
T. SHINOHARA
KODAI MATH. J.
37 (2014), 434–452

SOME FAMILY OF CENTER MANIFOLDS

OF A FIXED INDETERMINATE POINT

Tomoko Shinohara

Abstract

In this article, we study the local dynamical structure of a rational mapping F of P2

at a fixed indeterminate point p. In the previous paper, using a sequence of points

which is defined by blow-ups, we have constructed an invariant family of holomorphic

curves at p. In this paper, using the same sequence of points, we approximate a set of

points whose forward orbits stay in a neighborhood of p. Moreover, for a specific

rational mapping we construct a family fWjgj A f1; 2gN of center manifolds of p. The

main result of this paper is to give the asymptotic expansion of the defining function

of Wj.

1. Introduction

Recently, several authors have researched rational maps on compact complex
surfaces. Bedford-Kim [1], Mcmullen [6] and Uehara [12] construct many
examples of automorphisms with positive entropy. Diller-Dujardin-Guedj [2],
Dinh-Sibony [3], Diller-Farve [5] and others construct invariant currents for
good birational maps. These results concern with global dynamics of rational
maps.

In this paper, we study the local dynamical structure of a rational mapping F
of the two-dimensional complex projective space P2 at an indeterminate point
p. To say that p is a fixed indeterminate point means that F blows up p to a
variety which contains p. It is remarked here that a fixed indeterminate point p
is non-wandering, and we expect that there exists a local dynamical structure.
Indeed, Yamagishi [13], [14] and Dinh-Dujardin-Sibony [4] showed that there
exists a family fWjgj A f1;2gN of uncountably many currents or stable manifolds

of p, which comprise what is called a Cantor bouquet of p.
On the other hand, we have constructed a Cantor bouquet by another

method in [10]. By using a sequence of points fpj1��� jng which is defined by blow-
ups, we construct a family fWjgj A J of holomorphic curves at the point p, where
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J is a subset of a Cantor set f1; 2gN. In [10], for the following rational mapping
of C2:

F ðx1; x2Þ ¼ ax1;
x2ðx2 � x1Þ

x2
1

� �
with jaj > 4;

we showed that J is a proper subset of f1; 2gN and every Wj is an unstable
manifold of p. Hence, our fWjgj A J is a generalization of a Cantor bouquet.
Moreover, we construct an invariant surface for a rational mapping F of Pn

which has a set I of indeterminate points with dim I ¼ n� 2 in [11].
In this paper, by using the blow-ups in the same way as in [10], we

approximate a set of points whose all forward orbits stay in a neighborhood of
a fixed indeterminate point p (see Theorem 2.2). As a prototypical example,
we consider the following rational mapping F of C2:

Fðx1; x2Þ ¼ x1 þ ax2
1 ;
x2ð2x2 � 1Þ

x2
1

� �
with a0 0

and construct fWjgj A f1;2gN , which is a family of center manifolds of p (see

Theorem 2.3). In [10], by using the sequence of points fpj1��� jng, for every symbol

sequence j A f1; 2gN we define a formal power series jj and we show that if a
family fWjgj A f1;2gN of holomorphic curves is locally invariant at p, then every jj
is a convergent power series and Wj is given by the graph of jj. In general, it is
known that the defining function cj of a center manifold Wj is not always
analytic. The main result of this paper is to show that the formal power series jj
is the asymptotic expansion of cj whether jj is a convergent power series or not
(see Theorem 2.4).

This paper is organized as follows. In Section 2, we state some preliminary
facts and our main theorems. Section 3 is devoted to the proof of Theorem
2.2. In the final section, Section 4, we construct the family fWjgj A f1;2gN of
center manifolds of p for a given rational mapping F .

2. Preliminaries and main theorems

In this section, we fix the notation which will be used throughout this paper,
and state our main theorems. Firstly, we fix once and for all a homogeneous
coordinate system ½x0 : x1 : x2� in P2; we shall often use the natural identification
given by

C2 ¼ f½x0 : x1 : x2� A P2 j x0 0 0g and ðx1; x2Þ ¼ ½1 : x1 : x2�:

Consider the product space C2 � P1 and define the subvariety X HC2 � P1

as the following:

X :¼ fðx1; x2Þ � ½l1 : l2� A C2 � P1 j x1l2 ¼ ðx2 � aÞl1g

for the point p ¼ ð0; aÞ A C2.
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Definition 2.1. The mapping p : X ! C2 defined by restricting the first
projection C2 � P1 ! C2 to X is called the blow-up of C2 centered at p.

