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SOME FAMILY OF CENTER MANIFOLDS
OF A FIXED INDETERMINATE POINT

ToMOKO SHINOHARA

Abstract

In this article, we study the local dynamical structure of a rational mapping F of P>
at a fixed indeterminate point p. In the previous paper, using a sequence of points
which is defined by blow-ups, we have constructed an invariant family of holomorphic
curves at p. In this paper, using the same sequence of points, we approximate a set of
points whose forward orbits stay in a neighborhood of p. Moreover, for a specific
rational mapping we construct a family {!/Vj}].E (1,2 of center manifolds of p. The
main result of this paper is to give the asymptotic expansion of the defining function
of W;.

1. Introduction

Recently, several authors have researched rational maps on compact complex
surfaces. Bedford-Kim [1], Mcmullen [6] and Uehara [12] construct many
examples of automorphisms with positive entropy. Diller-Dujardin-Gued;j [2],
Dinh-Sibony [3], Diller-Farve [5] and others construct invariant currents for
good birational maps. These results concern with global dynamics of rational
maps.

In this paper, we study the local dynamical structure of a rational mapping F
of the two-dimensional complex projective space P? at an indeterminate point
p. To say that p is a fixed indeterminate point means that F' blows up p to a
variety which contains p. It is remarked here that a fixed indeterminate point p
is non-wandering, and we expect that there exists a local dynamical structure.
Indeed, Yamagishi [13], [14] and Dinh-Dujardin-Sibony [4] showed that there
exists a family {Wi}je (1,23" of uncountably many currents or stable manifolds
of p, which comprise what is called a Cantor bouquet of p.

On the other hand, we have constructed a Cantor bouquet by another
method in [10]. By using a sequence of points {p;,...; } which is defined by blow-
ups, we construct a family {Wj};., of holomorphic curves at the point p, where
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J is a subset of a Cantor set {1, Z}N. In [10], for the following rational mapping
of C%:
F(x1,x) = (axl,’”(xzz_ xl)) with |a] > 4,
*

we showed that J is a proper subset of {I,Z}N and every Wj; is an unstable
manifold of p. Hence, our {W;};,_, is a generalization of a Cantor bouquet.
Moreover, we construct an invariant surface for a rational mapping F of P”
which has a set I of indeterminate points with dim / =n—2 in [11].

In this paper, by using the blow-ups in the same way as in [10], we
approximate a set of points whose all forward orbits stay in a neighborhood of
a fixed indeterminate point p (see Theorem 2.2). As a prototypical example,
we consider the following rational mapping F of C>:

2x; — 1 .
F(xi,x) = <x1 +axf,xz(x722)> with a # 0
X

and construct {Wj};. (1,2, which is a family of center manifolds of p (see
Theorem 2.3). In [10], by using the sequence of points {p;,...;, }, for every symbol
sequence j € {I,Z}N we define a formal power series ¢; and we show that if a
family {Wi}je (1.23" of holomorphic curves is locally invariant at p, then every ¢
is a convergent power series and Wj is given by the graph of ¢;. In general, it is
known that the defining function ; of a center manifold Wj is not always
analytic. The main result of this paper is to show that the formal power series ¢,
is the asymptotic expansion of y; whether ¢; is a convergent power series or not
(see Theorem 2.4).

This paper is organized as follows. In Section 2, we state some preliminary
facts and our main theorems. Section 3 is devoted to the proof of Theorem
2.2. In the final section, Section 4, we construct the family {W;}; (N of
center manifolds of p for a given rational mapping F.

2. Preliminaries and main theorems

In this section, we fix the notation which will be used throughout this paper,
and state our main theorems. Firstly, we fix once and for all a homogeneous
coordinate system [xo : xj : xp] in Pz; we shall often use the natural identification
given by

C?={[xo:x1:x]€P?|xg #0} and (x,x)=[l:x :x)].

Consider the product space C> x P! and define the subvariety X < C? x P!
as the following:

X = {(X],XQ) X [11 112] EC2 X Pl |X112 = (Xz —06)11}

for the point p = (0,a) € C*.



436 TOMOKO SHINOHARA

DEFINITION 2.1. The mapping 7: X — C? defined by restricting the first
projection C? x P! — C? to X is called the blow-up of C? centered at p.

