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GLOBAL UNIQUENESS RESULTS FOR GROUND STATES FOR

A CLASS OF QUASILINEAR ELLIPTIC EQUATIONS

Shinji Adachi, Masataka Shibata and Tatsuya Watanabe

Abstract

In this paper, we are concerned with the uniqueness of ground states for a class

of quasilinear elliptic equations which arise in the study of plasma physics. We obtain

global uniqueness results in the sense that we don’t require any assumptions on the

parameter.

1. Introduction and main results

In this paper, we consider the following quasilinear Schrödinger equation:

i
qz

qt
¼ �Dz� jzjp�1

z� kDðjzj2Þz; ðt; xÞ A ð0;yÞ � RN ;ð1:1Þ

where k > 0, Nb 1 and p > 1. Our aim of this paper is to prove the uniqueness
and the non-degeneracy of ground states of (1.1).

Recently there has been a lot of studies on the quasilinear Schrödinger
equation (1.1). This problem arises in the study of superfluid film equation in
plasma physics, and also this type of quasilinear problems is known to be a
more accurate model in various physical phenomena compared with the standard
semilinear problem. For more physical backgrounds, see [4], [5], [13]. From
a physical as well as mathematical point of view, the most important topic is
the stability of standing waves of the form: zðt; xÞ ¼ uðxÞeilt, l > 0, where
u : RN ! R is a real valued function. Substituting this form for (1.1), we obtain
the following quasilinear elliptic problem:

�Duþ lu� kDðu2Þu ¼ jujp�1
u in RN :ð1:2Þ

It is known that in the study of the stability of standing waves, the uniqueness
and the non-degeneracy of the ground state of (1.2) plays an important role.
(See [6], [9], [10] for the results on the (in)stability.)
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One of the main di‰culty on the uniqueness and non-degeneracy of the

ground state is the fact that p ¼ 3N þ 2

N � 2
is a critical exponent for the existence of

nontrivial solutions. More precisely, since the Sobolev critical exponent
N þ 2

N � 2
is

in the range 1;
3N þ 2

N � 2

� �
, the feature of the limit equation as k ! 0 is drastically

changed. Indeed taking k ! 0 formally in (1.2), we see that the problem reduces
to the following semilinear elliptic equation:

�Duþ lu ¼ jujp�1
u in RN :ð1:3Þ

It is well-known that the ground state (positive solution) of (1.3) is unique and

non-degenerate if 1 < p <
N þ 2

N � 2
. On the other hand, if

N þ 2

N � 2
< p, then it

is also well-known that there exists no nontrivial solution of (1.3). Thus in
view point of small perturbation problem of (1.3) for small k > 0, we have to
consider the uniqueness and non-degeneracy of the ground state of (1.2) for the

case 1 < p <
N þ 2

N � 2
and

N þ 2

N � 2
< p <

3N þ 2

N � 2
respectively. We refer for instance

[3] and [22] for the case 1 < p <
N þ 2

N � 2
and small k > 0, [2] for the case

N þ 2

N � 2
< p <

3N þ 2

N � 2
and small k > 0.

The main purpose of this paper is to obtain a global result, which means that
we prove the uniqueness and the non-degeneracy without any restriction on the
parameter k and l. Especially our aim is to obtain the uniqueness of the ground
state of (1.2) for full range of p and for any k, l.

Although our main interest is in the problem (1.2), we consider general
quasilinear problems in this paper. More precisely as in [11], we study quasi-
linear elliptic problems of the form:

�divðaðuÞ‘uÞ þ 1

2
a 0ðuÞj‘uj2 þ u ¼ jujp�1

u in RNð1:4Þ

where Nb 3, the quasilinear term aðtÞ has the form:

aðtÞ ¼ a0jtjl þ cðtÞ ðl > 0; a0 b 0; c A C 2ðRÞÞ

and the exponent p satisfies 1 < p <
ðlþ 1ÞN þ 2

N � 2
.

We suppose that the following conditions hold for aðtÞ and cðtÞ:
(a1) inf

tb0
aðtÞ > 0, a 0ðtÞb 0 for tb 1 and aðtÞa að1Þ for 0a ta 1.

(a2) lim
t!y

cðtÞ
tl

¼ 0.

(a3) lcðtÞ � tc 0ðtÞb 0 for tb 1.
(a4) ðl� 1Þc 0ðtÞ � tc 00ðtÞa 0 for tb 1.

(a5)
lþ 2

2

ð1

0

ffiffiffiffiffiffiffiffi
aðtÞ

p
dt� lþ 2

2

ffiffiffiffiffiffiffiffiffi
að1Þ

p
þ a 0ð1Þ
2

ffiffiffiffiffiffiffiffiffi
að1Þ

p b 0.
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Under assumptions (a1)–(a2), the problem (1.4) has a positive radial solution.
(See Proposition 2.9 below.) In [11], it was shown that the positive radial
solution is unique under some restriction on parameter, which is equivalent to
the condition a0 is su‰ciently large. The main result of this paper is to show
that the uniqueness holds without any restrictions on parameter. Indeed we have
the following result.

Theorem 1.1. Suppose that (a1)–(a5) hold and 1 < p <
ðlþ 1ÞN þ 2

N � 2
.

Assume further pb
l

2
if l > 2. Then the positive radial solution of (1.4) is unique.

A typical example of aðtÞ is given by aðtÞ ¼ 1þ akjtj2a�2 which can be
obtained by taking a0 ¼ ak, l ¼ 2a� 2 and cðtÞ1 1. We can easily see that for

aðtÞ ¼ 1þ akjtj2a�2, (1.4) becomes

�Duþ u� kDðjujaÞjuja�2
u ¼ jujp�1

u in RN :

We also note that since p > 1, the condition pb
l

2
is automatically satisfied if

0 < la 2. This restriction on p has been already observed in [1], [2].

Now for a solution u of (1.2), we rescale uðxÞ ¼ l1=ðp�1Þ~uuðl1=2xÞ. Then we
can see that ~uu satisfies

�D~uuþ ~uu� kl2=ðp�1ÞDð~uu2Þ~uu ¼ j~uujp�1~uu in RN :

Applying Theorem 1.1 to the case aðtÞ ¼ 1þ 2kl2=ðp�1Þt2, we obtain the following
result for the ground state of (1.2).

Theorem 1.2. Suppose Nb 3 and 1 < p <
3N þ 2

N � 2
. Then for any k > 0

and l > 0, the ground state of (1.2) is unique (up to translation).

Recently in [23], the non-degeneracy of the ground state of (1.2) has shown
for all k and l under the additional assumption pb 3. Our second purpose of
this paper is to obtain the non-degeneracy for (1.4) under similar assumption
pb lþ 1. To this aim, we impose the following conditions on aðtÞ instead of
(a1):

(a1 0) inf tb0 aðtÞ > 0 and a 0ðtÞb 0 for tb 0.
In this setting, we have the following result.

Theorem 1.3. Suppose (a1 0), (a2)–(a5) hold and lþ 1a p <
ðlþ 1ÞN þ 2

N � 2
.

Then the kernel of the linearized operator around the unique positive radial solution
u of (1.4) is given by

KerðLÞ ¼ span
qu

qx1
; . . . ;

qu

qxN

� �
:
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Especially u is non-degenerate in H 1
radðRNÞ, that is, if LðfÞ ¼ 0 and f A H 1

radðRNÞ;
then f1 0.