It follows from the definition that p�1ðpÞ ¼ fpg � P1 and that

p : Xnp�1ðpÞ ! C2nfpg is biholomorphic:

Put E :¼ p�1ðpÞ; E is called the exceptional curve. Let us describe the structure
of X . Define

U i :¼ fðx1; x2Þ � ½l1 : l2� A X j li 0 0g for i ¼ 1; 2:

Then, U i is biholomorphic to the a‰ne space C2 by the following maps:

m1 : U 1 C ðx1; x2Þ � ½l1 : l2� 7! ðx1; l2=l1Þ A C2;

m2 : U 2 C ðx1; x2Þ � ½l1 : l2� 7! ðl1=l2; x2Þ A C2:

Hence, fðU i; m iÞgi¼1;2 gives a local chart of X . Let ðx1; ~xx2Þ and ð~xx1; x2Þ be local

coordinates on U 1 and U 2, respectively.

Proposition 2.1. We have the following:
(1) pjU 1 : U 1 C ðx1; ~xx2Þ 7! ðx1; x1~xx2 þ aÞ A C2.
(2) pjU 2 : U 2 C ð~xx1; x2Þ 7! ð~xx1ðx2 � aÞ; x2Þ A C2.
(3) XnU 1 ¼ fð~xx1; x2Þ A U 2 j ~xx1 ¼ 0g:
(4) E VU 1 ¼ fðx1; ~xx2Þ A U 1 j x1 ¼ 0g, E VU 2 ¼ fð~xx1; x2Þ A U 2 j x2 ¼ ag.
(5) E V ðU 2nU 1Þ ¼ fð~xx1; x2Þ ¼ ð0; aÞ A U 2g.

Proof. For ðx1; ~xx2Þ A U 1 GC2,

p � ðm1Þ�1ðx1; ~xx2Þ ¼ pððx1; x1 ~xx2 þ aÞ � ½1 : ~xx2�Þ ¼ ðx1; x1~xx2 þ aÞ:

By a similar discussion, we have the other claims. r

By pasting C2 ¼ f½x0 : x1 : x2� A P2 j x0 0 0g on the other charts of P2, we
obtain the blow-up of P2 centered at ½1 : 0 : a�. To simplify our notation, we
denote this also by p : X ! P2. In this paper, let F : P2 ! P2 be a rational
mapping with an indetermianate point p ¼ ½1 : 0 : 0� and concentrate our atten-
tion on the dynamics of F in the chart

C2 ¼ f½x0 : x1 : x2� A P2 j x0 0 0g:

Remark that p ¼ ð0; 0Þ is our indeterminate point on C2. Put the space of
symbol sequences

f1; 2gN :¼ fj ¼ ð j1; j2; . . .Þ j jn ¼ 1 or 2; n A Ng:

Let us define a rational mapping

~FF : X ! P2 by ~FF :¼ F � p;
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where p is the blow-up centered at p ¼ ð0; 0Þ. In this paper, we assume that ~FF
satisfies the following condition (A.0), see Figure 1:

ðA:0Þ

ð1Þ For any point q A E; there exists an open neighborhood N of q

such that ~FF is holomorphic on N

ð2Þ ~FF �1ðpÞVE consists of two points pj1 ð j1 ¼ 1; 2Þ and

ð3Þ there exists an open neighborhood Nj1 of pj1 ð j1 ¼ 1; 2Þ
such that ~FF is biholomorphic on Nj1 :

8>>>>>><
>>>>>>:

Remark 2.1. ð2Þ of condition ðA:0Þ implies that p is a fixed indeterminate

point of F . If ~FF �1ðpÞVE consists of finite points pj1 ð j1 ¼ 1; 2; . . . kÞ, then we
can show a similar result, for the space of symbol sequences f1; 2; . . . ; kgN, in
exactly the same way.

Remark 2.2. In [13], Yamagishi showed that if F satisfies ðA:0Þ and
contracts some open neighborhood Np of p in some direction, then there
exists a family fWjgj A f1;2gN of uncountably many local stable manifolds of p.

fWjgj A f1;2gN is called a Cantor bouquet of p.