It follows from the definition that z~'(p) = {p} x P! and that
n: X\n~'(p) — C*\{p} is biholomorphic.

Put E := n~!(p); E is called the exceptional curve. Let us describe the structure
of X. Define

U= {(x;,x2) x [ : ble X|; #0} for i=1,2.
Then, U’ is biholomorphic to the affine space C?> by the following maps:
U s (xp,x0) x [l 2 b] — (x1,b/1) € C?,
w2 U3 (x1,x) x bl (L/h,x) € C
Hence, {(U', ')}, , gives a local chart of X. Let (x1,%;) and (%, x) be local

coordinates on U' and U?, respectively.

ProPOSITION 2.1. We have the following:

(1) 7|y = U 3 (x1, %) = (x1, 6% + o) € C2.

(2) @2 : U3 (F1,x2) — (X1(x2 — o), x2) € C2.

(3) X\U' = {(x1,x2) e U?|x; = 0}.

(4) EN Ul :{(xl,iz)eU1|x1 :0}, EN U2:{(5cl,x2)e U2|)C2:OC}.
(5) EN(UA\U") = {(%1,x2) = (0,0) € U?}.

Proof. For (x1,%) e U' = C?,
mo (1) (v, %) = ml((x1, 0% + o) x [1: %)) = (x1,x1% + a).
By a similar discussion, we have the other claims. O
By pasting C* = {[xq : x1 : x2] € P?|xg # 0} on the other charts of P?, we
obtain the blow-up of P? centered at [1:0:4]. To simplify our notation, we
denote this also by 7: X — P2. In this paper, let F: P> — P? be a rational

mapping with an indetermianate point p =[1:0:0] and concentrate our atten-
tion on the dynamics of F in the chart

C2:{[X():X] ZX2}€P2|X()7&O}.

Remark that p = (0,0) is our indeterminate point on C>. Put the space of
symbol sequences

(L2 = {i= (i, jo,--) | ju=1 or 2,neN}.
Let us define a rational mapping

F:X—P? by F:=Fon,



SOME FAMILY OF CENTER MANIFOLDS OF A FIXED INDETERMINATE POINT 437

where 7 is the blow-up centered at p = (0,0). In this paper, we assume that F
satisfies the following condition (A.0), see Figure 1:
(1) For any point q € E, there exists an open neighborhood N of ¢
such that F is holomorphic on N
(4.0) ¢ (2) F~Y(p)NE consists of two points p;, (ji =1,2) and
(3) there exists an open neighborhood Nj of p; (ji =1,2)
such that F is biholomorphic on Nj,.

p

FIGURE 1

Remark 2.1.  (2) of condition (4.0) implies that p is a fixed indeterminate
point of F. If F~'(p)NE consists of finite points p; (ji = 1,2,...k), then we
can show a similar result, for the space of symbol sequences {1,2,... ,k}N, in
exactly the same way.

Remark 2.2. In [13], Yamagishi showed that if F satisfies (4.0) and
contracts some open neighborhood N, of p in some direction, then there
exists a family {Wj}jE (1,23N of uncountably many local stable manifolds of p.

{Wi}je{l,z}" is called a Cantor bouquet of p.

By (4) and (5) of Proposition 2.1, if p;, e ENU!, then we can put p; =
(0,05,) € U for some «;,. If p; e E\U!, then we have p; = (0,0)e U In
either case, we can put p; = (0,0;,) in some chart U* for k =1 or 2. Together
with the identification U* =~ C?, for p;, € UX, we define the subvariety

le = {(21,22) X [11 : 12} € Uk X P1 ‘lez = (Zz —Ole)ll}

with the local chart {(U/, )}, , of Xj,, the blow-up 7; : X, — U* centered at
Dj,, and the exceptional curve E; := nﬁl( p;,) analogous to the definitions for X,
{(U", 4")},_; 5, = and E. Moreover, by pasting the chart U* which contains p;,
on the other charts of X, we obtain the blow-up m;, : X;; — X. In [10], we have
shown that there exists a sequence of infinitely many blow-ups for rational
mappings F : P? — P? satisfying (4.0). To state our main theorems, we intro-
duce the construction of blow-ups (see Figure 2).
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Step 1. (1) Define a rational mapping
F; ::7'5’1013':]\(,1 — X.

