then we have the following result.
((+1)N+2

N-2

equation (1.4) has a ground state. Moreover any ground state is C2, positive,

radially symmetric (up to translation), decreasing and exponentially decaying up to
second derivatives.

PrROPOSITION 2.9.  Assume (al)—(a2) and 1 < p < Then the

For the proof, we adapt arguments in [9]. (See also [I1].)

3. Uniqueness of the positive radial solution

In this section, we study the uniqueness of the positive radial solution of
(2.2). For simplicity, we put

(B gs):=S)(s) = f(s)f'(s) for s=0 and Ky(s):= $9°(5) )

We apply the following uniqueness result due to Serrin and Tang [24].
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PropoOSITION 3.1 [24].  Suppose that there exists b > 0 such that
(i) g is continuous on (0,00), g(s) <0 on (0,b] and g(s) >0 for s> b.
(ii) g e C'(b,0) and K)(s) <0 on (b,o0).

Then the semilinear problem:

~Av=g(v) in R¥, v>0,v—0 as |x| — oo, v(0)=max v(x)
xeRY

has at most one positive radial solution.

Now we can see that g defined in (3.1) is of the class C'[0,0) and
gls) =0 f771(s) = L& s=f7(1).
We put b:= f~1(1). Since g(s) = ff'(f?~' — 1), we can see that (i) of Prop-
osition 3.1 holds.
LemMma 3.2. Suppose that p > g if £ >2. Then the function g defined in
(3.1) satisfies (ii) of Proposition 3.1.

Proof. First we see that
Ky(s) = 1 5(9"(5)9(5)s + g'(5)g(s) — ¢'(5)%).
g(s)

Thus we have only to show that sg”g+ g'g — sg’> < 0 for s > b.
Now by direct computations, it follows that

(3:2) g(s) = S21 = [ =4 =,
(33)  JEO=0"" =D+ - DS
B4) g =" =D I+ (o= DSPCH + o).
Next we have
N e L A EE )
S = ) e = (T ) 2 - )+ L

From these equalities and (3.2)—(3.4), we can describe sg”g + gg’ —sg’> as a
polynomial of f7~!' —1. Then we obtain

Sg//g+g/g_sg/2
= (ST = VXSS A+ psff L+ LT = S~ psf T pff )
+ (= DU =D = ps M+ L)~ (p— 1)
By Lemma 2.2, we can write f” and f” by using f and f’. Then we have
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szf/f”/ +psﬁp/2fu +f2f/fm _ SfoNZ _pSf/4 +pff’3
= (=30 54 0P ) (=50 )

2
-1 (— %a’(f')f"“) —y? (— %a’(f)f“‘) —psf "+ pff

= s NN s VP = s (1)1
A NLI = pof " 4 "
= H1 (S)

and

! /) 7 ! 1 ! o
siff" = psf"t+ S = —5sd (NI = psf™ + ff" =: Ha(s).
Thus we obtain
(3.5)  sg"9+9'g—s9"

= (7 = PHi(s) + (p = D7 = DHas) = (p = 1) ™.

By the definition of b, it follows that f(s)’' —1>0 and (p—1)%sf"* >0 for
s >b. Thus it suffices to show that H;(s) <0, H»(s) <0 for s > b in order to
prove that sgg” +¢g'g — sg’*> < 0.

First we estimate H;(s). To this aim, we rewrite ¢” and &' by using ¥
and a. Indeed by Lemma 2.1, it follows that

B 2o = Va0 = 1) = 1= 100 = 59")

N R | e A P %)
a9 = ) = psf” + o

. ) 1
Using [/ =—, we get

\/a
(3.6) f?/(f) ——<p—§) #y"%—(ﬁ—é)er%ff'z(/!//—fW)
p—20—-1

L~ 1) 4 1)
B ()
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/
Now since p > X we can apply Lemma 2.3 (ii) to the first and the second

terms in the right hand side of (3.6). Then we have

h;lf;) S—<p—{— >ﬁm2

.Sf/?)