By (4) and (5) of Proposition 2.1, if pj1 A E VU 1, then we can put pj1 ¼
ð0; aj1Þ A U 1 for some aj1 . If pj1 A EnU 1, then we have pj1 ¼ ð0; 0Þ A U 2. In
either case, we can put pj1 ¼ ð0; aj1Þ in some chart Uk for k ¼ 1 or 2. Together

with the identification Uk GC2, for pj1 A Uk, we define the subvariety

Xj1 :¼ fðz1; z2Þ � ½l1 : l2� A Uk � P1 j z1l2 ¼ ðz2 � aj1Þl1g

with the local chart fðU i
j1
; m i

j1
Þgi¼1;2 of Xj1 , the blow-up pj1 : Xj1 ! Uk centered at

pj1 , and the exceptional curve Ej1 :¼ p�1
j1
ðpj1Þ analogous to the definitions for X ,

fðU i; m iÞgi¼1;2, p and E. Moreover, by pasting the chart Uk which contains pj1
on the other charts of X , we obtain the blow-up pj1 : Xj1 ! X . In [10], we have
shown that there exists a sequence of infinitely many blow-ups for rational
mappings F : P2 ! P2 satisfying (A.0). To state our main theorems, we intro-
duce the construction of blow-ups (see Figure 2).

Figure 1
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Step 1. (1) Define a rational mapping

Fj1 :¼ p�1 � ~FF : Nj1 ! X :

Then, from the definition of p, the point pj1 is an indeterminate point of Fj1 .
(2) Define a rational mapping

~FFj1 :¼ Fj1 � pj1 : p�1
j1
ðNj1Þ ! X ;

where pj1 : Xj1 ! X is the blow-up of X centered at pj1 .
(3) It follows that ~FFj1 jEj1

: Ej1 ! E is bijective and put pj1 j2 :¼ ~FF �1
j1

ðpj2Þ A Ej1 .

Then, there exists an open neighborhood Nj1 j2 of pj1 j2 such that ~FFj1 jNj1 j2
is

biholomorphic.
Repeat this process inductively and define the following (see Figure 2):
Step n. For n A N with nb 2,
(1) define a rational mapping

Fj1��� jn :¼ p�1
j2��� jn � ~FFj1��� jn�1

: Nj1��� jn ! Xj2��� jn ;

(2) define a rational mapping

~FFj1��� jn :¼ Fj1��� jn � pj1��� jn : p�1
j1��� jnðNj1��� jnÞ ! Xj2��� jn ;

where pj1��� jn : Xj1��� jn ! Xj1��� jn�1
is the blow-up centered at pj1��� jn and Ej1��� jn is the

exceptional curve of Xj1��� jn . Then, we have the following theorem.

Figure 2

438 tomoko shinohara



Theorem 2.1 ([10, Theorem 2.2]). Assume that a rational mapping F with
the indeterminate point p satisfies the condition ðA:0Þ. Then, for every n A N,
jn ¼ 1; 2, there exists a sequence of points

pj1��� jnþ1
:¼ ~FF �1

j1��� jnðpj2��� jnþ1
Þ A Ej1��� jn :

Moreover, there exist open neighborhoods Nj1��� jnþ1
of pj1��� jnþ1

and ~NNj2��� jnþ1
of pj2��� jnþ1

such that ~FFj1��� jn jNj1 ��� jnþ1
: Nj1��� jnþ1

! ~NNj2��� jnþ1
is biholomorphic.

For any open neighborhood Np of p, define

L :¼ 7
y

kb1

ðp � ~FF �1ÞkðNpÞVNp:

It is clear from the definition that L is the set of points whose all forward orbits
stay in Np.

Proposition 2.2. For any point q A Ln6y
kb0

F �kðpÞ, F kðqÞ A Np for all
kb 1.

In [13] and [14], Yamagishi showed that if F satisfies a stability condition
at p then there exists a Cantor bouquet fWjgj A f1;2gN which consists of local

stable manifolds Wj of p. It follows from the definition of local stable manifolds
that

6
j A f1;2gN

Wj HL for some open neighborhood Np of p:

Hence, L is a generalization of a Cantor bouquet for a fixed indeterminate point
p and the main purpose of this paper is to describe the shape of L. To do this,
we need the following condition:

ðA:1Þ pj1 A U 1 VE and pj1��� jnþ1
A U 1

j1��� jn VEj1��� jn
for any n A N; jn ¼ 1; 2

�

where U 1
j1��� jn is the local chart of Xj1��� jn which is defined by

U 1
j1��� jn :¼ fðz1; z2Þ � ½l1 : l2� A Xj1��� jn j l1 0 0g:

By using this chart, for any symbol sequence j ¼ ð j1; . . . jn; . . .Þ A f1; 2gN,
there exists a sequence of complex numbers aj1��� jnþ1