Then, from the definition of 7z, the point p; is an indeterminate point of Fj.
(2) Define a rational mapping

ﬁ}l = Fjom : 77]:1(]\7/1) — X,
where 7, : Xj, — X is the blow-up of X centered at pj,. R
(3) It follows that F}l'Ejl : Ej, — E is bijective and put p;,j, := F}l_l(gzjz) e Ej.
Then, there exists an open neighborhood Nj,;, of pj;, such that Fj |y is
biholomorphic. "
Repeat this process inductively and define the following (see Figure 2):
Step n. For ne N with n > 2,
(1) define a rational mapping
F}I“‘jn = 77_/;;" °© F}I"'jn—] : ]le“'jn - ‘ij'“jm
(2) define a rational mapping
Fﬁ}l"'jn = F}l]n © 7-[/l/n : anlj,,(N/l/n) - X}Z"'jn’
where 7;,...;, : Xj,..;, = Xj..j,_, is the blow-up centered at p;..; and Ej ..; is the
exceptional curve of Xj..;. Then, we have the following theorem.
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THEOREM 2.1 ([10, Theorem 2.2]). Assume that a rational mapping F with
the indeterminate point p satisfies the condition (A.0). Then, for every neN,
Jn = 1,2, there exists a sequence of points

— -1 . o
Pjrjunr = Fj (Ppjunr) € Ejyjy

Moreover, there exist open neighborhoods Nj...;,., of pj...;,., and Nj,...; .. of Dj...j,.,

such that 14"]-1...]-”|le'__]”+1 tNjjuy — Njojyy s biholomorphic.

For any open neighborhood N, of p, define

A= () (mo FHM(N,)NN,.
k>1

It is clear from the definition that A is the set of points whose all forward orbits
stay in N,.

ProrosiTION 2.2.  For any point qu\UZio F~*(p), F¥(q)e N, for all
k>1 N

In [13] and [14], Yamagishi showed that if F satisfies a stability condition
at p then there exists a Cantor bouquet {Wj}je (123N which consists of local

stable manifolds Wj of p. It follows from the definition of local stable manifolds
that

\J Wi<= A for some open neighborhood N, of p.
je{1,2}™

Hence, A is a generalization of a Cantor bouquet for a fixed indeterminate point
p and the main purpose of this paper is to describe the shape of A. To do this,
we need the following condition:

(4.1 {pj, eU'NE and p;..;,, € Uj}mj,, NE.;,
for any neN, j,=1,2

where Uji i is the local chart of Xj ..; which is defined by

= {(21722) X [11 : 12] € X}l"'jn U] # 0}

By using this chart, for any symbol sequence j= (ji,...jn,...) € {I,Z}N,
there exists a sequence of complex numbers o;..;., € C such that p;..;. =
0,0, ) € U/}/n for any n. By using this sequence {o,..;,}, for any neN,

jn=1,2 define a polynomial

1
Uiy

. —_— . P 2 PECEY . ) n
Pjy-- ju (X1) =X + %y jp X1 + + %y ju X1 5

and a polydisk of radius ¢ with center pj..j,.,

2

1
" (e) :={(z1,22) € Ui..;, lz1] < &lz2 — %y | < €},
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for some positive constant ¢. Then, it follows from the definition of a blow-up

T, lpr in (1) of Proposition 2.1 that
’ X J1n

(x1) mom, 0 om;, (A7 (€)

= {(x1,3) € C*| 1| <&, |x2 — 9.5, (31)| < elxt |1,

Put Ajj.y
theorem.

(¢) equal to the right-hand side of (x1). Then, we have the following

THEOREM 2.2. Let F be a rational mapping satisfying the conditions (A.0)
and (A.1).  For any n € N and for any sufficiently small open neighborhood of N, of
D, there exists a constant ¢ >0 such that

Jin1=1,2

Remark 2.3. For every je {1,2}N, put the formal power series ¢;(x1) :=
> %, X7 In [10], we show that if a family {Wj};_(, 5~ of holomorphic curves
is locally invariant at p, then every ¢; is a convergent power series and every
holomorphic curve W; has the following form:

Wi = {(x1,x2) € C* | |x1| < 5,32 = gy(x1)},

where d; is a radius of the domain of definition of ¢;. On the other hand, in
Theorem 2.2, we approximate A by the set A;,..;,,, (¢) whether ¢; is a convergent
power series and A consists of holomorphic curves or not.