(Y =S¥+ (p =20 =)= (LY = fY)

2

R R Rt ()

Applying Lemma 2.3 (i) to the term sf'>

ma

, we get

f/3

(= fy")

12
p-5-1) - -2

T A ()
Next since Zy(f) — fy'(f) =0 for s > b by (a3), we can use Lemma 2.3 (ii) to

%ﬁ”“(ﬂp—ﬁp’)z:%f’z(/np—flp) ﬂ Z— (/Y — fy'). Thus we obtain

(3.7)

}ij,(f)s—<p—2+2>f/2(/1// )+ <_2+2> f'3(/,/, )

T ()

Finally since p — g +2>0and 2y — fy' >0, we can apply Lemma 2.3 (i) to the

first term of the right hand side of (3.7). Then we obtain

H(s I,
1 < S =D ) = 90
Thus by (a4), it follows that H;(s) <0 for s > b.
Next we estimate H»(s). By Lemma 2.1 and [/ = 7 we have
HQ(S) o 1

=¥ A= (b= 1)~ S+ f

(P4 5) 4 S 3= 1),

By Lemma 2.3 (i), we also have

2
S s (pg)or s I,
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Finally by Lemma 2.3 (ii), it follows that

Hz(S) ! !/ + 2
173 S_<P+§>Sf/+TSf’=—(P—I)Sfl<0-
This completes the proof. O

Now Theorem 1.1 follows by Propositions 2.6, 3.1 and Lemma 3.2.

4. Non-degeneracy of the unique positive radial solution

In this section, we show that the unique positive radial solution of (2.2) is
non-degenerate. To this aim, we study the structure of radial solutions of the
following ODE:

U” +

4.1) v +g(v) =0, re(0,0),
v(0) =d > 0.

We define the energy E by

where G(s) = [, g(1) dt = FES

Then we can show that for each d >0, (4.1) has a unique solution v(r,d).
As in [14], we classify the sets of initial values as follows:

N = {d > 0; there exists ryp = ro(d) € (0,c0) such that v(ry,d) = 0}.

G:{d > 0; o(r,d) >0 for all r>0 and lim v(r,d) :0}.

P={d>0;v(r,d) >0 for all »r>0

but v(r,d) does not converge to zero at infinity}.
First we prove the following properties on N.

LemmA 4.1. The set N has the following properties:

(i) There exists d > 0 such that v(r,d) has a finite zero. Especially it follows
that N # (.

(i) N is an open set.
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Proof. (i) Let R >0 be given. We consider the auxiliary problem:
—Av =g(v) in Bg(0),
(4.2) v>0 in Bgr(0),
v=20 on 0Bg(0).
Then for large R, we can show that there exists a positive radial solution vg(x)
of (4.2). (See Appendix below.) Putting d = vg(0), we obtain v(R,d) =0 for a
solution of (4.1).

(i) The claim follows from the continuous dependence on the initial value.
(see [14] Lemma 13, p. 253.) O

Next we show the following result on P. For simplicity, we write vg(r) :=
v(r,d) and E,(r) := E(r).

LeMMmA 4.2. The set P has the following properties:
(i) Let s1 >0 be a unique zero of G(s). Then it follows that (0,s,) C P.
(i) P is an open set.

Proof. (i) We take d < s;. Then it follows from v4(0) = d and v/,(0) =0
that E;(0) = G(d). Since G(s) <0 for 0 <s <51, we get

(4.3) E;(r) < E4(0) <0 for all r> 0.

Next we prove that d ¢ NUG. First we show that v,(r) does not have
a finite zero. To this aim, suppose by contradiction that v,(ro) =0 for some
ro>0. Then from G(0) =0 and by the definition of Ej, it follows that
E4(ro) :%(v(’,(ro))2 > 0. This contradicts to (4.3).

