A. H. H. AL-KHALADI
KODAI MATH. J.
38 (2015), 289-301

ENTIRE FUNCTIONS AND THEIR FIRST DERIVATIVES SHARING
SIMPLE g-POINTS FOR A SMALL FUNCTION g
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Abstract

The following theorem has been proved by A. Schweizer [7]. If a nonconstant
entire function f and its derivative f’ share their simple zeros and if every simple a-
point of f is a (not necessarily simple) a-point of f’ for some nonzero constant a,
then f = f’. In this paper we shall prove that the above result is also true when the
nonzero constant a is replaced by a meromorphic small function f(% 0, c0).

1. Introduction and results

In this paper, we use the same notation as given in Nevanlinna theory of
meromorphic functions ([2, 8]). For a meromorphic function A, let T'(r,h) de-
note the Nevanlinna characteristic of 4 and let S(r, ) be any quantity satisfying
S(r,h) = o{T(r,h)} as r — oo, except possibly on a set of finite linear measure.
Then a meromorphic function f is called a small function of % if and only if
T(r,h) = S(r,h). Let f and g be two nonconstant entire functions. For a e C
we say that f and g share the value ¢ CM (counting multiplicities) if the a-
points of f and g coincide in locations and multiplicities. If we do not consider
the multiplicities, we say that f and g share the value a IM (ignoring multi-
plicities). Let k be a positive integer and always keeping in mind that the f-
points of f are the zeros of f — f# and their multiplicity is the multiplicity of that

zero. We denote by Ny (r ) the counting function of f-points of f

1
f =B
with multiplicity < k, by Ny (r, m) the counting function of f-points of
f with multiplicity > k and by N_; (r, f——l)’> counting function of f-points of

f which have the multiplicity k. In the same way we define N ) (r, f1/3’>’
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— 1 — 1
N r.—— | and N_; (n —) where in counting the f-points of f we
“‘“( f ﬁ) /—B

ignore the multiplicities ([8]). Finally we denote by E(f, f) the set of f-points
of f (counting multiplicities), by E(f,f) the set of B-points of f (ignoring
multiplicities) and by Ej(f,f) the set of f-points of f with multiplicity one.
Thus we say that f and g share f§ CM, f IM, f simple if E(f, f) = E(f,g),
E(B,f) = E(B.g) and Ey(B,f) = Ep(f.g) respectively.

On the problems of uniqueness of an entire function and its derivative that
share some values. Rubel-Yang ([6]) proved that if the entire function f and f’
share two distinct finite values CM then f = f’. Mues-Steinmetz ([3]) improved
this result to the case when f and f’ share two distinct finite values IM. Zheng-
Wang ([9]) generalized this result to f and f’ which share two small functions
CM. 1In 2000 Qiu ([5]) improved this result to the case when f and f’ share two
small functions IM. Recently, Schweizer [7] proved the following theorem:

THEOREM 1.1. Let f be a nonconstant entire function and let a be a nonzero
constant. If [ and f' share their simple zeros and if every simple a-point of f is a
(not necessarily simple) a-point of f', then f = f.

It is natural to ask whether the “nonzero constant a” of Theorem 1.1 can be
replaced by “small function f(# 0,00)”? In this paper, we will give a positive
answer to this question. Indeed, we shall prove the following:

THEOREM 1.2. Let f be a nonconstant entire function and let f be a small
meromorphic function of f such that §(z) #0,00. If f and [’ share their simple
zeros and if every simple f-point of f is a (not necessarily simple) f-point of f”,

then f = f".

It is obvious that Theorem 1.2 is a generalization of Theorem 1.1. From
Theorem 1.2, we directly conclude the following corollary:

COROLLARY 1.3. Let [ be a nonconstant entire function and let  be a small
meromorphic function of f such that f(z) #0,00. If E)(0,f) = E(0, f') and
Ey(B. f) = En(B, ['), then | = f".