Here the linearized operator L of (1.4) is defined by

LðfÞ ¼ �aðuÞDf� a 0ðuÞ‘u � ‘f� 1

2
a 00ðuÞj‘uj2fð1:5Þ

� a 0ðuÞDufþ f� pup�1f:

Finally we can also obtain the uniqueness and the non-degeneracy for
complex-valued ground state of (1.2). See Section 5 below for the result.

To prove Theorem 1.1, we adapt dual approach as in [1], [8]. More
precisely, we convert our quasilinear equation into a semilinear equation by
using a suitable translation f . We will see that the set of positive radial
solutions of (1.4) has one-to-one correspondence to that of the semilinear
problem. This enables us to apply the uniqueness result [24] for semilinear
elliptic equations. We can also show that there is a complete relation between
the linearized operator of the original quasilinear equation and that of the
converted semilinear equation. This enables us to reduce our analysis into the
study of the non-degeneracy for the converted semilinear problem.

The main idea to obtain the global uniqueness result is rather simple. We
have just shown an improvement inequality of a function related to the dual
transformation. (See Remark 2.4 below.) In order to prove the uniqueness,
we have to show that some function related to the nonlinear term is monotone.
Using the improved inequality carefully, we can show this monotonicity holds.
Once we could get the uniqueness, the non-degeneracy can be proved by ODE
analysis and spherical harmonic decomposition.

This paper is organized as follows. In section 2, we introduce the dual
approach of (1.4) and prepare some auxiliary lemmas. We prove the uniqueness
of positive radial solutions in section 3. We show the non-degeneracy of the
unique positive radial solution in section 4. In section 5, we state results on
complex-valued ground states of (1.2). Finally in section 6, we give some
comments on the quasilinear term aðtÞ of (1.4).

2. Dual approach and auxiliary lemmas

2.1. Properties of functions related to (1.4)
First we begin with the following relations, which can be shown by a direct

consequence of the definition of aðtÞ.

Lemma 2.1. For t > 0, functions a 0 and a 00 can be written as follows:
(i) ta 0ðtÞ ¼ laðtÞ � ðlcðtÞ � tc 0ðtÞÞ.
(ii) t2a 00ðtÞ ¼ ðl� 1ÞlaðtÞ � ðl� 1ÞðlcðtÞ � tc 0ðtÞÞ � tððl� 1Þc 0ðtÞ � tc 00ðtÞÞ.
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Next let f ðsÞ be a unique solution of the following ODE:

f 0ðsÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að f ðsÞÞ

p for s > 0; f ð0Þ ¼ 0:ð2:1Þ

We extend f ðsÞ as an odd function for s < 0. We can see that f ðsÞ is monotone
and hence the inverse f �1 exists.

Now by the definition of f ðsÞ, we have the followings.

Lemma 2.2. For s > 0, f 00 and f 000 can be written as follows:
(i) f 00ðsÞ ¼ � 1

2 a
0ð f ðsÞÞ f 0ðsÞ4.

(ii) f 000ðsÞ ¼ � 1
2 a

00ð f ðsÞÞ f 0ðsÞ5 þ a 0ð f ðsÞÞ2f 0ðsÞ7.

The next lemma is the key to prove our global uniqueness result, which is an
improvement of already known inequality. (See Remark 2.4 below.)

Lemma 2.3. Assume (a1), (a3)–(a5). Then the following inequalities hold for
sb f �1ð1Þ:

(i) sf 0ðsÞa f ðsÞ.
Moreover if in addition (a1 0) is satisfied, then the same inequality holds for
sb 0.

(ii) f ðsÞ þ f ðsÞ f 0ðsÞ2

2
ðlcð f ðsÞÞ � f ðsÞc 0ð f ðsÞÞÞa lþ 2

2
sf 0ðsÞ.

Proof. (i) Since f is monotone, it follows that f ðsÞb 1 for s > f �1ð1Þ.
Then by (a1) and Lemma 2.2 (i), we have

ð f � sf 0Þ 0 ¼ �sf 00 ¼ s

2
a 0ð f Þ f 04 > 0:

Moreover by (a1), we also have
Ð 1

0

ffiffiffiffiffiffiffiffi
aðtÞ

p
dta

ffiffiffiffiffiffiffiffiffi
að1Þ

p
. Putting t ¼ f ðsÞ, we get

f �1ð1Þa 1

f 0ð f �1ð1ÞÞ and hence f ðsÞ � sf 0ðsÞb 0 at s ¼ f �1ð1Þ. Thus the claim

holds for sb f �1ð1Þ.
If (a1 0) is satisfied, then ð f � sf 0Þ 0 b 0 for sb 0. Since ð f � sf 0Þjs¼0 ¼ 0, we

get the same inequality for sb 0. This completes the proof of (i).
(ii) Since f 0 > 0, it su‰ces to show that

HðsÞ :¼ lþ 2

2
s� f

f 0 �
ff 0

2
ðlcð f Þ � fc 0ð f ÞÞb 0 for sb f �1ð1Þ:

First we observe by Lemma 2.1 that

HðsÞ ¼ lþ 2

2
s� f

f 0 �
ff 0

2
ðlað f Þ � fa 0ð f ÞÞ:

121global uniqueness results for ground states



Then by f �1ð1Þ ¼
Ð 1
0

ffiffiffiffiffiffiffiffi
aðtÞ

p
dt, f 0ð f �1ð1ÞÞ ¼ 1ffiffiffiffiffiffiffiffiffi

að1Þ
p and (a5), it follows that

Hð f �1ð1ÞÞb 0. Next by a direct calculation, we get

H 0ðsÞ ¼ l

2
þ ff 00

f 02 �
f 02

2
ðlcð f Þ � fc 0ð f ÞÞ

� ff 00

2
ðlcð f Þ � fc 0ð f ÞÞ � ff 02

2
ððl� 1Þc 0ð f Þ � fc 00ð f ÞÞ:

By Lemmas 2.1 (i), 2.2 (i) and (2.1), it follows that

ff 00

f 02 ¼ � 1

2
a 0ð f Þ ff 02 ¼ � 1

2
f 02ðlað f Þ � ðlcð f Þ � fc 0ð f ÞÞÞ

¼ � l

2
þ f 02

2
ðlcð f Þ � fc 0ð f ÞÞ:

Thus from (a1), (a3) and (a4), we obtain

H 0ðsÞ ¼ a 0ð f Þ ff 04

4
ðlcð f Þ � fc 0ð f ÞÞ � ff 02

2
ððl� 1Þc 0ð f Þ � fc 00ð f ÞÞb 0:

This completes the proof. r

Remark 2.4. When aðtÞ ¼ 1þ t2, we have l ¼ 2 and cðtÞ1 1. Then the
inequality in Lemma 2.3 (ii) reduces to

f ðsÞ þ f ðsÞ f 0ðsÞ2 a 2sf 0ðsÞ:

We notice that it is already known that the inequality f ðsÞa 2sf 0ðsÞ holds (see
[8]). Our inequality is a simple improvement of it but this improvement enables
us to obtain the global uniqueness result.

Finally in this subsection, we give asymptotic behavior of f ðsÞ at infinity,
which will be used in section 4. For the proof, we refer to [11].