Finally we show that v;(r) does not converges to zero as r— oo. If
vys(r) — 0 as r — oo, then v,(r) decays exponentially up to the first derivative.
Thus it follows that E;(r) — 0 as r — co. This is a contradiction.

(i) The claim follows by a similar argument as in [14] Lemma 13. O

Now by Proposition 3.1 and Lemma 3.2, we know that the positive radial
solution of (2.2) is unique. This implies that there exists d* > 0 such that G =
{d*}. Moreover by the proof of Lemma 4.2, we can see that s; < d*. Since N
and P are open, we obtain the following structure.

PrROPOSITION 4.3.  There exists a unique d* > 0 such that
N=(d" o), G={d*} and P=(0,d").

Next we consider the linearized equation of (4.1):

N -1
(4.4) w” + Tw’ +g'(v)w=0, re(0,0),
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Slnce “d (r d™) satisfies (4.4) with same initial values, it follows that w = g_d by

the uniqueness of the initial value problem. Moreover we have the following.

PropoSITION 4.4.  Suppose (al’), (a2)—(a5) hold and assume further { +1 <
({+1)N+2 ov

RN
N Then 2d (r,d*) does not belong to H'(R™).

ov
Proof: We claim that — “d

d*) ¢ H'(RY). We can see that this claim is a direct consequence of the

(r d*) — —oo as r — oo, which trivially implies
v
2
uniqueness proof in [19].

Firstly by Proposition 4.3, we know that d* = inf(N U G). Then by Lemma

. . 0 . .
10 in [19], it follows that é(r,d*) has exactly one zero in [0,00). (This
property is called admissible in [14], [19].) Moreover by Lemma 8 in [19], we
can conclude that 2 7 (r,d*) — —oo as r — oo, (this property is called strictly

admissible in [14], [19]), if we could show that the hypotheses of Theorem 1 in
[19] are satisfied. Thus it suffices to show that the following hypotheses hold for
our nonlinear term ¢(s).

Hypotheses of Theorem 1 in [19]:

i) geC'0,:), g(0)=0 and ¢'(0) = —m < 0.

(ii) There exists b > 0 such that g(s) <0 for 0 <s<b, g(s) >0 for s >b
and ¢’(b) > 0.

(iii) For g>0, let

O(s, B) = Bsg'(s) — (B +2)g(s)-

(® is called I-function in [19].) Then for each U > b, there exists f =
B(U) > 0 depending continuously on U such that

D(s,) >0 for 0<s< U, D(s,f) <0 for s> U.

As we have already observed in Section 3, we can see that g defined in (3.1)
satisfies (i) and (ii). Moreover (iii) holds for s = b because ¢g'(b) > 0. Thus it
remains to show that (iii) holds for s # b.

Now we observe that

(D(S;ﬂ)_sg'(s)_ﬁ+2_ B2
Ba(s) — g(s) B = Ky(5) 5 for s # b,

where K,(s) is a function defined in (3.1). Then from (ii), the hypothesis (iii) is
equivalent to showing that

p+2
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4.5) K,(s) - ﬁ;z <0 for s> U,
(4.6) Kg(s)—ﬁ% >0 for b<s< U,
4.7 I(!,(s)—[)% <0 for 0<s<bh.
To this aim, we firstly show that

(48) Jim Kols) = /iz (” - g)

Indeed by Lemmas 2.1 and 2.2, we have

S(pfpflffz Jrfpf// 7f/2 *f //)
S =g

Z, 1, /
(0= 5+ 57200 - A0

Ky(s) =
AN
Sol=fr

(G- 1) = S - ) ).
Now from (a3) and (a4), it follows that

0<Y(f) = fU'(f) < (1) —¢'(1) for s> f7H(1).

Then by Lemma 2.5, we get (4.8). 2 /
Now by the assumption p >/+1, it follows that ) <p — 5) > 1.