A. Schweizer [7] also gave the following example:

Example 1. Let

(1.1) f(z)==(sin2z) +1), 0#£aeC

[NSNIRN

then f/(z) =acos(2z). All a-points of f and of f’ and all zeros of f have
multiplicity 2. Thus the condition that f and f” share their simple a-points and
that if every simple zero of f is a simple zero of f’ does not imply f = f.
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Note that from (1.1) we see that

f—a\
L:(Oa)_ S 2cos(2z)

f—a —f—a sinQ2z) -1
0—a

4 — 1
Hence L' :m, and so N(r7 E) = S(r,f). In the present paper, we

shall prove the following theorem which includes Example 1 as a special case:

THEOREM 1.4. Let f be a nonconstant entire function and let §, and f, be
two distinct small meromorphic functions of f. If all zeros of f — f, and [ — B,
have multiplicities greater than 1, then either

(12) S = Bi(2) = 15 (Bo(2) — Bi(2)e (1 — 4e)?
and

(13) S = Bal) = 15 (Bo(2) — Bi(2)e (1 + )2
o

(1.4) T(r, f) £4]\_/<r,L1,>+S(r,f),

where A, ¢ are nonzero constants, L :FF/ and F = %

From Theorem 1.4, we immediately deduce the following corollary:

COROLLARY 1.5. Let [ be a nonconstant entire function, and let | and f, be

— 1
two distinct small meromorphic functions of f satisfying N (r,E> = S(r, f) where

F' —
L= ya and F :/{ I;I . If all zeros of f—p, and f — B, have multiplicities
27 Py
greater than 1, then (1.2) and (1.3) hold.
Remarks.
1. If py=a, f=0, c=2i and 4 = —i, then (1.3) becomes (1.1).
24 2 ¢z
2. From (1.2) or (1.3) it is easy to see that L'(z) :ﬁ. Hence
— e(‘Z

¥ () =500,
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—( 1
3. The following example shows that the condition N (r,ﬁ> =S(r,f) in
Corollary 1.5 cannot be removed.

Example 2. Let o(z) be any nonconstant entire function, 4 be any nonzero
constant and

f(Z)—ﬂl(Z)=;—;(ﬂz(2)—ﬂl(2))e’f‘i“<’> (1= Aelo0)2,

Then it is easy to see that all zeros of f — 5, and f — f, have multiplicities 2 and

L) = oo Ly 0
(2) = —24u 2A+1_Ae_|"g%(z)dz :

4 ) 2\2
o 1+%(Aefo“<f>d’%>]

(1 _ Ae‘[é a(t) dr)2

Hence

L'(z) =

From this we deduce that N (r, %) # S(r, f) but the conclusion of Corollary 1.5
is not valid.

2. Some lemmas

For the proof of our theorems we need the following lemmas:

LemMa 2.1 [4]. Let f be a nonconstant meromorphic function and ¥ =
anf" + ap [+t arf + ag, where a, #0, a,_1,...,a1,ay are meromorphic

small functions of f. If ]V(r, %) = S(r,f), then three cases are possible

i) ¥ = a, (f+”” 1)”

hay
(i) There exist a meromorphic small function oy # 0 and an integer u such

that n =2u and
a a1\ !
LI‘:an<f2+2 " 1er( = 1) +oco>;
l’l

(i) There exist a meromorphic small function oy % 0, positive integers p; and
Ly, and distinct complex numbers Ly and 2, such that p, + u, = n, A + 2y =0,

and
H
—/11060> < ) .

‘P—an(f+
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LEmMMaA 2.2 [2, P. 47]. Let f be a nonconstant meromorphic function, and ay,
@, az be distinct small functions of f. Then

T(r, f) < lz;zv(f 1 a_,-) +8(r, /).

LemmA 2.3 [5]. Let f be a nonconstant entire function, oy and oy be two
distinct small functions of f with oy % o0 and oy # 0. Set

Mﬁzﬂf” o

!/ !/ !/
—op o o

| m o
=7

li i I
—o0y 0 X

Then

A(f)#0 and m(an(fi.):S(r,f) (i=1,2)

LemMa 2.4 [1]. Let f’ be a nonconstant meromorphic function and let

B f_/, 2 B (f//>/
r=(5) -2(7)

Then

TrT) < 2N(r,%> +2N(r, )+ S0, f1).