Lemma 2.5. f ðsÞ satisfies the following properties:

lim
s!y

f ðsÞ
s2=ðlþ2Þ ¼

lþ 2

2
ffiffiffiffiffi
a0

p
� �2=ðlþ2Þ

; lim
s!y

f 0ðsÞ
s2=ðlþ2Þ�1

¼ 2

lþ 2

lþ 2

2
ffiffiffiffiffi
a0

p
� �2=ðlþ2Þ

;

lim
s!y

sf 0ðsÞ
f ðsÞ ¼ 2

lþ 2
:

2.2. Dual approach and its correspondence
Now we consider the following semilinear elliptic problem:

�Dvþ f ðvÞ f 0ðvÞ ¼ j f ðvÞjp�1
f ðvÞ f 0ðvÞ in RN ;ð2:2Þ
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which we call a dual problem of (1.4). Then we can show the following relation
between (1.4) and (2.2).

Proposition 2.6. u A X \ C 2ðRNÞ is a positive radial solution of (1.4) if and
only if v ¼ f �1ðuÞ A H 1 \ C2ðRNÞ is a positive radial solution of (2.2).

For the proof, we refer to [11]. Proposition 2.6 tells us that if (2.2) has
a unique positive radial solution v, then u ¼ f ðvÞ is a unique positive radial
solution of (1.4). Thus we have only to study the uniqueness of the positive
radial solution of the semilinear problem (2.2).

Next we study the correspondence of the linearized operators of (1.4) and
(2.2). Now let ~LL : H 2ðRNÞ ! L2ðRNÞ be a linearized operator of (2.2), which is
defined by

~LLð ~ffÞ :¼ �D ~ffþ ð f 0ðvÞ2 þ f ðvÞ f 00ðvÞÞ ~ff� ðpf ðvÞp�1
f 0ðvÞ2 þ f ðvÞpf 00ðvÞÞ ~ff:ð2:3Þ

Then we have the following relation, which was already obtained in [2] for the
case aðtÞ ¼ 1þ jtj2a�2.

Lemma 2.7. Suppose that u A X \ C 2ðRNÞ is a positive solution of (1.4) and

put v ¼ f �1ðuÞ. Let L and ~LL : H 2ðRNÞ ! L2ðRNÞ be the linearized operators
defined by (1.5) and (2.3) respectively. Finally for f A H 2ðRNÞ, we put ~ff ¼ffiffiffiffiffiffiffiffiffi

aðuÞ
p

f. Then it follows that

~LLð ~ffÞ ¼ 1ffiffiffiffiffiffiffiffiffi
aðuÞ

p LðfÞ:ð2:4Þ

Proof. By direct computations, we have

‘ ~ff ¼
ffiffiffiffiffiffiffiffiffi
aðuÞ

p
‘fþ a 0ðuÞf

2
ffiffiffiffiffiffiffiffiffi
aðuÞ

p ‘u;

D ~ff ¼
ffiffiffiffiffiffiffiffiffi
aðuÞ

p
Dfþ a 0ðuÞffiffiffiffiffiffiffiffiffi

aðuÞ
p ‘u � ‘fþ a 0ðuÞDu

2
ffiffiffiffiffiffiffiffiffi
aðuÞ

p f

þ a 00ðuÞj‘uj2

2
ffiffiffiffiffiffiffiffiffi
aðuÞ

p f� a 0ðuÞ2j‘uj2

4ð
ffiffiffiffiffiffiffiffiffi
aðuÞ

p
Þ3

f:

Next by Lemma 2.2 and from (2.1), we also have

ð f 0ðvÞ2 þ f ðvÞ f 00ðvÞÞ ~ff ¼ f 0ðvÞ2 � 1

2
a 0ð f ðvÞÞf ðvÞ f 0ðvÞ4

� �
~ff

¼ 1ffiffiffiffiffiffiffiffiffi
aðuÞ

p f� a 0ðuÞu
2ð

ffiffiffiffiffiffiffiffiffi
aðuÞ

p
Þ3

f;

ðpf ðvÞp�1
f 0ðvÞ2 þ f ðvÞpf 00ðvÞÞ ~ff ¼ pup�1ffiffiffiffiffiffiffiffiffi

aðuÞ
p f� a 0ðuÞup

2ð
ffiffiffiffiffiffiffiffiffi
aðuÞ

p
Þ3

f:
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Thus from (1.4), (1.5) and (2.3), we obtain

~LLð ~ffÞ ¼ �D ~ffþ ð f 02 þ ff 00Þ ~ff� ðpf p�1f 02 þ f pf 00Þ ~ff

¼ 1ffiffiffiffiffiffiffiffiffi
aðuÞ

p
�
�aðuÞDf� a 0ðuÞ‘u � ‘f� 1

2
a 00ðuÞj‘uj2f

� a 0ðuÞDufþ f� pup�1f

�

� a 0ðuÞ
2ð

ffiffiffiffiffiffiffiffiffi
aðuÞ

p
Þ3

�aðuÞDu� 1

2
a 0ðuÞj‘uj2 þ u� up

� �
f

¼ 1ffiffiffiffiffiffiffiffiffi
aðuÞ

p LðfÞ:

This completes the proof. r

By Lemma 2.7, we obtain the following result.

Proposition 2.8. Suppose that u A X \ C2ðRNÞ is a positive solution of (1.4)
and put v ¼ f �1ðuÞ. Then

(i) f A KerðLÞ if and only if ~ff ¼
ffiffiffiffiffiffiffiffiffi
aðuÞ

p
f A Kerð~LLÞ.

(ii) u is non-degenerate if and only if v is non-degenerate.

(iii) KerðLÞ ¼ span
qu

qxi

� �N

i¼1

if and only if Kerð~LLÞ ¼ span
qv

qxi

� �N

i¼1

.

Proof. (i) From (2.4), we have ~LLð ~ffÞ ¼ 0 , LðfÞ ¼ 0: Thus the claim
holds.

(ii) The claim follows from (i).

(iii) We assume that KerðLÞ ¼ span
qu

qxi

� �N

i¼1

. Suppose by contradiction

that span
qv

qxi

� �N

i¼1

0Kerð~LLÞ. Since
qv

qxi
A Kerð~LLÞ for i ¼ 1; . . . ;N, we have

span
qv

qxi

� �N

i¼1

� Kerð~LLÞ. Thus there exists ~ff2 0 such that

~ff A Kerð~LLÞ
�

span
qv

qxi

� �N

i¼1

:

Since ~ff A Kerð~LLÞ, we have ~LLð ~ffÞ ¼ 0. Putting ~ff ¼
ffiffiffiffiffiffiffiffiffi
aðuÞ

p
f, we obtain LðfÞ ¼ 0

by Lemma 2.7. Then by the assumption KerðLÞ ¼ span
qu

qxi

� �N

i¼1

, there exist
c1; . . . ; cN such that

f ¼ c1
qu

qx1
þ � � � þ cN

qu

qxN
:
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Now since u ¼ f ðvÞ, it follows that

qu

qxi
¼ f 0ðvÞ qv

qxi
¼ 1ffiffiffiffiffiffiffiffiffi

aðuÞ
p qv

qxi
for i ¼ 1; . . . ;N:

Thus we have

~ff ¼ c1
qv

qx1
þ � � � þ cN

qv

qxN
A span

qv

qxi

� �N

i¼1

:

This is a contradiction and hence Kerð~LLÞ ¼ span
qv

qxi

� �N

i¼1

.

We can show the converse in a similar way. r

By Proposition 2.8, we have only to study the non-degeneracy of the unique
positive radial solution of the semilinear problem (2.2).

