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ENTIRE FUNCTIONS AND THEIR FIRST DERIVATIVES SHARING

SIMPLE b-POINTS FOR A SMALL FUNCTION b

Amer H. H. Al-Khaladi

Abstract

The following theorem has been proved by A. Schweizer [7]. If a nonconstant

entire function f and its derivative f 0 share their simple zeros and if every simple a-

point of f is a (not necessarily simple) a-point of f 0 for some nonzero constant a,

then f 1 f 0. In this paper we shall prove that the above result is also true when the

nonzero constant a is replaced by a meromorphic small function bð2 0;y).

1. Introduction and results

In this paper, we use the same notation as given in Nevanlinna theory of
meromorphic functions ([2, 8]). For a meromorphic function h, let Tðr; hÞ de-
note the Nevanlinna characteristic of h and let Sðr; hÞ be any quantity satisfying
Sðr; hÞ ¼ ofTðr; hÞg as r ! y, except possibly on a set of finite linear measure.
Then a meromorphic function b is called a small function of h if and only if
Tðr; hÞ ¼ Sðr; hÞ. Let f and g be two nonconstant entire functions. For a A C
we say that f and g share the value a CM (counting multiplicities) if the a-
points of f and g coincide in locations and multiplicities. If we do not consider
the multiplicities, we say that f and g share the value a IM (ignoring multi-
plicities). Let k be a positive integer and always keeping in mind that the b-
points of f are the zeros of f � b and their multiplicity is the multiplicity of that

zero. We denote by NkÞ r;
1

f � b

� �
the counting function of b-points of f

with multiplicitya k, by Nðkþ1 r;
1

f � b

� �
the counting function of b-points of

f with multiplicity > k and by N¼k r;
1

f � b

� �
counting function of b-points of

f which have the multiplicity k. In the same way we define NkÞ r;
1

f � b

� �
,
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Nðkþ1 r;
1

f � b

� �
and N¼k r;

1

f � b

� �
where in counting the b-points of f we

ignore the multiplicities ([8]). Finally we denote by Eðb; f Þ the set of b-points
of f (counting multiplicities), by Eðb; f Þ the set of b-points of f (ignoring
multiplicities) and by E1Þðb; f Þ the set of b-points of f with multiplicity one.
Thus we say that f and g share b CM, b IM, b simple if Eðb; f Þ ¼ Eðb; gÞ,
Eðb; f Þ ¼ Eðb; gÞ and E1Þðb; f Þ ¼ E1Þðb; gÞ respectively.

On the problems of uniqueness of an entire function and its derivative that
share some values. Rubel-Yang ([6]) proved that if the entire function f and f 0

share two distinct finite values CM then f 1 f 0. Mues-Steinmetz ([3]) improved
this result to the case when f and f 0 share two distinct finite values IM. Zheng-
Wang ([9]) generalized this result to f and f 0 which share two small functions
CM. In 2000 Qiu ([5]) improved this result to the case when f and f 0 share two
small functions IM. Recently, Schweizer [7] proved the following theorem:

Theorem 1.1. Let f be a nonconstant entire function and let a be a nonzero
constant. If f and f 0 share their simple zeros and if every simple a-point of f is a
(not necessarily simple) a-point of f 0, then f 1 f 0.

It is natural to ask whether the ‘‘nonzero constant a’’ of Theorem 1.1 can be
replaced by ‘‘small function bð2 0;yÞ’’? In this paper, we will give a positive
answer to this question. Indeed, we shall prove the following:

Theorem 1.2. Let f be a nonconstant entire function and let b be a small
meromorphic function of f such that bðzÞ2 0;y. If f and f 0 share their simple
zeros and if every simple b-point of f is a (not necessarily simple) b-point of f 0,
then f 1 f 0.

It is obvious that Theorem 1.2 is a generalization of Theorem 1.1. From
Theorem 1.2, we directly conclude the following corollary:

Corollary 1.3. Let f be a nonconstant entire function and let b be a small
meromorphic function of f such that bðzÞ2 0;y. If E1Þð0; f Þ ¼ E1Þð0; f 0Þ and
E1Þðb; f Þ ¼ E1Þðb; f 0Þ, then f 1 f 0.