Moreover by Lemma 3.2, we know that K/(s) <0 for s >5b. Thus we have

K,(s) > 1 for all s>b. Choosing f _# for each U > b, we can see
that (4.5) and (4.6) hold. Ky(U) —1

Finally we show that (4.7) is fulfilled. To this aim, we observe from (3.2),
(3.3) and Lemma 2.2 that

i 1 1 g
50/6) = 06) = (17 = (=350 7 of 2= )4 (0= D™
Then from (al’) and Lemma 2.3 (i), we have
sg'(s) —g(s) = (p—1)fP1f?>0 for 0<s<b
and hence K,(s) < 1 because g(s) <0 for 0 <s <b. Thus we obtain

p+2

K,(s) <1 <K,(U) = e

for 0 <s<b

and hence (4.7) holds.
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Since the hypotheses of Theorem 1 in [19] are all satisfied, the proof is
complete. OJ

Proposition 4.4 implies that the unique positive radial solution v of (2.2)
is non-degenerate in H! (R"). Finally we show the following result on the
linearized operator L = —A — g'(v) of (2.2). We adopt similar arguments as in

[18], [20] and [23].

PROPOSITION 4.5. The kernel of L is given by

. v v
Ker(L) = e
er(@) = span{ 2. 7|
. ov ov . .
Proof. First we observe that spanq — ..., Ker(L). In fact, since
0x1 oxy

v is a solution of (2.2), j—;) satisfies
i

—A(av>—g’(1))@:0 in RY, i=1,...,N.

5_xi 0x;

. . 0
Moreover by the elliptic regularity theory, we can see that a_v e H*(RY). Thus
ov Xi

. 0 -
it follows that span —v,...,— C Ker(L).
0x oxy

To complete the proof, it suffices to show that dim Ker(L) < N. To this
aim, we apply the argument in [18], [20]. Suppose that ¢ e Ker(L), that is,
¢ H*(RY) and it satisfies

~Ad—g'(0)p=0 in RY,
Then by the elliptic regularity theory, it follows that ¢ e C2(R").

Now let g; and ;(0) with @ e SV~! be the eigenvalues and eigenfunctions
of the Laplace-Beltrami operator on S¥~!. Then it follows that

O=py<ppy=-=puy=N-1)<pyg
and {y,} forms an orthonormal basis of L2(S¥~1). For ¢ e Ker(L), we define

¢;(r) == L é(r, 0),(0) do.

Then we have
N-1 i
«9) 0+ (g0 - ) =0, g0 =0

Moreover ¢ e Ker(L) can be written as follows.

e}

(4.10) $x) = 9(r,0) =Y gi(ri(0).

i=0
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When i =0, we have from g, =0 that
N -1

$o+9'()dy =0, ¢(0) =

Then ¢, is a constant multiple of %(r,d*) and hence by Proposition 4.4, i
follows that ¢, = 0.

Next we show that ¢, =0 for i> N+ 1. If ¢, #0, then ¢,(0) #0. Thus
we may assume that ¢,(0) > 0. Let r; € (0,00] be such that ¢,(r) >0 on [0,r;)

and ¢,(r;) = 0.

First we suppose that r; < oco.  Multiplying (4.9) by r¥~1v’ and integrating it

over [0,r;], we get

ri

J, 7o = DR g 0 i dr =
By the integration by parts, it follows that

R - [ g e | 00— g =

By the integration by parts again and combined with ¢(r;) =0, we obtain

i

VEN_IU’(Vi)¢1{(ri) +J (V" 1 (N = D)V 2" Vg (o)) g, dr
0

_J’ 1N3/¢dr—
0

Moreover since v satisfies (4.1), we have

N-1, N-1
v_

n
v+
r r2

v +¢g'(v)o" = 0.