2.3. Existence of a positive radial solution
In this subsection, we study the existence of a positive radial solution of

(1.4). Indeed we are going to show the existence of a ground state of (1.4). To
this aim, we define the energy functional I : X ! R by

IðuÞ ¼ 1

2

ð
RN

aðuÞj‘uj2 þ u2 dx� 1

pþ 1

ð
RN

jujpþ1
dx;

where

X :¼ fu A H 1ðRNÞ; aðuÞj‘uj2 A L1ðRNÞg:
A solution u of (1.4) is called a ground state if it satisfies

IðuÞ ¼ inffIðwÞ; I 0ðwÞ ¼ 0;w A Xnf0gg:
Then we have the following result.

Proposition 2.9. Assume (a1)–(a2) and 1 < p <
ðlþ 1ÞN þ 2

N � 2
. Then the

equation (1.4) has a ground state. Moreover any ground state is C2, positive,
radially symmetric (up to translation), decreasing and exponentially decaying up to
second derivatives.

For the proof, we adapt arguments in [9]. (See also [11].)

3. Uniqueness of the positive radial solution

In this section, we study the uniqueness of the positive radial solution of
(2.2). For simplicity, we put

gðsÞ :¼ f ðsÞpf 0ðsÞ � f ðsÞ f 0ðsÞ for sb 0 and KgðsÞ :¼
sg 0ðsÞ
gðsÞ :ð3:1Þ

We apply the following uniqueness result due to Serrin and Tang [24].
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Proposition 3.1 [24]. Suppose that there exists b > 0 such that
(i) g is continuous on ð0;yÞ, gðsÞa 0 on ð0; b� and gðsÞ > 0 for s > b.
(ii) g A C1ðb;yÞ and K 0

gðsÞ < 0 on ðb;yÞ.
Then the semilinear problem:

�Dv ¼ gðvÞ in RN ; v > 0; v ! 0 as jxj ! y; vð0Þ ¼ max
x ARN

vðxÞ

has at most one positive radial solution.

Now we can see that g defined in (3.1) is of the class C 1½0;yÞ and

gðsÞ ¼ 0 , f p�1ðsÞ ¼ 1 , s ¼ f �1ð1Þ:

We put b :¼ f �1ð1Þ. Since gðsÞ ¼ ff 0ð f p�1 � 1Þ, we can see that (i) of Prop-
osition 3.1 holds.

Lemma 3.2. Suppose that pb
l

2
if l > 2. Then the function g defined in

(3.1) satisfies (ii) of Proposition 3.1.

Proof. First we see that

K 0
gðsÞ ¼

1

gðsÞ2
ðg 00ðsÞgðsÞsþ g 0ðsÞgðsÞ � g 0ðsÞ2sÞ:

Thus we have only to show that sg 00gþ g 0g� sg 02 < 0 for s > b.
Now by direct computations, it follows that

gðsÞ ¼ f pf 0 � ff 0 ¼ ff 0ð f p�1 � 1Þ;ð3:2Þ

g 0ðsÞ ¼ ð f p�1 � 1Þð ff 00 þ f 02Þ þ ðp� 1Þ f p�1f 02;ð3:3Þ

g 00ðsÞ ¼ ð f p�1 � 1Þð ff 000 þ 3f 0f 00Þ þ ðp� 1Þ f p�2ð3ff 0f 00 þ pf 03Þ:ð3:4Þ

Next we have

ð f p�1 � 1Þ f p�1 ¼ ð f p�1 � 1Þ2 þ f p�1 � 1 ¼ ð f p�1 � 1Þ2 þ ð f p�1 � 1Þ;

f 2p�2 ¼ ð f p�1 � 1Þ2 þ 2f p�1 � 1 ¼ ð f p�1 � 1Þ2 þ 2ð f p�1 � 1Þ þ 1:

From these equalities and (3.2)–(3.4), we can describe sg 00gþ gg 0 � sg 02 as a
polynomial of f p�1 � 1. Then we obtain

sg 00gþ g 0g� sg 02

¼ ð f p�1 � 1Þ2ðsf 2f 0f 000 þ psff 02f 00 þ f 2f 0f 00 � sf 2f 002 � psf 04 þ pff 03Þ

þ ðp� 1Þð f p�1 � 1Þðsff 02f 00 � psf 04 þ ff 03Þ � ðp� 1Þ2sf 04:

By Lemma 2.2, we can write f 00 and f 000 by using f and f 0. Then we have
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sf 2f 0f 000 þ psff 02f 00 þ f 2f 0f 000 � sf 2f 002 � psf 04 þ pff 03

¼ sf 2f 0 � 1

2
a 00ð f Þ f 05 þ a 0ð f Þ2f 07

� �
þ psff 02 � 1

2
a 0ð f Þ f 04

� �

þ f 2f 0 � 1

2
a 0ð f Þ f 04

� �
� sf 2 � 1

2
a 0ð f Þ f 04

� �2
� psf 04 þ pff 03

¼ � 1

2
sa 00ð f Þ f 2f 06 þ 3

4
sa 0ð f Þ2f 2f 08 � p

2
sa 0ð f Þ ff 06

� 1

2
a 0ð f Þ f 2f 05 � psf 04 þ pff 03

¼: H1ðsÞ

and

sff 02f 00 � psf 04 þ ff 03 ¼ � 1

2
sa 0ð f Þ ff 06 � psf 04 þ ff 03 ¼: H2ðsÞ:

Thus we obtain

sg 00gþ g 0g� sg 02ð3:5Þ

¼ ð f p�1 � 1Þ2H1ðsÞ þ ðp� 1Þð f p�1 � 1ÞH2ðsÞ � ðp� 1Þ2sf 04:

By the definition of b, it follows that f ðsÞp�1 � 1 > 0 and ðp� 1Þ2sf 04 > 0 for
s > b. Thus it su‰ces to show that H1ðsÞa 0, H2ðsÞa 0 for s > b in order to
prove that sgg 00 þ g 0g� sg 02 < 0.

First we estimate H1ðsÞ. To this aim, we rewrite a 00 and a 0 by using c
and a. Indeed by Lemma 2.1, it follows that

H1ðsÞ
f 03 ¼ � 1

2
sf 03ððl� 1Þla� ðl� 1Þðlc� fc 0Þ � f ððl� 1Þc 0 � fc 00ÞÞ

þ 3

4
sf 05ðla� ðlc� fc 0ÞÞ2 � p

2
sf 03ðla� ðlc� fc 0ÞÞ

� 1

2
ff 02ðla� ðlc� fc 0ÞÞ � psf 0 þ pf :

Using f 0 ¼ 1ffiffiffi
a

p , we get

H1ðsÞ
f 03 ¼ � p� l

2

� �
lþ 2

2
sf 0 þ p� l

2

� �
f þ 1

2
ff 02ðlc� fc 0Þð3:6Þ

þ p� 2l� 1

2
sf 03ðlc� fc 0Þ þ 3

4
sf 05ðlc� fc 0Þ2

þ 1

2
sff 03ððl� 1Þc 0 � fc 00Þ:
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Now since pb
l

2
, we can apply Lemma 2.3 (ii) to the first and the second

terms in the right hand side of (3.6). Then we have

H1ðsÞ
f 03 a� p� l

2
� 1

� �
ff 02

2
ðlc� fc 0Þ þ ðp� 2l� 1Þ sf

03

2
ðlc� fc 0Þ

þ 3

4
sf 05ðlc� fc 0Þ2 þ 1

2
sff 03ððl� 1Þc 0 � fc 00Þ:

Applying Lemma 2.3 (i) to the term sf 05, we get

H1ðsÞ
f 03 a� p� l

2
� 1

� �
ff 02

2
ðlc� fc 0Þ þ ðp� 2l� 1Þ sf

03

2
ðlc� fc 0Þ

þ 3

4
ff 04ðlc� fc 0Þ2 þ 1

2
sff 03ððl� 1Þc 0 � fc 00Þ:

Next since lcð f Þ � fc 0ð f Þb 0 for s > b by (a3), we can use Lemma 2.3 (ii) to
3

4
ff 04ðlc� fc 0Þ2 ¼ 3

2
f 02ðlc� fc 0Þ � ff

02

2
ðlc� fc 0Þ. Thus we obtain

H1ðsÞ
f 03 a� p� l

2
þ 2

� �
ff 02

2
ðlc� fc 0Þ þ p� l

2
þ 2

� �
sf 03

2
ðlc� fc 0Þð3:7Þ

þ 1

2
sff 03ððl� 1Þc 0 � fc 00Þ:

Finally since p� l

2
þ 2 > 0 and lc� fc 0

b 0, we can apply Lemma 2.3 (i) to the

first term of the right hand side of (3.7). Then we obtain

H1ðsÞ
f 03 a

1

2
sff 03ððl� 1Þc 0ð f Þ � fc 00ð f ÞÞ:

Thus by (a4), it follows that H1ðsÞa 0 for s > b.
Next we estimate H2ðsÞ. By Lemma 2.1 and f 0 ¼ 1ffiffiffi

a
p , we have

H2ðsÞ
f 03 ¼ � 1

2
sf 03ðla� ðlc� fc 0ÞÞ � psf 0 þ f

¼ � pþ l

2

� �
sf 0 þ f þ 1

2
sf 03ðlc� fc 0Þ:

By Lemma 2.3 (i), we also have

H2ðsÞ
f 03 a� pþ l

2

� �
sf 0 þ f þ ff 02

2
ðlc� fc 0Þ:
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Finally by Lemma 2.3 (ii), it follows that

H2ðsÞ
f 03 a� pþ l

2

� �
sf 0 þ lþ 2

2
sf 0 ¼ �ðp� 1Þsf 0 < 0:

This completes the proof. r

Now Theorem 1.1 follows by Propositions 2.6, 3.1 and Lemma 3.2.

4. Non-degeneracy of the unique positive radial solution

In this section, we show that the unique positive radial solution of (2.2) is
non-degenerate. To this aim, we study the structure of radial solutions of the
following ODE:

v 00 þN � 1

r
v 0 þ gðvÞ ¼ 0; r A ð0;yÞ;

vð0Þ ¼ d > 0:

8><
>:ð4:1Þ

We define the energy E by

EðrÞ :¼ 1

2
ðv 0ðrÞÞ2 þ GðvðrÞÞ;

where GðsÞ ¼
Ð s

0 gðtÞ dt ¼
1

pþ 1
f ðsÞpþ1 � 1

2
f ðsÞ2. From (4.1), we have

E 0ðrÞ ¼ �N � 1

r
ðv 0ðrÞÞ2 a 0:

Then we can show that for each d > 0, (4.1) has a unique solution vðr; dÞ.
As in [14], we classify the sets of initial values as follows:

N ¼ fd > 0; there exists r0 ¼ r0ðdÞ A ð0;yÞ such that vðr0; dÞ ¼ 0g:

G ¼ d > 0; vðr; dÞ > 0 for all r > 0 and lim
r!y

vðr; dÞ ¼ 0
n o

:

P ¼ fd > 0; vðr; dÞ > 0 for all r > 0

but vðr; dÞ does not converge to zero at infinityg:

First we prove the following properties on N.

Lemma 4.1. The set N has the following properties:
(i) There exists d̂d > 0 such that vðr; d̂dÞ has a finite zero. Especially it follows

that N0j.
(ii) N is an open set.
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Proof. (i) Let R > 0 be given. We consider the auxiliary problem:

�Dv ¼ gðvÞ in BRð0Þ;
v > 0 in BRð0Þ;
v ¼ 0 on qBRð0Þ:

8<
:ð4:2Þ

Then for large R, we can show that there exists a positive radial solution vRðxÞ
of (4.2). (See Appendix below.) Putting d̂d ¼ vRð0Þ, we obtain vðR; d̂dÞ ¼ 0 for a
solution of (4.1).

(ii) The claim follows from the continuous dependence on the initial value.
(see [14] Lemma 13, p. 253.) r

Next we show the following result on P. For simplicity, we write vdðrÞ :¼
vðr; dÞ and EdðrÞ :¼ EðrÞ.

Lemma 4.2. The set P has the following properties:
(i) Let s1 > 0 be a unique zero of GðsÞ. Then it follows that ð0; s1Þ � P.
(ii) P is an open set.

Proof. (i) We take d < s1. Then it follows from vdð0Þ ¼ d and v 0dð0Þ ¼ 0
that Edð0Þ ¼ GðdÞ. Since GðsÞ < 0 for 0a s < s1, we get

EdðrÞaEdð0Þ < 0 for all r > 0:ð4:3Þ
Next we prove that d B N [ G. First we show that vdðrÞ does not have

a finite zero. To this aim, suppose by contradiction that vdðr0Þ ¼ 0 for some
r0 > 0. Then from Gð0Þ ¼ 0 and by the definition of Ed , it follows that
Edðr0Þ ¼ 1

2 ðv 0dðr0ÞÞ
2 > 0. This contradicts to (4.3).

Finally we show that vdðrÞ does not converges to zero as r ! y. If
vdðrÞ ! 0 as r ! y, then vdðrÞ decays exponentially up to the first derivative.
Thus it follows that EdðrÞ ! 0 as r ! y. This is a contradiction.

(ii) The claim follows by a similar argument as in [14] Lemma 13. r

Now by Proposition 3.1 and Lemma 3.2, we know that the positive radial
solution of (2.2) is unique. This implies that there exists d � > 0 such that G ¼
fd �g. Moreover by the proof of Lemma 4.2, we can see that s1 < d �. Since N
and P are open, we obtain the following structure.

Proposition 4.3. There exists a unique d � > 0 such that

N ¼ ðd �;yÞ; G ¼ fd �g and P ¼ ð0; d �Þ:

Next we consider the linearized equation of (4.1):

w 00 þN � 1

r
w 0 þ g 0ðvÞw ¼ 0; r A ð0;yÞ;ð4:4Þ

wð0Þ ¼ 1; w 0ð0Þ ¼ 0:
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Since
qv

qd
ðr; d �Þ satisfies (4.4) with same initial values, it follows that w ¼ qv

qd
by

the uniqueness of the initial value problem. Moreover we have the following.

Proposition 4.4. Suppose (a1 0), (a2)–(a5) hold and assume further lþ 1a

p <
ðlþ 1ÞN þ 2

N � 2
. Then

qv

qd
ðr; d �Þ does not belong to H 1ðRNÞ.

Proof. We claim that
qv

qd
ðr; d �Þ ! �y as r ! y, which trivially implies

qv

qd
ðr; d �Þ B H 1ðRNÞ. We can see that this claim is a direct consequence of the

uniqueness proof in [19].
Firstly by Proposition 4.3, we know that d � ¼ infðN [ GÞ. Then by Lemma

10 in [19], it follows that
qv

qd
ðr; d �Þ has exactly one zero in ½0;yÞ. (This

property is called admissible in [14], [19].) Moreover by Lemma 8 in [19], we

can conclude that
qv

qd
ðr; d �Þ ! �y as r ! y, (this property is called strictly

admissible in [14], [19]), if we could show that the hypotheses of Theorem 1 in
[19] are satisfied. Thus it su‰ces to show that the following hypotheses hold for
our nonlinear term gðsÞ.