As a prototypical example, consider the following rational mapping of C:

Dy —
x2) F(x1,x) = xl—l—axz,M with a # 0.
1 )
i

Our F satisfies conditions (A.0) and (A.1); therefore, Theorems 2.1 and 2.2 can
be applied for F. In particular, F is locally biholomorphic at p;, and we put
Gj, equal to the inverse branch of F with Gj(p) = p;,. Then, define a graph
transformation I'; (j; = 1,2) on some appropriate function space. By the con-
traction mapping principle, we have the following theorems.

THEOREM 2.3. Let F:C* — C? be the rational mapping as in (x2). For
every symbol sequence je {1,2}" there exists a continuous function x, = i(x1)
on some disk A(0) := {x; € C||x1| < J} satisfies the following conditions:

Put

I/Vj = {(Xl,XQ) € A(é) X C|XZ = lpj(xl),xl € A(&)}
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The family {Wi}je{l,z}"‘ is invariant with respect to F at p. Here, to say
{Wj}j€ (1,2)" is invariant with respect to F at p means that for any symbol sequence

je {1,2}N, there exists some open neighborhood Nj of p such that
peno G (Wo) NN = W,
where o : {1,2}N — {1,2}" is the shift operator.

THEOREM 2.4. Let F :C* — C? be the rational mapping as in (¥2).  For
every symbol sequence j € {1,2}N, the formal power series g;(x1) = Y o;..;,X] is
an asymptotic expansion of the continuous function Y;(x1) in Theorem 2.3.  Here,
to say ¢;(x1) is an asymptotic expansion of Y;(x1) means that for any n e N, there
exist some constants 6, > 0 and M, > 0 such that for any x| € A(9,),

Wi(x1) — o200 — -+ = o X1 < Mi|xa|™.

Remark 2.4. Since the first component of F is ¢(x1) := x| + ax?, g(x;) has
attracting and repelling regions on the x; plane whose boundary contains 0 (for
details, see [8]). Therefore, W contains not only a local stable set but also a
local unstable set of p. Hence, our {Wj}je (123" is a generalization of a Cantor
bouquet.

3. Proof of Theorem 2.2

To prove Theorem 2.2, we proceed by induction on n (see Figure 3).
By Theorem 2.1, Fj..; is biholomorphic at an open neighborhood of

Djijui- Together with the fact Fj .. (pj.j,..) = Pj-j,..» one can choose a
sequence of open neighborhoods Nj...;, of pj...; and Nj..jn.y Of pj.j.., such that
Fj..;,(Nj..j..,) = Nj..j,,,- Hence, for any ne N and for any sufficiently small
open neighborhood N, of p, there exists an open neighborhood N;,...;,., of pj ...,
such that

Fo--oF,. ; oF, ;(Nj..)=N,
I 5
(o F )" (N,)NN, = ) mo-om s (Njyjus) NNy

JreJun1=1,2

Then, it is easy to see from the definition that

© ~ ~
N (”OF?l)k(Np) AN, = (”OF?l)nH(Np) NNy,
k>1

0
- -
A= (@ F Y WN)NN, e U 7o ompy(Nyj) NN,
k>1 Jrgnr1=1,2
Take a positive constant ¢ > 0 satisfying Nj,...;,,, = Ajzl»~j,,+1 (¢) for any ji,..., jut1 =

1,2. Then, Theorem 2.2 is proved.
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FIGURE 3

4. Proof of Theorems 2.3 and 2.4

In this section, as an application consider the following rational map of C%:

X2(2x7 — x
F(xi,x) = (x1 + ax,z,z(zzl))
1

with a # 0. Now, let us start the proof of Theorem 2.3. In the following part,
we shall give a proof which is based on an argument by Hadamard-Perron
Theorem in [7, Theorem 6.2.8] and the construction of the Cantor bouquet in
[13].