Thus we obtain
N ) + (V1= ) | g dr =0,
0
Since v/(r;) <0 and ¢;(r;) <0, it follows that

(N—l—,u,-)J N=3p'g; dr < 0.
0

On the other hand since ¢,(r) > 0 on (0,7;) and g; > N — 1 for i > N + 1, we also

have

0<(N717,ui)J N30, dr.
0

This is a contradiction.
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Next suppose that r; = +oo0. Since v’(r) and v”(r) decay exponentially as
r — o0, we have

(N—-1-—pw) J N30, dr = 0.
0

This implies again that ¢, =0 for i > N + 1.
Now since ¢, =0 and ¢, =0 for i > N+ 1, we have from (4.10) that

N

$(x) = ¢(r,0) = Zciqﬁ,—(r)%(@)-

i=1
This implies that dim Ker(L) < N and hence the claim holds. O]
We can see that Theorem 1.3 follows from Propositions 2.8 and 4.5.

Remark 4.6. The key of the proof of the non-degeneracy is to prove that
¢y =0 (¢, is called an ODE spherical harmonic), which is equivalent to showing
Z—Z(r,d*) ¢ H'(RY). N
In [23], the author firstly showed that the function ﬂ(
at least once, and secondly proved that S—Z(r,d*) is unbounded. This approach

that

r,d”) changes sign

does not need the uniqueness. However in order to prove the first statement, the
assumption p >3 was necessary. (See Proposition 3.10 in [23].)

It is known that the uniqueness follows if we could show that %(r,d*)

changes sign exactly once. (See [14], [19].) However we don’t need to prove
this property for the uniqueness, since the uniqueness proof in [24] is based on a
different approach. This enables us to obtain the uniqueness for p > 1.

On the other hand we have to adopt same arguments as in [23] to
prove the non-degeneracy. To this aim, we need a restriction on p. Although
this restriction seems to be technical, we don’t know how to remove it at
present.

5. Results for the complex valued ground state

In this section, we consider a complex-valued ground state of (1.2), which is
important in the study of the corresponding time-evolution Schrédinger equation

(1.1).
Now for u: RY — C, we consider the following elliptic equation:
(5.1) —Au+ Ju— kul(u)*) = [u’'u in RV,

We define the energy functional and the energy space by
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[P dx,
N

1 2 2 2 2 1 J
) =5 [ 1V PV P o = [
Xcz{ueHl(RN,C);J |u|2|V|u||2dx<oo}.

R[\/

As for the existence and properties of a complex-valued ground state, we have the
following. For the proof, we refer to [9].

3N +2
ProposITION 5.1. Suppose 1< p < —Jr, A>0 and x>0. Then the

problem (5.1) has a ground state. N-2
Moreover let u be a ground state of (5.1). Then there exists 0 € R such that
u(x) = e”u(x)|.

Proposition 5.1 tells us that up to a phase shift, we may assume that the
ground state of (5.1) is real-valued.

Now let 4 be the set of ground states of (5.1). Since (5.1) is invariant under
the translation and the phase shift, we have the following result.

3N +2

N-2"

unique (real-valued) ground state of (1.2) (obtained in Theorem 1.2). Then we
have

THEOREM 5.2. Suppose 1 < p < A>0 and x>0. Let u be the

4 = {eu(-+ y); yeRY,0 e R}.

3N+2
Moreover if 3 < p< + , we also have
N-2
Ker(L) = spanq iu(x) u ou
= sp VR el

Here L is the linearized operator of (5.1) around the unique (real-valued)
ground state u, which is given by

L(¢) = —Ad + Ap — k(2udu + 2|Vu|*)¢
— kA + ¢) — 26uVu - V(p + §) — kubu(p + )

—u" g — pT_lufH(gH $), ¢eH*RY C).

Proof. To prove Theorem 5.2, we put ¢ = ¢, + i, with ¢, ¢, € H*(RV,R)
and decompose L into two operators L;, L, acting on ¢; and ¢, respectively.
By a direct computation, we have



GLOBAL UNIQUENESS RESULTS FOR GROUND STATES 137
Li(¢)) = —A¢; + 2, — x(QuAu + 2|Vu|2)¢1
— 2k Ap, — dcuVu - Vb, — 2culud, — pu? ',
Ly($y) = —Ady + Ay — kQului + 2|\Vu|*) gy — uP~' b,.