Hypotheses of Theorem 1 in [19]:
(i) g A C1½0;yÞ, gð0Þ ¼ 0 and g 0ð0Þ ¼ �m < 0.
(ii) There exists b > 0 such that gðsÞ < 0 for 0 < s < b, gðsÞ > 0 for s > b

and g 0ðbÞ > 0.
(iii) For b > 0, let

Fðs; bÞ ¼ bsg 0ðsÞ � ðb þ 2ÞgðsÞ:

(F is called I-function in [19].) Then for each U > b, there exists b ¼
bðUÞ > 0 depending continuously on U such that

Fðs; bÞb 0 for 0 < s < U ; Fðs; bÞa 0 for s > U :

As we have already observed in Section 3, we can see that g defined in (3.1)
satisfies (i) and (ii). Moreover (iii) holds for s ¼ b because g 0ðbÞ > 0. Thus it
remains to show that (iii) holds for s0 b.

Now we observe that

Fðs; bÞ
bgðsÞ ¼ sg 0ðsÞ

gðsÞ � b þ 2

b
¼ KgðsÞ �

b þ 2

b
for s0 b;

where KgðsÞ is a function defined in (3.1). Then from (ii), the hypothesis (iii) is
equivalent to showing that
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KgðsÞ �
b þ 2

b
a 0 for s > U ;ð4:5Þ

KgðsÞ �
b þ 2

b
b 0 for b < s < U ;ð4:6Þ

KgðsÞ �
b þ 2

b
a 0 for 0 < s < b:ð4:7Þ

To this aim, we firstly show that

lim
s!y

KgðsÞ ¼
2

lþ 2
p� l

2

� �
:ð4:8Þ

Indeed by Lemmas 2.1 and 2.2, we have

KgðsÞ ¼
sðpf p�1f 02 þ f pf 00 � f 02 � ff 00Þ

f pf 0 � ff 0

¼ sf 0

f
� 1

1� f 1�p

�
p� l

2
þ 1

2
f 02ðlcð f Þ � fc 0ð f ÞÞ

þ l

2
� 1

� �
f 1�p � 1

2
f 1�pf 02ðlcð f Þ � fc 0ð f ÞÞ

�
:

Now from (a3) and (a4), it follows that

0a lcð f Þ � fc 0ð f Þa lcð1Þ � c 0ð1Þ for sb f �1ð1Þ:

Then by Lemma 2.5, we get (4.8).
Now by the assumption pb lþ 1, it follows that

2

lþ 2
p� l

2

� �
b 1.

Moreover by Lemma 3.2, we know that K 0
gðsÞ < 0 for s > b. Thus we have

KgðsÞ > 1 for all s > b. Choosing b ¼ 2

KgðUÞ � 1
for each U > b, we can see

that (4.5) and (4.6) hold.
Finally we show that (4.7) is fulfilled. To this aim, we observe from (3.2),

(3.3) and Lemma 2.2 that

sg 0ðsÞ � gðsÞ ¼ ð f p�1 � 1Þ � 1

2
sa 0ð f Þ ff 04 þ sf 02 � ff 0

� �
þ ðp� 1Þsf p�1f 02:

Then from (a1 0) and Lemma 2.3 (i), we have

sg 0ðsÞ � gðsÞb ðp� 1Þ f p�1f 02 > 0 for 0 < s < b

and hence KgðsÞ < 1 because gðsÞ < 0 for 0 < s < b. Thus we obtain

KgðsÞ < 1 < KgðUÞ ¼ b þ 2

b
for 0 < s < b

and hence (4.7) holds.
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Since the hypotheses of Theorem 1 in [19] are all satisfied, the proof is
complete. r

Proposition 4.4 implies that the unique positive radial solution v of (2.2)
is non-degenerate in H 1

radðRNÞ. Finally we show the following result on the
linearized operator ~LL ¼ �D� g 0ðvÞ of (2.2). We adopt similar arguments as in
[18], [20] and [23].

Proposition 4.5. The kernel of ~LL is given by

Kerð~LLÞ ¼ span
qv

qx1
; . . . ;

qv

qxN

� �
:

Proof. First we observe that span
qv

qx1
; . . . ;

qv

qxN

� �
� Kerð~LLÞ. In fact, since

v is a solution of (2.2),
qv

qxi
satisfies

�D
qv

qxi

� �
� g 0ðvÞ qv

qxi
¼ 0 in RN ; i ¼ 1; . . . ;N:

Moreover by the elliptic regularity theory, we can see that
qv

qxi
A H 2ðRNÞ. Thus

it follows that span
qv

qx1
; . . . ;

qv

qxN

� �
� Kerð~LLÞ.

To complete the proof, it su‰ces to show that dim Kerð~LLÞaN. To this
aim, we apply the argument in [18], [20]. Suppose that ~ff A Kerð~LLÞ, that is,
~ff A H 2ðRNÞ and it satisfies

�D ~ff� g 0ðvÞ ~ff ¼ 0 in RN :

Then by the elliptic regularity theory, it follows that ~ff A C2ðRNÞ.
Now let mi and ciðyÞ with y A SN�1 be the eigenvalues and eigenfunctions

of the Laplace-Beltrami operator on SN�1. Then it follows that

0 ¼ m0 < m1 ¼ � � � ¼ mN ¼ ðN � 1Þ < mNþ1 � � �
and fcig forms an orthonormal basis of L2ðSN�1Þ. For ~ff A Kerð~LLÞ, we define

fiðrÞ :¼
ð
SN�1

~ffðr; yÞciðyÞ dy:

Then we have

f 00
i þN � 1

r
f 0
i þ g 0ðvÞ � mi

r2

� �
fi ¼ 0; f 0

i ð0Þ ¼ 0:ð4:9Þ

Moreover ~ff A Kerð~LLÞ can be written as follows.

~ffðxÞ ¼ ~ffðr; yÞ ¼
Xy
i¼0

fiðrÞciðyÞ:ð4:10Þ
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When i ¼ 0, we have from m0 ¼ 0 that

f 00
0 þN � 1

r
f 0
0 þ g 0ðvÞf0 ¼ 0; f 0

0ð0Þ ¼ 0:

Then f0 is a constant multiple of
qv

qd
ðr; d �Þ and hence by Proposition 4.4, it

follows that f0 1 0.
Next we show that fi 1 0 for ibN þ 1. If fi 2 0, then fið0Þ0 0. Thus

we may assume that fið0Þ > 0. Let ri A ð0;y� be such that fiðrÞ > 0 on ½0; riÞ
and fiðriÞ ¼ 0.