A. Schweizer [7] also gave the following example:

Example 1. Let

f ðzÞ ¼ a

2
ðsinð2zÞ þ 1Þ; 00 a A Cð1:1Þ

then f 0ðzÞ ¼ a cosð2zÞ. All a-points of f and of f 0 and all zeros of f have
multiplicity 2. Thus the condition that f and f 0 share their simple a-points and
that if every simple zero of f is a simple zero of f 0 does not imply f 1 f 0.
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Note that from (1.1) we see that

L ¼

f � a

0� a

� �0
f � a

0� a

¼ f 0

f � a
¼ 2 cosð2zÞ

sinð2zÞ � 1
:

Hence L 0 ¼ 4

sinð2zÞ � 1
, and so N r;

1

L 0

� �
¼ Sðr; f Þ: In the present paper, we

shall prove the following theorem which includes Example 1 as a special case:

Theorem 1.4. Let f be a nonconstant entire function and let b1 and b2 be
two distinct small meromorphic functions of f . If all zeros of f � b1 and f � b2
have multiplicities greater than 1, then either

f ðzÞ � b1ðzÞ ¼
�1

4A
ðb2ðzÞ � b1ðzÞÞe�czð1� AeczÞ2ð1:2Þ

and

f ðzÞ � b2ðzÞ ¼
�1

4A
ðb2ðzÞ � b1ðzÞÞe�czð1þ AeczÞ2ð1:3Þ

or

Tðr; f Þa 4N r;
1

L 0

� �
þ Sðr; f Þ;ð1:4Þ

where A, c are nonzero constants, L ¼ F 0

F
and F ¼ f � b1

b2 � b1
.

From Theorem 1.4, we immediately deduce the following corollary:

Corollary 1.5. Let f be a nonconstant entire function, and let b1 and b2 be

two distinct small meromorphic functions of f satisfying N r;
1

L 0

� �
¼ Sðr; f Þ where

L ¼ F 0

F
and F ¼ f � b1

b2 � b1
. If all zeros of f � b1 and f � b2 have multiplicities

greater than 1, then (1.2) and (1.3) hold.

Remarks.
1. If b1 1 a, b2 1 0, c ¼ 2i and A ¼ �i, then (1.3) becomes (1.1).

2. From (1.2) or (1.3) it is easy to see that L 0ðzÞ ¼ �2Ac2ecz

ð1� AeczÞ2
. Hence

N r;
1

L 0

� �
¼ Sðr; f Þ.

291entire functions and their first derivatives sharing simple b-points



3. The following example shows that the condition N r;
1

L 0

� �
¼ Sðr; f Þ in

Corollary 1.5 cannot be removed.

Example 2. Let aðzÞ be any nonconstant entire function, A be any nonzero
constant and

f ðzÞ � b1ðzÞ ¼
�1

4A
ðb2ðzÞ � b1ðzÞÞe�

Ð z
0
aðtÞ dtð1� Ae

Ð z
0
aðtÞ dtÞ2:

Then it is easy to see that all zeros of f � b1 and f � b2 have multiplicities 2 and

LðzÞ ¼ �2Aa
1

2A
þ e

Ð z
0
aðtÞ dt

1� Ae
Ð z
0
aðtÞ dt

 !
:

Hence

L 0ðzÞ ¼
�a 0 1þ a4

a 02 � Ae
Ð z
0
aðtÞ dt � a2

a 0

� �2" #

ð1� Ae
Ð z
0
aðtÞ dtÞ2

:

From this we deduce that N r;
1

L 0

� �
0Sðr; f Þ but the conclusion of Corollary 1.5

is not valid.