From some easy calculations, one can check that our F satisfies the
conditions (4.0) and (A.1). Hence, Theorems 2.1 and 2.2 can be applied for
F, and for any infinite symbol sequence j = (ji, j2,...) € {I,Z}N, there exists the
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sequence of points {pj...; } such that p;..; = (0,0..;) € Uj:mj,,,l' In the rest of

this paper, we identify U' which is the local chart of X with C2
Since the condition (4.0) holds, F is a locally biholomorphic mapping on
some neighborhoods of p;,, and there are positive constants r, */, and inverse

branches G, : A*(r) — Ajzz(r’) of F, where A%*(r):=A(r) x A(r). Let p:C*—
[0,1] be a C'-function such that

1 on AZ(r)
,0(21722) = A 2
0 on C*\A; (2r).

Moreover, it follows from the (1) of Proposition 2.1 that = has the following form
on the chart U'!

n(z1,22) = (z1,2122)-

Let m, be the Taylor expansion of m at p; = (0,0;) and its has the following
form:

My, (21,22) = (21,0221 + 21(22 — o2)).
By using p and =, , define the C'-mapping g;,, 1 C? = C?
(41) 9jrj, =P X (G/z o Tfpjl) + (1 _p) X {(Oa ‘sz) + J(sz © npjl )}
= (07ajz) +J(Gj2 © ﬂpj,) +p X {sz O Ty, — (Or:sz) - J(sz © np/'l)}

where J(Gj, om, ) is the Jacobian matrix of Gj,om, at the point p; (see
Figure 4). Then, it follows from the definition that

g — { Gj, o T, on Ajzl (r)
o (Oa O‘./l) + J(G./z O Ttp;, ) on CZ\A]'ZI (2}’),

2
,,,,,,,,,,,,,,,,,,,, o)
Dj» A?l(r)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, i1z
p]l
T T
p o p

FIGURE 4
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Lemma 4.1. g, have the following form on U' =~ C%

(1) gu(z1,22) = <21+p2anzl,p2b 2123) )

nx2 nx>1
(2) gi2(21,22) = <21+pzan217a2+pzb (z122) )
n>2 n>1

(3) 9aulz,22) = <Zl P anz, —tn

n=2

+p{—21(22—062)+ > bnkzi’(Zz—az)k}>

n>2,n>k>0

4)  gn(z1,22) = <Zl +p Y anzf, ay + %z

n>2

+/’{Zl(22—az)+ > bnkzi’(zz_az)k}>

n>2n>k>0

Proof. On the chart U', F can be written in the form
F .= Fon(zi,z2) = (7 +az%,2z§ — ).
Therefore, we see that p; = (0,0), p» = (0,1/2), ¢y =0, and o, = 1/2. By direct

calculation,
. 1 0 - 1 0
JFP‘:<0 —1)’ JF“:(o 1)’

and, the Taylor expansion of G;, at p = (0,0)

Gi(z1,22) = <21 +Y @, -+ bk22>

n>2 k>2
Gy(z1,22) = (0,00) + (21 + Zanziz,zz + Zb;ﬂé‘).
nx=2 k>2
Then, it follows from the definitions,

Giomy (z1,22) = <21+E apzy, 2122+§ bu(z122) >7

n>2 n>2

Gromy (z1,22) = <Z1 + Y a0+ 05+ an(zlzz)n)

nx>2 nx>2
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Giomy,(z1,22) = (Zl + ZanZl, (o221 + z1(z2 — 22))

n>2

nx>2

+ Zb,,(oczzl + 21(22 — 0(2))”),

Gy omy,(z1,22) = <zl + Zanzf, oy + (onz1 + z1(z2 — o))

n>=2

=+ Zb,,(oczzl + Z](Zz — O(z))n> .

nx>2

Together with (4.1), we obtain (1) and (2) of Lemma 4.1. On the other hand,
the second element of g;; has the following form:

(42) -z —|—p{—zl(zl —o) + an(oczzl +z1(z — ocz))n}

nx>2

= —0hZ] —|—p{—21 Z] —062 Zb Z Ck OQZ] B 21(22 —az))k}

n>2 k>0
= —0Z] —l—p{—Z](Zl — 062 + Zb Z Ckoc” kZ’f(Zz — (Zz)k}
n>2 k>0

By changing coefficients of this power series,

(4.2) = —onz —l—p{—zl z1—o)+ Y. buzf(za- az)k}.

n>2n>k>0

Hence, the claim (3) holds. By similar calculation, we obtain the claim (4). We
remark that p =0 on CZ\A]-zI (2r) and g;,;, are well-defined on C*. O