First we suppose that ri < y. Multiplying (4.9) by rN�1v 0 and integrating it
over ½0; ri�, we getð ri

0

rN�1v 0f 00
i þ ðN � 1ÞrN�2v 0f 0

i þ rN�1g 0ðvÞv 0fi � mir
N�3v 0fi dr ¼ 0:

By the integration by parts, it follows that

rN�1
i v 0ðriÞf 0

i ðriÞ �
ð ri

0

rN�1v 00f 0
i drþ

ð ri

0

rN�1g 0ðvÞv 0fi � mir
N�3v 0fi dr ¼ 0:

By the integration by parts again and combined with fðriÞ ¼ 0, we obtain

rN�1
i v 0ðriÞf 0

i ðriÞ þ
ð ri

0

ðrN�1v 000 þ ðN � 1ÞrN�2v 00 þ rN�1g 0ðvÞv 0Þfi dr

�
ð ri

0

mir
N�3v 0fi dr ¼ 0:

Moreover since v satisfies (4.1), we have

v 000 þN � 1

r
v 00 �N � 1

r2
v 0 þ g 0ðvÞv 0 ¼ 0:

Thus we obtain

rN�1
i v 0ðriÞf 0

i ðriÞ þ ðN � 1� miÞ
ð ri

0

rN�3v 0fi dr ¼ 0:

Since v 0ðriÞ < 0 and f 0
i ðriÞ < 0, it follows that

ðN � 1� miÞ
ð ri

0

rN�3v 0fi dr < 0:

On the other hand since fiðrÞ > 0 on ð0; riÞ and mi > N � 1 for ibN þ 1, we also
have

0 < ðN � 1� miÞ
ð ri

0

rN�3v 0fi dr:

This is a contradiction.

134 shinji adachi, masataka shibata and tatsuya watanabe



Next suppose that ri ¼ þy. Since v 0ðrÞ and v 00ðrÞ decay exponentially as
r ! y, we have

ðN � 1� miÞ
ðy
0

rN�3v 0fi dr ¼ 0:

This implies again that fi 1 0 for ibN þ 1.
Now since f0 1 0 and fi 1 0 for ibN þ 1, we have from (4.10) that

~ffðxÞ ¼ ~ffðr; yÞ ¼
XN
i¼1

cifiðrÞciðyÞ:

This implies that dim Kerð~LLÞaN and hence the claim holds. r

We can see that Theorem 1.3 follows from Propositions 2.8 and 4.5.

Remark 4.6. The key of the proof of the non-degeneracy is to prove that
f0 1 0 (f0 is called an ODE spherical harmonic), which is equivalent to showing

that
qv

qd
ðr; d �Þ B H 1ðRNÞ.

In [23], the author firstly showed that the function
qv

qd
ðr; d �Þ changes sign

at least once, and secondly proved that
qv

qd
ðr; d �Þ is unbounded. This approach

does not need the uniqueness. However in order to prove the first statement, the
assumption pb 3 was necessary. (See Proposition 3.10 in [23].)

It is known that the uniqueness follows if we could show that
qv

qd
ðr; d �Þ

changes sign exactly once. (See [14], [19].) However we don’t need to prove
this property for the uniqueness, since the uniqueness proof in [24] is based on a
di¤erent approach. This enables us to obtain the uniqueness for p > 1.

On the other hand we have to adopt same arguments as in [23] to
prove the non-degeneracy. To this aim, we need a restriction on p. Although
this restriction seems to be technical, we don’t know how to remove it at
present.

5. Results for the complex valued ground state

In this section, we consider a complex-valued ground state of (1.2), which is
important in the study of the corresponding time-evolution Schrödinger equation
(1.1).

Now for u : RN ! C, we consider the following elliptic equation:

�Duþ lu� kuDðjuj2Þ ¼ jujp�1
u in RN :ð5:1Þ

We define the energy functional and the energy space by
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IðuÞ ¼ 1

2

ð
RN

j‘uj2 þ juj2j‘juj j2 þ juj2 dx� 1

pþ 1

ð
RN

jujpþ1
dx;

XC ¼ u A H 1ðRN ;CÞ;
ð
RN

juj2j‘juj j2 dx < y

� �
:

As for the existence and properties of a complex-valued ground state, we have the
following. For the proof, we refer to [9].

Proposition 5.1. Suppose 1 < p <
3N þ 2

N � 2
, l > 0 and k > 0. Then the

problem (5.1) has a ground state.
Moreover let u be a ground state of (5.1). Then there exists y A R such that

uðxÞ ¼ eiyjuðxÞj.

Proposition 5.1 tells us that up to a phase shift, we may assume that the
ground state of (5.1) is real-valued.

Now let G be the set of ground states of (5.1). Since (5.1) is invariant under
the translation and the phase shift, we have the following result.

Theorem 5.2. Suppose 1 < p <
3N þ 2

N � 2
, l > 0 and k > 0. Let u be the

unique (real-valued) ground state of (1.2) (obtained in Theorem 1.2). Then we
have

G ¼ feiyuð� þ yÞ; y A RN ; y A Rg:

Moreover if 3a p <
3N þ 2

N � 2
, we also have

KerðLÞ ¼ span iuðxÞ; qu
qx1

; . . . ;
qu

qxN

� �
:

Here L is the linearized operator of (5.1) around the unique (real-valued)
ground state u, which is given by

LðfÞ ¼ �Dfþ lf� kð2uDuþ 2j‘uj2Þf

� ku2Dðfþ fÞ � 2ku‘u � ‘ðfþ fÞ � kuDuðfþ fÞ

� up�1f� p� 1

2
up�1ðfþ fÞ; f A H 2ðRN ;CÞ:

Proof. To prove Theorem 5.2, we put f ¼ f1 þ if2 with f1; f2 A H 2ðRN ;RÞ
and decompose L into two operators L1, L2 acting on f1 and f2 respectively.
By a direct computation, we have
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L1ðf1Þ ¼ �Df1 þ lf1 � kð2uDuþ 2j‘uj2Þf1
� 2ku2Df1 � 4ku‘u � ‘f1 � 2kuDuf1 � pup�1f1;

L2ðf2Þ ¼ �Df2 þ lf2 � kð2uDuþ 2j‘uj2Þf2 � up�1f2:

By Theorem 1.3 with aðtÞ ¼ 1þ 2kl2=ðp�1Þt2, we know that

KerðL1Þ ¼ span
qu

qx1
; . . . ;

qu

qxN

� �
:

Moreover we can see that u A KerðL2Þ. By the result in [23], we also have
KerðL2Þ ¼ spanfug. Thus Theorem 5.2 holds. r

6. Comments on the quasilinear term

In this section, we study some examples of the quasilinear term aðtÞ and give
some remarks.

First we observe that by (a1), aðtÞ needs not to be monotone for 0a ta 1.
This enables our result to cover a wider class of functions. Indeed we consider a
function aðtÞ ¼ a0t

l þ e�a1t
2
for a1 > 0, that is, cðtÞ ¼ e�a1t

2
. By elementary

calculations, we have

lc� tc 0 ¼ e�a1t
2ðlþ 2a1t

2Þ:

ðl� 1Þc 0 � tc 00 ¼ 2a1te
�a1t

2ð2� l� 2a1t
2Þ:

a 0ðtÞ ¼ a0lt
l�1 � 2a1te

�a1t
2

:

Choosing a1 smaller if lb 2 and larger if 0 < l < 2 respectively, we can see that
(a1)–(a4) hold. We notice that if l > 2, aðtÞ cannot be monotone near zero.

Similar statements hold for a function aðtÞ ¼ a0t
l þ 1

ð1þ a1t2Þq
for q > 0.