2. Some lemmas

For the proof of our theorems we need the following lemmas:

Lemma 2.1 [4]. Let f be a nonconstant meromorphic function and C ¼
an f

n þ an�1 f
n�1 þ � � � þ a1 f þ a0, where an 2 0, an�1; . . . ; a1; a0 are meromorphic

small functions of f . If N r;
1

C

� �
¼ Sðr; f Þ, then three cases are possible

(i) C ¼ an f þ an�1

nan

� �n
;

(ii) There exist a meromorphic small function a0 2 0 and an integer m such
that n ¼ 2m and

C ¼ an f 2 þ 2
an�1

nan
f þ an�1

nan

� �2
þ a0

 !m
;

(iii) There exist a meromorphic small function a0 2 0, positive integers m1 and
m2, and distinct complex numbers l1 and l2 such that m1 þ m2 ¼ n, m1l1 þ m2l2 ¼ 0,
and

C ¼ an f þ an�1

nan
� l1a0

� �m1
f þ an�1

nan
� l2a0

� �m2
:
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Lemma 2.2 [2, P. 47]. Let f be a nonconstant meromorphic function, and a1,
a2, a3 be distinct small functions of f . Then

Tðr; f Þa
X3
j¼1

N
1

f � aj

� �
þ Sðr; f Þ:

Lemma 2.3 [5]. Let f be a nonconstant entire function, a1 and a2 be two
distinct small functions of f with a1 2y and a2 2y. Set

Dð f Þ ¼ f � a1 a1 � a2

f 0 � a 0
1 a 0

1 � a 0
2

����
����¼ f � a2 a1 � a2

f 0 � a 0
2 a 0

1 � a 0
2

����
����

Then

Dð f Þ2 0 and m r;
Dð f Þ
f � ai

� �
¼ Sðr; f Þ ði ¼ 1; 2Þ

Lemma 2.4 [1]. Let f 0 be a nonconstant meromorphic function and let

G ¼ f 00

f 0

� �2
� 2

f 00

f 0

� �0
:

Then

Tðr;GÞa 2N r;
1

f 0

� �
þ 2Nð2ðr; f Þ þ Sðr; f 0Þ:

3. Proof of Theorems

3.1. Proof of Theorem 1.2
The proof here is by contradiction. Assume that f 2 f 0. Set

W ¼ ½ð f =bÞ0�2ð f � f 0Þ
f 2ð f � bÞ :ð3:1Þ

From Nevanlinna’s fundamental estimate of the logarithmic derivative we obtain

mðr;WÞam r;
1

b
:
ð f =bÞ0

ð f =bÞ

� �
þm r;

1

b
:

ð f =bÞ0

ðð f =bÞ � 1Þ

� �
þm r; 1� f 0

f

� �
þOð1Þð3:2Þ

a 2m r;
1

b

� �
þ Sðr; f Þ ¼ Sðr; f Þ:

Since f and f 0 share their simple zeros, every zero of f has multiplicity at least 3
and f 0 has no simple zeros. That is

N r;
1

f

� �
¼ Nð3 r;

1

f

� �
and N r;

1

f 0

� �
¼ Nð2 r;

1

f 0

� �
:ð3:3Þ
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Further it follows from (3.1) that if z0 is a zero of f with multiplicity pb 3 and
bðz0Þ0 0;y, then

WðzÞ ¼ Oððz� z0Þp�3Þ; as z ! z0:ð3:4Þ
Since every simple zero of f � b is a zero of f 0 � b, we can also conclude from
(3.1) that if z1 is a zero of f � b with multiplicity qb 1 and bðz1Þ0 0;y,

WðzÞ ¼
Oð1Þ if q ¼ 1

Oððz� z1Þq�2Þ if qb 2

�
ð3:5Þ

as z ! z1. Thus, from (3.2), (3.4) and (3.5) we get

Tðr;WÞ ¼ Nðr;WÞ þmðr;WÞ ¼ Nðr;WÞ þ Sðr; f Þð3:6Þ

a 5N r;
1

b

� �
þ Sðr; f Þ

a 5Tðr; bÞ þ Sðr; f Þ ¼ Sðr; f Þ:

We can rewrite (3.1) in the form

W
b � f

f

� �
¼ ð f =bÞ0

f

� �2
f 0

f
� 1

� �
¼ 1

b2

f 0

f
� b 0

b

� �2
f 0

f
� 1

� �
;

or

G ¼ ðg� 1Þðg� lÞ2 þWb2ð3:7Þ

¼ g3 � ð2lþ 1Þg2 þ lðlþ 2ÞgþWb2 � l2;

where G ¼ Wb3

f
, g ¼ f 0

f
and l ¼ b 0

b
. Note that f is an entire function. So by

(3.6), (3.7) and (3.3) we find that

Tðr; f Þ ¼ Tðr;GÞ þ Sðr; f Þa 3Tðr; gÞ þ Sðr; f Þa 3N r;
1

f

� �
þ Sðr; f Þ

a 3Nð3 r;
1

f

� �
þ Sðr; f ÞaNð3 r;

1

f

� �
þ Sðr; f ÞaTðr; f Þ þ Sðr; f Þ;

so that Tðr; f Þ ¼ 3Tðr; gÞ þ Sðr; f Þ. It follows that every Sðr; f Þ is also an Sðr; gÞ
and vice versa. From now on we will write SðrÞ for the common error term.

Since any zero of G ¼ Wb3

f
can only occur at a zero of W or a zero of b, we

have

N r;
1

G

� �
aN r;

1

W

� �
þN r;

1

b

� �
ð3:8Þ

aTðr;WÞ þ Tðr; bÞ þOð1Þ ¼ SðrÞ:

By Lemma 2.1, only three cases are possible.
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Case 1. G can be expressed as

G ¼ g� 2lþ 1

3

� �3
¼ g3 � ð2lþ 1Þg2 þ 3

2lþ 1

3

� �2
g� 2lþ 1

3

� �3
:

From this and (3.7), equating the coe‰cients of g and g0 terms, we obtain

3
2lþ 1

3

� �2
1 lðlþ 2Þ and Wb2 � l2 1� 2lþ 1

3

� �3
;

or, equivalently,

ðl� 1Þ2 1 0 and Wb2 � l2 1� 2lþ 1

3

� �3
:

That is Wb2 1 0. Since b2 0, therefore W 1 0. Hence f 1 f 0, a contra-
diction.

Case 2. There exists a nonzero small function a0 and an integer m such that
2m ¼ 3 and

G ¼ g2 � 2
2lþ 1

3

� �
gþ 2lþ 1

3

� �2
þ a0

 !m
:

In this case it is impossible to find an integer number m such that 2m ¼ 3.

Case 3. There exists a nonzero small function a0, positive integers m1
and m2, and distinct complex numbers k1 and k2 such that m1 þ m2 ¼ 3,
m1k1 þ m2k2 ¼ 0 and

G ¼ g� 1

3
ð2lþ 1Þ � k1a0

� �m1
g� 1

3
ð2lþ 1Þ � k2a0

� �m2
:ð3:9Þ

Without loss of generality we suppose m1 ¼ 1 and m2 ¼ 2. Thus k1 þ 2k2 ¼ 0
and (3.9) becomes

G ¼ ðg� n1Þðg� n2Þ2;ð3:10Þ

where

n1 ¼
1

3
ð2lþ 1Þ þ k1a0 and n2 ¼

1

3
ð2lþ 1Þ � 1

2
k1a0:

Since k1 0 0 and a0 2 0, therefore n1 2 n2. If n1 1 0, then n2 ¼ 1
2 ð2lþ 1Þ.