Let y be a positive constant satisfying 0 <y < 1 and Cp ' be the set of a

function ¢ : C — C which is Lipshitz continuous with Lipshitz constant Lip(¢) < y
and ¢(0) = %,

G =Ccruck,
and define a function d: C, x C, — R by

wp 1920 ()

d(p,¥) := { =1<Cio) |z1]
3 if geCl* and Yy e Cl (k#1).

it g el

Lemma 4.2. C, is a complete metric space with respect to the metric d.
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Proof. Here, we only prove that d satisfies the triangle inequality. If
¢,y € C/' and 5 e CI2, then d(¢,n) =d(n,¢) =3. On the other hand, d(¢, V)
< 2. Indeed, it implies from the definition of C, that |¢(z1) — ¢(0)| < y|z1| and
[W(z1) — ¥(0)| < y|z1] and ¢(0) = (0) = a;. Therefore,

d(¢, ) < sup |¢(z1) —ou| + [Y(z1) — o

<2y <2
21eC\{0} |z1]

Hence, d(¢,¥) < d(¢,n)+ d(n,¥) holds. By similar arguments, the same in-
equality holds for the other cases. It is easy to check that C, is a complete
metric space with this metric. O

Next, we define some graph transformation on C,. In the following part,
we will go along the same line as in [7, Lemma 6.2.16].
Set

A(z1,22) = p(z1,22) E anzy,

n>2

Al(Zl,Zz) = Re(A(Zl722))7 AQ(ZI,ZQ) = Il’Il(A(Z],Zz)),

B(Zl,Zz) = p(Zl,Zz)an(ZIZZ) and z;=uw + iy (l = 1,2)

n>1

Then, we define a mapping
A~k :R* - R by A~k<u1,01,U2, Uz) = Ak(ul +ivy,uy + ivz)
and put (dy),, = 0Ac/0u, (Ay), = 0Ar/0vr (k,1=1,2).

LemMMa 4.3.  There exist positive constants v > 0 and Jdy > 0 such that
(1) sup [A(z1,22)] <o <1,
(z1,22) e C? . .
@) [Ale, == sup  {[(dr),, ] [(4x),, [} < d,
(ur,v) eR%k,1=1,2
(3) For any ¢ € C, and zi,z| eC,

() |41 9(z0)) - A )] < 890(1+ )|z — | and
(ii) [B(z1,¢(z1)) — Bz, E D)l )< 8o(1 +7)|z1 — =1,
80o(1
4) 0 < 8dy(l1 l, —————< 1.
(4) 0<8(l+7) <1, 1= 85011 7)
Proof.  Since A(0,0) =0, for any dyp with 0 <y < 1 there exists r > 0 such
that

sup |A(z1,z2)|=  sup pZanzi7 < sup Za]z] < dy.

(z1,22)eC? (z1,22) €A}(2r)| n>2 (z1,22) €A (2r)|j=2
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Then, (1) follows. Since Z,>2“/Z1 does not have linear terms and p is a C!-
function, s1m11ar1y, one can prove (2). To prove (3), first we show that for any
(21522) (21322) € C

(4.3) |A(z1,22) — A(zy,2)| < 8ld]¢, (21 — 21,22 — 23)|

Indeed, it follows from the triangle inequality that

2

(4.4) |A(z1,22) = A(z1,23)] < Y 1 Ai(z1,22) = Ak(2],73)]
=1

Define a mapping /() : [0,1] — R* by
e (uy + 0wy — uy), o) 4 1oy — vp), 1y + 1wz — 1), 03 + (02 — 7))
and A,;(t) := A;(£(t)). Then, there exists 7 € [0, 1] such that

A (z1,22) = Ak(z], 22)| = [4,,(1) = 4,0)] = |(4y) (o)

2
< D 1Ak, (o) = uf] + 1 (Ax),, (Z (1)) s — vy
1=1

It follows from the inequalities for /= 1,2
Jur =], |or = o] < (21 = 71,22 = 33)|
that
the right-hand side of (4.4) < 8|4|¢ |(z1 — 21,22 — 23)],
and (4.3).
Put z; = ¢(z1). Together with the fact ¢ € C,, we prove (i) with respect to
A. Similarly, we prove (ii) with respect to B.