3. Proof of Theorems

3.1. Proof of Theorem 1.2

The proof here is by contradiction. Assume that f # f’. Set

BV =S
G V="

From Nevanlinna’s fundamental estimate of the logarithmic derivative we obtain
1 (f/ﬂ)') < 1 (/B > ( _L’)
(32) m(r, W) Sm(r,ﬂ. 7/p) +m r’ﬂ'((f/ﬁ) my +m(r1 7 + 0(1)
< 2m(r,/lg> +S(r, 1) =8> 1).

Since f and f’ share their simple zeros, every zero of f has multiplicity at least 3
and f’ has no simple zeros. That is

00 o) nled) e a(h) ()

f/
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Further it follows from (3.1) that if zy is a zero of f with multiplicity p > 3 and
p(z0) # 0, c0, then

(3.4) W(z) = 0((z—2)"), as z— xz.

Since every simple zero of f — f8 is a zero of f/ — f§, we can also conclude from
(3.1) that if z; is a zero of f — f with multiplicity ¢ > 1 and f(z;) # 0, oo,

o(1) ifg=1
(3:5) W) = { O((z—2))"?) ifg>2
as z — z;. Thus, from (3.2), (3.4) and (3.5) we get
(3.6) Tr,W)=N(rW)+m@r,W)=N(r, W)+ S(r,f)
1
< SN(”E> +S(r f)
<5T(r,p)+S(r, f)=S(rf).

We can rewrite (3.1) in the form

(B (- (-5 (G-)

or
(3.7) G=(9-Dlg—2)’+Wp
=3 — QA+ D>+ 200+ 2)g+ WB* - 12,
3 "/ i
where G = @, g :f7 and 1 = % Note that f is an entire function. So by

(3.6), (3.7) and (3.3) we find that

1

T(r.f) = T(r.G) + S(r.f) < 3T(r.g) + S(r. ) < 38 ) (. f)

N

< 3N(3<}’,J17> +S(r,f) < N(3<rv}> +S(raf) < (V,f)-l—S(V,f),

so that T(r, f) = 3T (r,g) + S(r, f). It follows that every S(r, f) is also an S(r, g)
and vice versa. From now on we will write S(r) for the common error term.

Since any zero of G =
have f

(3.8) N(né) < N(r,iW> + N(“%)
<T@, W)+ T(r,p)+ 0(1) = S(r).

By Lemma 2.1, only three cases are possible.

can only occur at a zero of W or a zero of f, we
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Case 1. G can be expressed as
244 1Y 2.+ 1\ 2+ 1Y
G- (g—%) =g3—(2)v+1)g2+3(T+> g—(TJr)

From this and (3.7), equating the coefficients of g and ¢g° terms, we obtain

2 ) 3
3(@) =A(A+2) and Wp*—-i= _<2”3+ 1) ,
or, equivalently,
3
(b—1)%=0 and W -2 = _<M—3+1) .

That is WS> =0. Since f#0, therefore W =0. Hence f = f’, a contra-
diction.

CASE 2. There exists a nonzero small function oy and an integer x such that
2u=73 and
u

2,41 2+ 1)?
G:(g2—2< 3+>g+<A3+)+oco>.

In this case it is impossible to find an integer number ux such that 2u = 3.

Case 3. There exists a nonzero small function oy, positive integers g
and u,, and distinct complex numbers x; and x» such that u; +u, =3,
WK1 + try =0 and

1 3| 1 H
(3.9 G<g3(2/1+1)ic1<x0) <g3(2i+1)xzoco)

Without loss of generality we suppose u; =1 and p, =2. Thus x; + 2Kk, =0
and (3.9) becomes

(3.10) G=(9—v)(g—n)%
where

1 1
v1:§(2)u+1)+iclaco and v, = (2&—&—1)—51610(0.