From this, (3.10) and (3.7), equating the coe‰cient of g and g0 terms, we get

l1
1

4
and Wb2 1

1

16
:
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Then (3.10) reads

b

16f
¼ g g� 3

4

� �2
:ð3:11Þ

Di¤erentiating (3.11) and then using l1 1
4 , we find that

b

16f
g� 1

4

� �
¼ �3g 0 g� 3

4

� �
g� 1

4

� �
;

and eliminating
b

16f
between this and (3.11) leads to

g g� 3

4

� �2
g� 1

4

� �
¼ �3g 0 g� 3

4

� �
g� 1

4

� �
:ð3:12Þ

If
�
g� 3

4

��
g� 1

4

�
1 0, then it is easy to see that g is a constant. From this and

(3.11), it follows that Tðr; f Þ ¼ Sðr; f Þ, a contradiction. Therefore
�
g� 3

4

��
g� 1

4

�
2 0 and (3.12) becomes g 0 ¼ � 1

3 g
�
g� 3

4

�
. We can write this as

g 0

g
� g 0

g� 3
4

¼ 1

4
and integrating both sides, we have gðzÞ ¼ 3=4

1� ce�ð1=4Þz . Integrating again, we
obtain

f ðzÞ ¼ bðeð1=4Þz � cÞ3;ð3:13Þ

where b and c are nonzero constants. But, since
1

4
¼ l ¼ b 0

b
, so bðzÞ ¼ deð1=4Þz,

where d is a nonzero constant. Substituting this into (3.13), we conclude that
Tðr; f Þ ¼ Sðr; f Þ. Again this is a contradiction.

If n2 1 0, then similarly as the above discussion, we will arrive at the same
contradiction. In the following we assume n1 2 0 and n2 2 0. By Lemma 2.2,
(3.10) and (3.8) we see that

Tðr; gÞaN r;
1

g

� �
þN r;

1

g� n1

� �
þN r;

1

g� n2

� �
þ Sðr; gÞð3:14Þ

aN r;
1

g

� �
þ 2N r;

1

G

� �
þ SðrÞaN r;

1

g

� �
þ SðrÞ:

We know from g ¼ f 0

f
that the zeros of g can only occur at the zeros of f 0 which

are not zero of f . Consequently, from (3.3),

Tðr; gÞaN r;
1

g

� �
þ SðrÞaNð2 r;

1

g

� �
þ SðrÞ

a
1

2
N r;

1

g

� �
þ SðrÞa 1

2
Tðr; gÞ þ SðrÞ

a contradiction, and the proof of Theorem 1.2 is complete. r
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3.2. Proof of Theorem 1.4
Consider the auxiliary function

h ¼ D2ð f Þ
ð f � b1Þð f � b2Þ

:ð3:15Þ

From Lemma 2.3 we know that Dð f Þ2 0 and

mðr; hÞam r;
Dð f Þ
f � b1

� �
þm r;

Dð f Þ
f � b2

� �
¼ Sðr; f Þ:ð3:16Þ

From the hypotheses of Theorem 1.4 and Lemma 2.2 we deduce that

Tðr; f Þa
X2
j¼1

N r;
1

f � bj

 !
þNðr; f Þ þ Sðr; f Þ

¼
X2
j¼1

Nð2 r;
1

f � bj

 !
þ Sðr; f Þ

a
X2
j¼1

1

2
Nð2 r;

1

f � bj

 !
þ Sðr; f ÞaTðr; f Þ þ Sðr; f Þ:

Therefore

Tðr; f Þ ¼
X2
j¼1

Nð2 r;
1

f � bj

 !
þ Sðr; f Þ ¼ 1

2

X2
j¼1

Nð2 r;
1

f � bj

 !
þ Sðr; f Þ:

This implies that

Tðr; f Þ ¼ 2N¼2 r;
1

f � b1

� �
þ Sðr; f Þ ¼ 2N¼2 r;

1

f � b2

� �
þ Sðr; f Þ:ð3:17Þ

From Lemma 2.3, it is easy to see that

Dð f Þ ¼ f � b1
b2 � b1

� �0
ðb2 � b1Þ

2 ¼ f � b2
b2 � b1

� �0
ðb2 � b1Þ

2:ð3:18Þ

By (3.17) and (3.18), if any zero of f � bj ð j ¼ 1; 2Þ has multiplicity two, then

it must be a zero of D2ð f Þ with multiplicity two. Thus, from (3.15) we get
Nðr; hÞ ¼ Sðr; f Þ. Together with (3.16) we have