From the proof of (1), by rechoosing r > 0, we assume that J, satisfies (4).
O

For ¢ e C,, define the graph(¢) := {(z1,22) € C*|z2 = ¢(z1)} and the map
K;:C— C by

Ky(z1) =21+ p(z1,6(21)) Y anz].

n>2

Then, we have the following lemma.

LemMma 4.4, For any ¢ € CI', there exists y € CI' such that
gn(graph(¢)) = graph(y).

Proof.  First, we will show that K, is a bijection. To do this, for any fixed
Z; e C, we need to find a unique z; € C such that Z; = Ky(z;), that is,

(4.5) Zy=zi+4p(EL¢(21)) Y @t

n>2
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Define the map I~(¢ :C—C by
Rolz1) = Z1 = plar, (1) Y .

nx>2

Then, K; is a contracting map. Indeed, it follows from (3) of Lemma 4.3 that
for any zj,z; € C,

[Ky(z1) = Ky(z))| < |A(z1,4(21)) = A(z], ¢(2))] < 830(1 + 9)[z1 = =].

From (4) of Lemma 4.3, I~(¢ is contracting. Thus, by the contraction mapping
principle, we see that equation (4.5) has a unique solution and Kj is a bijection.
Moreover, there exists a unique function y on C such that

g (graph(¢)) = graph(y).

Next, we show that  is Lipschitz continuous with Lipschitz constant
Lip(y) <y. To do this, for any (z1,4(z1)), (z],¢(z])) € graph(¢), set

(Z21,22) == gu(z1,4(21)), (Z1,2Z3) = gul(z, é(21)).
It follows from Lemma 4.3 that

123 - Zo] = |B(=}, §(=})) — Blz1, $(z1)] < 850(1+ )|z} - =1,
(46) 3 |2} = 21| = |2} — 21| = |4}, 4(2)) — A1, $(21)
= |2} — 21| = 830(1 + )|z} — 21| = (1 — 83(1 + )|z} — z1].

Along with (4.6), we have

8o (1 +7)
75— 72| < —— 2] = Z)|.
| 2 2|—1_850(1+y)| 1 1‘
It follows from (4) of Lemma 4.3 that one can obtain 85y(1 + 7)/{1 — 8y(1 + )}
<. O

From an argument similar to the discussion of Lemma 4.3 and 4.4, we show
the same claim for all g;;, (ji,/»=1,2) and define the graph transformation

[,:C, — C” by ¢~y =T,(4) with g, (graph(¢)) = graph(y), if g€ C;".

Lemma 4.5. T, is a contraction. Here, to say I, is a contraction means
that there is some constant 0 < A <1 such that for any ¢,,¢, € C,

d(T, (1), T, (¢,)) < 2d(¢y, 5)-

Proof. Here, only consider the case of I'} and ¢, € C/'. For any ¢; € ch,
set Y; :=T'1(¢;) € C/' (i=1,2). By using the previous estimates in the proof of
(3) of Lemma 4.3, we have the following:
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@4.7) (K (21)) = Y2 (Ky, (21))]
< W (K, (21)) = Wa (K, (20))] + o (Ky, (21)) — o (K, (21))]
< |B(z1,¢1(21)) — B(z1, 2(21))| + 71Ky, (21) — Ky, (21)]
< 8d0|¢1(z1) = ha(z1) +714(z1, ha(21)) — A(z1,61(21))]
< 80|¢; (21) — ¢a(z1)| + 8700|ha(21) — ¢1(21)]
=890 (1 +7)I¢1(21) — da(21)].
Similarly, it follows from the fact A4(0,¢(0)) =0 that
Ky, (1) = |21 + A(z1, 41 (21))] = |21] = |A(z1, 61 (21)) — A(0, ¢,(0))]
> |z1| = 80(1 + p)|z1] = (1 = 8o (1 + »))|z1].
From this together with (4.7), we show the following:

d(yy, ) = sup Y1 (Ky, (21)) — Yo (Ky, (21))]

zeC\{0} \K¢1(21)‘
80o(1 +7) 41(21) = 2(21)]
< ————"— sup —————=—= < d(d;, ),
1 —860(1 +7)-cc\io} |21 (@1:42)
where 4 :=8dy(1 + y)/{1 —83(1 +7)}. It follows from (4) of Lemma 4.3 that
0< i<l U

Let S be the space of non-empty compact subsets of C,. Then, S is a
complete metric space with respect to the Hausdorff metric. Defining a mapping

H:S—S, by S— H(S):=T(S)UT(S),

we see that H is a contraction on S, since I'; is a contraction mapping.