Next we claim that the assumption (a5) also holds for a wide class of
functions. First let us consider the typical case aðtÞ ¼ 1þ a0t

2, that is, l ¼ 2 and
cðtÞ1 1. By a direct computation, we have

lþ 2

2

ð1

0

ffiffiffiffiffiffiffiffi
aðtÞ

p
dt� lþ 2

2

ffiffiffiffiffiffiffiffiffi
að1Þ

p
� a 0ð1Þ
2

ffiffiffiffiffiffiffiffiffi
að1Þ

p

¼ sinh�1ð ffiffiffiffiffi
a0

p Þffiffiffiffiffi
a0

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a0

p b 0 for any a0 b 0:

Here we used the inequality: sinh�1ðtÞb tffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p for tb 0. For the case

aðtÞ ¼ a0t
2 þ e�t2 , we can observe by numerical calculations that the l.h.s. of

(a5) A0:2778 for a0 ¼ 1, A0:3389 for a0 ¼ 2 and A0:3651 for a0 ¼ 5.
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As we have observed above, some decreasing functions cðtÞ may satisfy
assumptions (a1)–(a5). On the other hand, our assumptions prevent us to treat
increasing functions. Indeed let us consider the case l > 2 and suppose that
some increasing function c satisfies (a4). Then solving the di¤erential inequality,
we can see that

cðtÞbcðsÞ þ c 0ðsÞ
l

tl for t > sb 1:

This is incompatible with (a2) unless c 0 1 0. We remark that the increasing
case has been studied in [11]. In this case, the authors obtained the uniqueness
when the parameter is su‰ciently large.

Finally we cannot completely cover the case when aðtÞ is a bounded function.

Especially our result does not cover the case aðtÞ ¼ 1þ kt2

2ð1þ t2Þ , which also

appears in the study of plasma physics. In this case, we may choose l ¼ 0.
However we can easily see that (a3) and (a4) are never satisfied. The uniqueness
of this case has been obtained in [7] by assuming the parameter is su‰ciently
large.

7. Appendix

In this appendix, we show that the Dirichlet problem:

�Dv ¼ f ðvÞpf 0ðvÞ � f ðvÞ f 0ðvÞ in BRð0Þ;
v ¼ 0 on qBRð0Þ:

�
ð7:1Þ

has a positive radial solution. By Lemma 2.3, we can see that the nonlinear
term in (7.1) satisfies so-called Ambrosetti-Rabinowitz condition if p > lþ 1.
Then the existence of a positive solution follows by the standard Mountain Pass
argument. Even if 1 < pa lþ 1, we can obtain the existence of a positive
solution, provided that R is su‰ciently large. Although the existence of a
positive solution of (7.1) in this case may be obtained by general theory for
Dirichlet problems with sublinear or asymptotically linear nonlinearity, we give
the proof for the sake of completeness.

For this purpose, we recall the abstract result in [12] as follows. Let
ðX ; k � kÞ be a Banach space and J � R be a compact interval.

Definition 7.1. A family of functionals I ¼ fIðl; �Þ A C1ðX ;RÞ; l A Jg is
said to have mountain-pass geometry if there exist v1; v2 A X such that

cðlÞ :¼ inf
g AG

max
t A ½0;1�

Iðl; gðtÞÞ > maxfIðl; v1Þ; Iðl; v2Þg for any l A J;

where G :¼ fg A Cð½0; 1�;X Þ; gð0Þ ¼ v1; gð1Þ ¼ v2g.
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Now we assume the following assumption holds for Iðl; �Þ.
(H) Suppose that a sequence fðln; unÞg � J � X satisfies flng is strictly in-

creasing, ln % l0 A J and

�Iðl0; unÞ; Iðln; unÞ;
Iðln; unÞ � Iðl0; unÞ

l0 � ln
are bounded from above:

Then fkunkg is bounded and for e > 0, there exists N > 0 such that

Iðl0; unÞa Iðln; unÞ þ e for all nbN:

Then the following result holds.

Proposition 7.2 ([12, Theorem 2.1]). Suppose that (H) holds and I has
mountain-pass geometry. Then there exists D � J such that for each l0 A D,
Iðl0; �Þ has a bounded Palais-Smale sequence fvng � X at the level cðl0Þ. More-
over JnD has a zero Lebesgue measure.

Now by using Proposition 7.2, we show the following.

Proposition 7.3. There exists large R > 0 such that the problem (7.1) has a
positive solution vRðxÞ.

Proof. For l > 0, we put

B ¼ B1ð0Þ; X ¼ H 1
0; radðBÞ; kuk ¼

ð
B

j‘uj2 dx
� �1=2

;

Iðl; uÞ ¼ 1

2
kuk2 þ l

1

2

ð
B

f ðuÞ2 dx� 1

pþ 1

ð
B

f ðuÞpþ1
þ dx

� �
:

Then Iðl; �Þ A C1ðX ;RÞ for any l > 0. Moreover since lims!y f ðsÞ ¼ y, we
can choose f A Cy

0 ðBÞ such that

1

2

ð
B

f ðfÞ2 dx� 1

pþ 1

ð
B

f ðfÞpþ1
þ dx < 0:

Thus there exists large l > 0 such that

Iðl; fÞ ¼ 1

2
kfk2 þ l

1

2

ð
B

f ðfÞ2 dx� 1

pþ 1

ð
B

f ðfÞpþ1
þ dx

� �
a 0

and Iðl; fÞa Iðl; fÞ for any lb l.
To apply Proposition 7.2, we put

J ¼ ½l; lþ 1�; v1 ¼ 0 and v2 ¼ f:

Then it holds that

maxfIðl; v1Þ; Iðl; v2Þg ¼ maxf0; Iðl; fÞga 0 for l A J:
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Moreover by the Sobolev embedding theorem, we can show that cðlÞ > 0.
Hence a family of functionals I has mountain-pass geometry.

Next we prove that the condition (H) holds. Let fðln; unÞg be a sequence
in J � X which satisfies following properties:

ln % l0 A J as n ! y; �Iðl0; unÞaM;

Iðln; unÞ ¼
1

2
kunk2 þ ln

1

2

ð
B

f ðunÞ2 dx� 1

pþ 1

ð
B

f ðunÞpþ1
þ dx

� �
aM;ð7:2Þ

Iðln; unÞ � Iðl0; unÞ
l0 � ln

¼ � 1

2

ð
B

f ðunÞ2 dx� 1

pþ 1

ð
B

f ðunÞpþ1
þ dx

� �
aMð7:3Þ

for some M > 0 independent of n. Then from (7.2) and (7.3) we have

1

2
kunk2 aM � ln

1

2

ð
B

f ðunÞ2 dx� 1

pþ 1

ð
B

f ðunÞpþ1
þ dx

� �

aM þ lnM

aMð2þ lÞ:

Thus kunk is bounded. Moreover from (7.2), we also have

1

2

ð
B

f ðunÞ2 dx� 1

pþ 1

ð
B

f ðunÞpþ1
þ dxa

M

ln
a

M

l
:

Thus we get

jIðl0; unÞ � Iðln; unÞja ðl0 � lnÞ 1þ 1

l

� �
M ¼ oð1Þ as n ! y:

Therefore the condition (H) holds.
Now Proposition 7.2 asserts that there exist l0 A J ¼ ½l; lþ 1� and fung � X

such that

quIðl0; unÞ ¼ oð1Þ in X �; Iðl0; unÞ ¼ cðl0Þ þ oð1Þ as n ! y

and fung is bounded in X . By standard arguments, we can show that there
exists u A X such that

quIðl0; uÞ ¼ 0 and Iðl0; uÞ ¼ cðlÞ > 0:

By the elliptic regularity theory and the maximal principle, it follows that u is
a positive solution of

�Du ¼ l0ð f ðuÞpf 0ðuÞ � f ðuÞf 0ðuÞÞ in B;

u ¼ 0 on qB:

�

Putting vRðxÞ ¼ uðx=RÞ with R ¼
ffiffiffiffiffi
l0

p
, vR is a solution of (7.1). r
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