Tðr; hÞ ¼ Sðr; f Þ:ð3:19Þ

We consider the transformation

F ¼ f � b1
b2 � b1

:ð3:20Þ

297entire functions and their first derivatives sharing simple b-points



Substitution of expressions (3.20) and (3.18) into (3.15) now tells us that

h

ðb2 � b1Þ
2
¼ F 02

F ðF � 1Þ ¼
F 0

F

� �2
F

F � 1

� �
or

H ¼ L2 þ d;ð3:21Þ

where d ¼ �h

ðb2 � b1Þ
2
, H ¼ d

F
and L ¼ F 0

F
. Di¤erentiating (3.21) once we obtain

H 0 ¼ 2LL 0 þ d 0:ð3:22Þ

On the other hand di¤erentiating H ¼ d

F
we find that

H 0 ¼ d

F

d 0

d
� L

� �
;ð3:23Þ

and eliminating H 0 between (3.22) and (3.23) leads to

2LL 0 ¼ �L3 þ d 0

d
L2 � dL:ð3:24Þ

If L1 0, then F is a constant and so Tðr; f Þ ¼ Sðr; f Þ a contradiction. There-
fore L2 0, and (3.24) becomes

2L 0 ¼ �L2 þ d 0

d
L� d:ð3:25Þ

Let z1 be a zero of f � b1 with multiplicity two and biðz1Þ0 0;y (i ¼ 1; 2),
ðb2 � b1Þðz1Þ0 0;y. Then the Taylor expansion of F about z1 is

F ðzÞ ¼ a2ðz� z1Þ2 þ a3ðz� z1Þ3 þ a4ðz� z1Þ4 þ � � � ; a2 0 0:

Hence

L ¼ F 0

F
¼ 2ðz� z1Þ�1 þ a3

a2
þ 2

a4

a2
� a3

a2

� �2" #
ðz� z1Þ þOððz� z1Þ2Þ;ð3:26Þ

L 0 ¼ �2ðz� z1Þ�2 þ 2
a4

a2
� a3

a2

� �2
þOððz� z1ÞÞð3:27Þ

and

L2 ¼ 4ðz� z1Þ�2 þ 4
a3

a2
ðz� z1Þ�1 þ 8

a4

a2
� 3

a3

a2

� �2
þOððz� z1ÞÞ:ð3:28Þ

Substituting (3.26), (3.27) and (3.28) into (3.25) gives

a3

a2
¼ d 0

2d
and

a4

a2
¼ 7

48

d 0

d

� �2
� 1

12
d:ð3:29Þ
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From (3.27) we find that

L 00

L 0 ¼ �2ðz� z1Þ�1 � 2
a4

a2
� a3

a2

� �2" #
ðz� z1Þ þOððz� z1Þ2Þ:

Hence

L 00

L 0

� �0
¼ 2ðz� z1Þ�2 � 2

a4

a2
� a3

a2

� �2" #
þOððz� z1ÞÞð3:30Þ

and

L 00

L 0

� �2
¼ 4ðz� z1Þ�2 þ 4 2

a4

a2
� a3

a2

� �2" #
þOððz� z1ÞÞ:ð3:31Þ

We set

h ¼ L 00

L 0

� �2
� 2

L 00

L 0

� �0
:ð3:32Þ

From (3.25) it is easy to see that Nðr;L 0Þ ¼ 2Nðr;LÞ þ Sðr; f Þ. This implies that
Nðr;LÞ ¼ Nðr;LÞ þ Sðr; f Þ. From this we conclude that

Nð2ðr;LÞ ¼ Sðr; f Þ:ð3:33Þ

Substituting (3.30) and (3.31) into (3.32) and then using (3.29) we arrive at

h ¼ 1

4

d 0

d

� �2
� dþOððz� z1ÞÞ:

If h2
1

4

d 0

d

� �2
� d, then

N¼2 r;
1

f � b1

� �
aN r;