W —

Since x; #0 and oy # 0, therefore v; #v,. If vy =0, then v, = %(2/1+ 1).
From this, (3.10) and (3.7), equating the coefficient of g and ¢° terms, we get

1
and Wp* = T

N
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Then (3.10) reads

p 3\’
11 P22
(3.11) =993
Differentiating (3.11) and then using 2= 1, we find that
LAY N R AY
16f 9 a)~ g\y 4 9 4)
and eliminating % between this and (3.11) leads to

R O O [

If (9—32)(g—4) =0, then it is easy to see that g is a constant. From this and
(3.11), it follows that T'(r, f) = S(r, f), a contradiction. Therefore (g —3) (g — 1)

! !
. . 1
#0 and (3.12) becomes ¢’ = —3g(g —3). We can write this as %— 9 =3
. . : 3/4 g 973
and integrating both sides, we have g(z) = %. Integrating again, we
obtain I —ce i
(3.13) f(z) = b7 — ¢)?,

!
where b and ¢ are nonzero constants. But, since %: A= %, s0 B(z) = de1/47,
where d is a nonzero constant. Substituting this into (3.13), we conclude that
T(r,f)=S(r,f). Again this is a contradiction.
If v, =0, then similarly as the above discussion, we will arrive at the same
contradiction. In the following we assume v; # 0 and v, #0. By Lemma 2.2,
(3.10) and (3.8) we see that

(3.14) T(r,g) < N(r,;) —|—N<r,g _1 v1> +N<r,g _1 Vz) +S(r,9)

< N(r, ;) + 2N<r,é) +S(r) < N(r, ;) + S(r).

/
We know from g = = that the zeros of ¢g can only occur at the zeros of /' which

f

are not zero of f. Consequently, from (3.3),

T(r,g) < ]V(r,é) +S(r) < Np (r,é) +S(r)

< %N(r,é) +S(r) < %T(hg) + S(r)

a contradiction, and the proof of Theorem 1.2 is complete. O
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3.2. Proof of Theorem 1.4
Consider the auxiliary function

_ A(f)
B "SRG B
From Lemma 2.3 we know that A(f) #0 and

A(f) A _ o,
(3.16) m(r,h)£m(r,f_ﬁ]>+m<r,f_ﬁ2)S( 1)

From the hypotheses of Theorem 1.4 and Lemma 2.2 we deduce that

2
TWJ)SE:NGViﬁ>+N@J)+ﬂnﬂ

i=1

<§ﬁN@r 1 +S8(r, ) <T@, )+ S(r, f)

B Jj=1 2 7f_ﬁf , 7 7
Therefore

2 1 1 2
T(r, f)= ;N(z (r,f_ﬂ) + S(r, f) 2;N(2 <r,f ﬂj) + S(r, f)

This implies that
(3.17) T(r,f)=2N_ (r’f—lﬁ1> +S(r, f) =2N_ (r’f—lf)’2> +S(r, f)

From Lemma 2.3, it is easy to see that

(BN e (=B o
(3.18) A(f)—(ﬂz_ﬁl>(ﬂz 8) (ﬁz_ﬁl)wz B2

By (3.17) and (3.18), if any zero of f —f; (j=1,2) has multiplicity two, then
it must be a zero of A*(f) with multiplicity two. Thus, from (3.15) we get
N(r,h) = S(r,f). Together with (3.16) we have

(3.19) T(r,h) =S(r, f).

We consider the transformation

(3.20) Fol=h
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Substitution of expressions (3.20) and (3.18) into (3.15) now tells us that

(fs —hﬁl)z - F(zfi D (FFY(%)

or
(3.21) H=1L1+9,
—h 0 F' . . .
where 6 = ————, H=—and L =— . Differentiating (3.21) once we obtain
(B =) £ r
(3.22) H' =2LL" +6".

0
On the other hand differentiating H = 7 e find that

, 6 (& _
(3.23) H' =2 (5L>,

and eliminating H' between (3.22) and (3.23) leads to

(3.24) 2LL = -L° +%L2 —JL.