By Theorem 1.3 with a(7) = 1 + 2% ?"V2 we know that

ou ou
Ker(Ly) = —_— = .
er(Ly) span{axl, ’8xN}

Moreover we can see that u e Ker(L;). By the result in [23], we also have
Ker(L;) = span{u}. Thus Theorem 5.2 holds. O

6. Comments on the quasilinear term

In this section, we study some examples of the quasilinear term «(#) and give
some remarks.

First we observe that by (al), a(f) needs not to be monotone for 0 <7 < 1.
This enables our result to cover a wider class of functions. Indeed we consider a
function a(r) = agt’ + e~“** for a; >0, that is, () = e “”. By elementary
calculations, we have

Oh— 0 = e (L 4+ 2ai12).
(¢ =1 —tp" =2ayte " (2 — £ — a1 12).
d' (1) = aplt’ ™" = 2ayte "

Choosing a; smaller if / > 2 and larger if 0 < / < 2 respectively, we can see that
(al)—(a4) hold. We notice that if /> 2, a(¢) cannot be monotone near zero.

Similar statements hold for a function a(t) = agt’ + 7 for ¢ > 0.

1
(1 +a1t?)
Next we claim that the assumption (a5) also holds for a wide class of
functions. First let us consider the typical case a() = 1 + apt?, that is, / = 2 and
V() = 1. By a direct computation, we have

2 vt a2 arn - 4
2 ) 2

2y/a(1)

_sinh (@) 1
 Va VI+a

Here we used the inequality: sinh~'(z) >

>0 for any g = 0.

t
for +>0. For the case
, V1412
a(t) = apt> + e, we can observe by numerical calculations that the Lh.s. of
(a5) ~0.2778 for ay =1, ~0.3389 for ap =2 and ~0.3651 for ay = 5.



138 SHINJI ADACHI, MASATAKA SHIBATA AND TATSUYA WATANABE

As we have observed above, some decreasing functions (f) may satisfy
assumptions (al)—(a5). On the other hand, our assumptions prevent us to treat
increasing functions. Indeed let us consider the case 7 >2 and suppose that
some increasing function  satisfies (a4). Then solving the differential inequality,
we can see that

t© for t>s>1.

This is incompatible with (a2) unless ' =0. We remark that the increasing
case has been studied in [11]. In this case, the authors obtained the uniqueness
when the parameter is sufficiently large.

Finally we cannot completely cover the case when a(¢) is a bounded function.

K1’

2(1+1?)
appears in the study of plasma physics. In this case, we may choose ¢ = 0.
However we can easily see that (a3) and (a4) are never satisfied. The uniqueness
of this case has been obtained in [7] by assuming the parameter is sufficiently
large.

Especially our result does not cover the case a(f) =1+ , which also

7. Appendix
In this appendix, we show that the Dirichlet problem:

o {720 =TT 0) = SO7) in 510
v=20 on 0Bg(0).

has a positive radial solution. By Lemma 2.3, we can see that the nonlinear
term in (7.1) satisfies so-called Ambrosetti-Rabinowitz condition if p >/ + 1.
Then the existence of a positive solution follows by the standard Mountain Pass
argument. Even if 1 < p</+1, we can obtain the existence of a positive
solution, provided that R is sufficiently large. Although the existence of a
positive solution of (7.1) in this case may be obtained by general theory for
Dirichlet problems with sublinear or asymptotically linear nonlinearity, we give
the proof for the sake of completeness.

For this purpose, we recall the abstract result in [12] as follows. Let
(X,]| -]|) be a Banach space and J C R be a compact interval.

DerFINITION 7.1. A family of functionals .# = {I(4,-) e C'(X,R);Ae J} is
said to have mountain-pass geometry if there exist vj,v; € X such that

c(A) = inlf_ m[(z)n%] I(2,y(2)) > max{I(4,v1),I(4,v2)} for any AeJ,
yel teo,

where I':= {y e C([0, 1], X);7(0) = v1,y(1) = v2}.