1

h� 1

4

d 0

d

� �2
þ d

0
BBB@

1
CCCAþ Sðr; f Þ:

aT r; h� 1

4

d 0

d

� �2
þ d

 !
þ Sðr; f ÞaTðr; hÞ þ Sðr; f Þ:

Combining this with (3.33) and Lemma 2.4 yields

N¼2 r;
1

f � b1

� �
a 2N r;

1

L 0

� �
þ Sðr; f Þ:

Together with (3.17) we have Tðr; f Þa 4N r;
1

L 0

� �
þ Sðr; f Þ. This is (1.4). In

the following, we assume that

h1
1

4

d 0

d

� �2
� d:ð3:34Þ
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On the other hand, di¤erentiating (3.25) twice we obtain

2L 00 ¼ L �2L 0 þ d 0

d

� �0" #
þ d 0

d
L 0 � d 0ð3:35Þ

and

2L 000 ¼ �2L 02 � L 2L 00 � d 0

d

� �00" #
þ 2

d 0

d

� �0
L 0 þ d 0

d
L 00 � d 00:ð3:36Þ

Suppose that z2 is a zero of f � b2 with multiplicity two and biðz2Þ0 0;y
ði ¼ 1; 2Þ, ðb2 � b1Þðz2Þ0 0;y. Then FðzÞ ¼ 1þOððz� z2Þ2Þ and so Lðz2Þ ¼ 0.
Thus we deduce from (3.25), (3.35), (3.36) and (3.32) that

h ¼ 3
L 00

L 0

� �2
� 2

L 000

L 0 ¼
29

4

d 0

d

� �2
� 4

d 00

d
� dþOððz� z2ÞÞ:

As in the above discussion, we find that either (1.4) holds or

h1
29

4

d 0

d

� �2
� 4

d 00

d
� d:ð3:37Þ

If we now eliminate h between (3.37) and (3.34) we arrive at

7
d 02

d
¼ 4d 00:ð3:38Þ

If d 0 2 0, then from (3.38) we have 7
d 0

d
¼ 4

d 00

d 0
. By integrating once,

d7 ¼ cd 04:ð3:39Þ

where c is a nonzero constant. From this we conclude that

3mðr; dÞ ¼ m r; c
d 0

d

� �4
 !

¼ 4m r;
d 0

d

� �
þOð1Þ ¼ 4Sðr; dÞ þOð1Þ ¼ Sðr; dÞ:ð3:40Þ

It follows from (3.39) that if zy is a pole of d with multiplicity p ðb 1Þ, then
Oððz� zyÞ�7pÞ ¼ Oððz� zyÞ�4ðpþ1ÞÞ. Hence p ¼ 4

3 , which contradicts with p
being an integer. Therefore Nðr; dÞ1 0. Together with (3.40) we get Tðr; dÞ ¼
Sðr; dÞ and this gives us d is a nonzero constant. That is d 0 1 0. This and

(3.25) imply that
L 0

L� c
� L 0

Lþ c
¼ �c, where c ¼ i

ffiffiffi
d

p
. By integration, we obtain

L ¼ �cecz

B� ecz
þ cBe�cz

1� Be�cz
. Since L ¼ F 0

F
, it follows from the integration that

FðzÞ ¼ Ae�czð1� BeczÞ2, where A and B are nonzero constants. From this and
(3.20) we have

f ðzÞ � b1ðzÞ ¼ Aðb2ðzÞ � b1ðzÞÞe�czð1� BeczÞ2:ð3:41Þ
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We rewrite this in the form

f ðzÞ � b2ðzÞ ¼ Aðb2ðzÞ � b1ðzÞÞe�cz 1� 2Bþ 1

A

� �
ecz þ B2e2cz

� 	
ð3:42Þ

which, in view of (3.17), leads to A ¼ �1

4B
. Substituting this into (3.41) and

(3.42) we arrive at (1.2) and (1.3) respectively. This completes the proof of
Theorem 1.4. r
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