A C such that pj1��� jnþ1
¼

ð0; aj1��� jnþ1
Þ A U 1

j1��� jn for any n. By using this sequence faj1��� jng, for any n A N,
jn ¼ 1; 2 define a polynomial

jj1��� jnðx1Þ :¼ aj1x1 þ aj1 j2x
2
1 þ � � � þ aj1��� jnx

n
1 ;

and a polydisk of radius e with center pj1��� jnþ1

D2
j1��� jnþ1

ðeÞ :¼ fðz1; z2Þ A U 1
j1��� jn j jz1j < e; jz2 � aj1��� jnþ1

j < eg;
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for some positive constant e. Then, it follows from the definition of a blow-up
pj1��� jn jU 1

j1 ��� jn
in (1) of Proposition 2.1 that

ð�1Þ p � pj1 � � � � � pj1��� jnðD2
j1��� jnþ1

ðeÞÞ

¼ fðx1; x2Þ A C2 j jx1j < e; jx2 � jj1��� jnþ1
ðx1Þj < ejx1jnþ1g:

Put Lj1��� jnþ1
ðeÞ equal to the right-hand side of ð�1Þ. Then, we have the following

theorem.

Theorem 2.2. Let F be a rational mapping satisfying the conditions (A.0)
and (A.1). For any n A N and for any su‰ciently small open neighborhood of Np of
p, there exists a constant e > 0 such that

p A LH 6
j1��� jnþ1¼1;2

Lj1��� jnþ1
ðeÞ:

Remark 2.3. For every j A f1; 2gN, put the formal power series jjðx1Þ :¼P
aj1��� jnx

n
1 . In [10], we show that if a family fWjgj A f1;2gN of holomorphic curves

is locally invariant at p, then every jj is a convergent power series and every
holomorphic curve Wj has the following form:

Wj ¼ fðx1; x2Þ A C2 j jx1j < dj; x2 ¼ jjðx1Þg;

where dj is a radius of the domain of definition of jj. On the other hand, in
Theorem 2.2, we approximate L by the set Lj1��� jnþ1

ðeÞ whether jj is a convergent
power series and L consists of holomorphic curves or not.

As a prototypical example, consider the following rational mapping of C2:

ð�2Þ Fðx1; x2Þ ¼ x1 þ ax2
1 ;
x2ð2x2 � x1Þ

x2
1

� �
with a0 0:

Our F satisfies conditions (A.0) and (A.1); therefore, Theorems 2.1 and 2.2 can
be applied for F . In particular, ~FF is locally biholomorphic at pj1 , and we put
Gj1 equal to the inverse branch of ~FF with Gj1ðpÞ ¼ pj1 . Then, define a graph
transformation Gj1 ð j1 ¼ 1; 2Þ on some appropriate function space. By the con-
traction mapping principle, we have the following theorems.

Theorem 2.3. Let F : C2 ! C2 be the rational mapping as in ð�2Þ. For
every symbol sequence j A f1; 2gN, there exists a continuous function x2 ¼ cjðx1Þ
on some disk DðdÞ :¼ fx1 A C j jx1j < dg satisfies the following conditions:

Put

Wj :¼ fðx1; x2Þ A DðdÞ � C j x2 ¼ cjðx1Þ; x1 A DðdÞg:
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The family fWjgj A f1;2gN is invariant with respect to F at p. Here, to say

fWjgj A f1;2gN is invariant with respect to F at p means that for any symbol sequence

j A f1; 2gN, there exists some open neighborhood Nj of p such that

p A p � Gj1ðWsðjÞÞVNj HWj;

where s : f1; 2gN ! f1; 2gN
is the shift operator.

Theorem 2.4. Let F : C2 ! C2 be the rational mapping as in ð�2Þ. For
every symbol sequence j A f1; 2gN, the formal power series jjðx1Þ ¼

P
aj1��� jnx

n
1 is

an asymptotic expansion of the continuous function cjðx1Þ in Theorem 2.3. Here,
to say jjðx1Þ is an asymptotic expansion of cjðx1Þ means that for any n A N, there
exist some constants dn > 0 and Mn > 0 such that for any x1 A DðdnÞ,

jcjðx1Þ � aj1x1 � � � � � aj1��� jn�1
xn�1
1 jaMnjx1jn:

Remark 2.4. Since the first component of F is qðx1Þ :¼ x1 þ ax2
1 , qðx1Þ has

attracting and repelling regions on the x1 plane whose boundary contains 0 ( for
details, see [8]). Therefore, Wj contains not only a local stable set but also a
local unstable set of p. Hence, our fWjgj A f1;2gN is a generalization of a Cantor
bouquet.