GLOBAL UNIQUENESS RESULTS FOR GROUND STATES 139

Now we assume the following assumption holds for 7(4,-).
(H) Suppose that a sequence {(4,,u,)} CJ x X satisfies {4,} is strictly in-
creasing, /, /' o€ J and
I(Ap,un) — (Ao, ty)
)»0 - in

Then {||u,||} is bounded and for & > 0, there exists N > 0 such that

—1 (Ao, un), I(An,un), are bounded from above.

I(%o,un) < I(Ap,u,) +¢ for all n > N.
Then the following result holds.

ProposiTiION 7.2 ([12, Theorem 2.1]). Suppose that (H) holds and 9 has
mountain-pass geometry. Then there exists D CJ such that for each Ay € D,
I(%0,-) has a bounded Palais-Smale sequence {v,} C X at the level c(Ay). More-
over J\D has a zero Lebesgue measure.

Now by using Proposition 7.2, we show the following.

PROPOSITION 7.3.  There exists large R > 0 such that the problem (7.1) has a
positive solution vg(x).

Proof. For 1 >0, we put

1/2
B=B(0), X=H! 4B |u|= (j IVl dx) ,

Lo (1 2 1 1
I(A,u):§||u|| —|—A<§JBf(u) dx—mjﬂf(u)i+ dx).
Then I(4,-) e C'(X,R) for any 4>0. Moreover since lim, .., f(s) = oo, we
can choose ¢ € C;°(B) such that
1 2 1 p+l1
5| 102 ar——=| @ ac<o.
Thus there exists large 4 > 0 such that
1.5 [ . . 1 -
I(4,¢) == = - " <
@0 =3 W0 +2(5] 1@ v [ rerax) <o

and I(2,¢) < I(4,¢) for any 1> 4.
To apply Proposition 7.2, we put

JZM,&-FI], vy =0 and vy, =¢.
Then it holds that
max{I(Z,v1),I(4,v2)} = max{0,I(4,¢)} <0 for AeJ.
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Moreover by the Sobolev embedding theorem, we can show that ¢(4) > 0.
Hence a family of functionals .# has mountain-pass geometry.
Next we prove that the condition (H) holds. Let {(4,,u,)} be a sequence
in J x X which satisfies following properties:
n /S Aed as n— oo, —I(A,u,) <M,

12 1) = gl + 23] 70 @ = | s ax) <

p+1
I (s ttn) — 1(20,un) _(1

_ 2 _ 1 p+1
70 — Jgf(””) o p+1JBf("”)+ ) =M

(7.3) :

for some M > 0 independent of n. Then from (7.2) and (7.3) we have

1 2 1 2 1 P
sl < 01 4 (5[ =] )t ds
<M+, M

< M2+ 4).
Thus ||lu,|| is bounded. Moreover from (7.2), we also have

1 1

EJBﬂu”)Z dx — mJBf(“n)Tl dx <

Thus we get
1
[T(Aoy tn) — I (Anytin)| < (Ao — /1,0(1 +I>M =o(l) as n— oo.

Therefore the condition (H) holds.
Now Proposition 7.2 asserts that there exist o € J = [4,A+ 1] and {u,} C X
such that

0l (Mo, uy) = o(1) in X7, I(Zo,uy) = c(Ao) +0(1) as n— ©

and {u,} is bounded in X. By standard arguments, we can show that there
exists u € X such that

0l (Z0,u) =0 and [I(Ag,u) =c(L) > 0.

By the elliptic regularity theory and the maximal principle, it follows that u is
a positive solution of

{ —Au = Jo(f(u)’f'(u) = f(u)f'(w)) in B,
u=~0 on 0B.

Putting vg(x) = u(x/R) with R = /Ao, vg is a solution of (7.1). O
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