If L =0, then F is a constant and so T'(r, ) = S(r, f) a contradiction. There-
fore L # 0, and (3.24) becomes

(3.25) 2L = —L* + %/L -4

Let z; be a zero of f — f, with multiplicity two and f;(z;) #0,0 (i=1,2),
(B — P1)(z1) #0,00. Then the Taylor expansion of F about z; is

F@)=am(iz—2) +a3(z—z1) +az—z)"+--+, a #0.
Hence
(3.26) L—z—z(z—z)*1+@+ 2% (2 2 (z—21)+O0((z—z1)%)
. =F - 1 0 @ @ 1 1) )

a a 2

(3.27) L’:—2(2—21)2+2—4—<—3> +0((z—z1))
ar ar

and

(328) L*=d(z—z) 448 —z) ' +8%_ 3(5
a as

>2 + O0((z — z1)).

az
Substituting (3.26), (3.27) and (3.28) into (3.25) gives

as 5/ dy 7 5/ 2 1
.2 _——=— _——=— —_ — —0.
(3 9) ar 20 and ar 48 (5 125
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From (3.27) we find that
L//

2
?:_2(2_21)—‘_lzz_‘z‘_@)](z_zl)+0((z_zl)2).

Hence

(3.30) (%) —2(2_21)2_[2‘1—‘2‘—("—2) +0((z— 7))
and

2 a a3\’
(3.31) <%) —4(z—z) P44 za—;‘<a—z> +O((z— 1)
We set

o) (2 (2]

299

From (3.25) it is easy to see that N(r, L") = 2N(r,L) + S(r, f). This implies that

N(r,L) = N(r,L) + S(r, f). From this we conclude that
(333) N(z(V,L) :S(V,f)

Substituting (3.30) and (3.31) into (3.32) and then using (3.29) we arrive at

k) e

Ifﬂi%(a — 0, then

N—z("f 5 ( +S(r, f).
+0
33)

- _|_5> S(r, f) < T(r,n) + S(r, f).

Combining this with ( and Lemma 2.4 yields

o))

— 1
Together with (3.17) we have T(r, f) <4N (n P) +S(r, f). Thisis (1.4). In

the following, we assume that

(3.34) n=

(-

1
4
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On the other hand, differentiating (3.25) twice we obtain

)
(3.35) 2L =L lZL’ < >

and
5/ " 5/ / 5/
o) S Y R ST S U
()25 ses

0
Suppose that z, is a zero of f — f, with multiplicity two and f,(z2) # 0, o0
(i=1,2), (B, —B1)(z2) #0,00. Then F(z) =1+ O((z — z2)*) and so L(z;) = 0.
Thus we deduce from (3.25), (3.35), (3.36) and (3.32) that

LN L 29 (5N o

As in the above discussion, we find that either (1.4) holds or

+L’ o

(3.36) 2L" = 2L — L

29 (3"\* 9"
If we now eliminate # between (3.37) and (3.34) we arrive at
5/2
(3.38) T—=45".
0
5/ 5//

If ' #0, then from (3.38) we have 75 =4 By integrating once,

y.
(3.39) 67 = 0"
where ¢ is a nonzero constant. From this we conclude that

(3.40)  3m(r,0) = m(r,c<§>4> = 4m (#Z) +0(1) = 45(r,6) + O(1) = S(r,9).

It follows from (3.39) that if z,, is a pole of ¢ w1th multiplicity p (= 1), then
O((z=2,) ") = O((z = z,,) """y, Hence p =%, which contradicts with p
being an integer. Therefore N(r,0) =0. Together with (3.40) we get T'(r,d) =
S(r,0) and this gives us & is a nonzero constant. That is 6’ =0. This and

. L' L’ . . .
(3.25) imply that 7 “Iies —c, where ¢ = iv0. By integration, we obtain
_ apCZ Be—¢? F'
L= Bjeecz + IC—Ze*"‘Z' Since L = a it follows from the integration that

F(z) = Ae=*(1 — Be®)*, where A and B are nonzero constants. From this and
(3.20) we have

(341) F2) = Br(2) = ABal) — py(2)e (1 Be)’,
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We rewrite this in the form
(42 1)~ Fale) = AR~ (e |1 = (24 5 ) + 126

S -1 o .
which, in view of (3.17), leads to 4 =15 Substituting this into (3.41) and

(3.42) we arrive at (1.2) and (1.3) respectively. This completes the proof of
Theorem 1.4. U
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