Thus, it follows from the contraction mapping principle that H has the
unique fixed element §€ S, and H"(S) converges to § for any SeS. Here, we
choose a subset S of S satisfying I,(S) <S8 for j,=1,2. Then

© ~
(VH"(S)=5.
n=0
Since Fl(S)ﬂl"z( S) =0, for every symbol sequence je {1,2}", there exists a
unique function l//] € C, such that lp] ﬂnZI Io- an(S). By using ;, let
us set
{(21722) e C? |22 = ‘/fj(zl)}-

Then, it follows that F,,( @) = ¥;- Indeed,

(N Tpo ol (S) =v,5 and Tj(Y,5) €lj ool (S)
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for every neN. Hence, I, (Ja@) e, Tjo-o [, (S). By the uniqueness
of 5, I';(Y,4) = ;. Take a small positive constant 6 with 0 <J <r, and put
Wj‘s = W;N(A@®) x C) and W;:= n(Vf/jé).
By (1) of Proposition 2.1, one can obtain that
VVj = {(X],Xz) € A(&) x C | Xy = xllﬁj(xl),xl € A(é)}

Put ¢;:= xvﬁj. This is our required in Theorem 2.3. It is clear from
L, (o) = ¥; that {Wj}ie{m}N is invariant. Thus, the proof of Theorem 2.3 is
complete.

To prove Theorem 2.4, for any je {1,2}N, put

Wil =1 (W\{p})-

It is clear that W,' = W;. From the facts T}, (/) = ¥; we have p; € W!. Put
W= m ! W\ })-

Then, we have the following lemma (see Figure 5).

LemMa 4.6, pjj, € E; N W2

Proof. First, we remark that p;, € W, such that G, (W) = Wi Tt is
clear from (1) of Proposition 2.1 that

W ={(z1,22) e U' |22 = Yy(=1),21 € A@)}  and
m (Wi }) = {0, w2) € Uy fwiw = g(on), w1 € A0)

Wy Pji ja

el

7T ™
Gj1
F

FIGURE 5
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where A(J)" :
for w; e A(é) .

A(0)\{0}. Define 1// (wl) : lﬁj(wl)/wl. Then, lpf is continuous
Put ¥(w;) := (wl,lpj (wy)). Tt follows that for wy e A(d)",
F,(¥(w1)) =n"' o Fom(¥(w1)) is biholomorphic,

E\(¥(wi)) € Wyg  and  lim F (¥(w1)) = pp-

By Theorem 2.1, there exists a point pj,;, = (0,0;,;,) € E; N U, ! such that p;,;, =
F (p;,) and F;, is biholomorphic at p; ;, we know that llmnﬁo Y(wi) = pjj-

By deﬁnmg xp ( ) == aj,;,, we see that wl is continuous at w; = 0. Hence,
Pip € W U

Moreover, by setting
sz = {(wi,m) € U]: | wy = t//jz(wl),wl eA0)}

and repeating this process inductively, the sequence of points pj,..; in Theorem
2.1 satisfies p]I €W for any n > 1. Take a positive constant 0, with J, >
d>0 and A? 5)DW” Then,

i
Wicmomo--om.j, (Ajzlmj,, ()
From (x1), we have
Wi = {(x1,x2) € C* | [x1] <, |x2 = ;. (x1)] < Sulx1]"}
and we have proved Theorem 2.4.

Remark 4.1. Generally, l/;i depends on the construction of an extension
mapping ¢;,;, and is not always unique (see [7]). Put

q(x1) :=x1 +axi and P:={x;€C|q"(x;) — 0}.

It is known that P is non empty open set and 0 € dP (see [8]). Then,
F*"(x1,x) = p as n— oo for any (x1,x2) € WyN{P x C} with x; #0

and ;(x;) is determined uniquely for any x; € P. By Theorem 2.2, it implies
that for any fixed » e N and any sufficiently small open neighborhood N, of p
there exists a constant ¢ > 0 such that

je{1.23N Jre e =12
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