3. Proof of Theorem 2.2

To prove Theorem 2.2, we proceed by induction on n (see Figure 3).
By Theorem 2.1, ~FFj1��� jn is biholomorphic at an open neighborhood of

pj1��� jnþ1
. Together with the fact ~FFj1��� jnðpj1��� jnþ1

Þ ¼ pj2��� jnþ1
, one can choose a

sequence of open neighborhoods Nj1��� jn of pj1��� jn and ~NNj2��� jnþ1
of pj2��� jnþ1

such that
~FFj1��� jnðNj1��� jnþ1

Þ ¼ ~NNj2��� jnþ1
. Hence, for any n A N and for any su‰ciently small

open neighborhood Np of p, there exists an open neighborhood ~NNj1��� jnþ1
of pj1��� jnþ1

such that

~FF � � � � � ~FFj2��� jn � ~FFj1��� jnð ~NNj1��� jnþ1
Þ ¼ Np;

ðp � ~FF �1Þnþ1ðNpÞVNp ¼ 6
j1��� jnþ1¼1;2

p � � � � � pj1��� jnþ1
ð ~NNj1��� jnþ1

ÞVNp:

Then, it is easy to see from the definition that

7
y

kb1

ðp � ~FF �1ÞkðNpÞVNp H ðp � ~FF �1Þnþ1ðNpÞVNp;

L ¼ 7
y

kb1

ðp � ~FF �1ÞkðNpÞVNp H 6
j1��� jnþ1¼1;2

p � � � � � pj1��� jnð ~NNj1��� jnþ1
ÞVNp:

Take a positive constant e > 0 satisfying ~NNj1��� jnþ1
HD2

j1��� jnþ1
ðeÞ for any j1; . . . ; jnþ1 ¼

1; 2. Then, Theorem 2.2 is proved.
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4. Proof of Theorems 2.3 and 2.4

In this section, as an application consider the following rational map of C2:

F ðx1; x2Þ ¼ x1 þ ax2
1 ;
x2ð2x2 � x1Þ

x2
1

� �

with a0 0. Now, let us start the proof of Theorem 2.3. In the following part,
we shall give a proof which is based on an argument by Hadamard–Perron
Theorem in [7, Theorem 6.2.8] and the construction of the Cantor bouquet in
[13].

From some easy calculations, one can check that our F satisfies the
conditions ðA:0Þ and ðA:1Þ. Hence, Theorems 2.1 and 2.2 can be applied for
F , and for any infinite symbol sequence j ¼ ð j1; j2; . . .Þ A f1; 2gN, there exists the

Figure 3
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sequence of points fpj1��� jng such that pj1��� jn ¼ ð0; aj1��� jnÞ A U 1
j1��� jn�1

. In the rest of

this paper, we identify U 1 which is the local chart of X with C2.
Since the condition ðA:0Þ holds, ~FF is a locally biholomorphic mapping on

some neighborhoods of pj2 , and there are positive constants r, r 0, and inverse

branches Gj2 : D
2ðrÞ ! D2

j2
ðr 0Þ of ~FF , where D2ðrÞ :¼ DðrÞ � DðrÞ. Let r : C2 !

½0; 1� be a C1-function such that

rðz1; z2Þ ¼
1 on D2

j1
ðrÞ

0 on C2nD2
j1
ð2rÞ:

(

Moreover, it follows from the (1) of Proposition 2.1 that p has the following form
on the chart U 1

pðz1; z2Þ ¼ ðz1; z1z2Þ:
Let ppj1 be the Taylor expansion of p at pj1 ¼ ð0; aj1Þ and its has the following
form:

ppj1 ðz1; z2Þ ¼ ðz1; a2z1 þ z1ðz2 � a2ÞÞ:
By using r and ppj1 , define the C1-mapping gj1 j2 : C

2 ! C2

gj1 j2 :¼ r� ðGj2 � ppj1 Þ þ ð1� rÞ � fð0; aj2Þ þ JðGj2 � ppj1 Þgð4:1Þ

¼ ð0; aj2Þ þ JðGj2 � ppj1 Þ þ r� fGj2 � ppj1 � ð0; aj2Þ � JðGj2 � ppj1 Þg

where JðGj2 � ppj1 Þ is the Jacobian matrix of Gj2 � ppj1 at the point pj1 (see
Figure 4). Then, it follows from the definition that

gj1 j2 ¼
Gj2 � ppj1 on D2

j1
ðrÞ

ð0; aj1Þ þ JðGj2 � ppj1 Þ on C2nD2
j1
ð2rÞ;

(

Figure 4
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Lemma 4.1. gj1 j2 have the following form on U 1 GC2.

g11ðz1; z2Þ ¼ z1 þ r
X
nb2

anz
n
1 ; r

X
nb1

bnðz1z2Þn
 !

ð1Þ

g12ðz1; z2Þ ¼ z1 þ r
X
nb2

anz
n
1 ; a2 þ r

X
nb1

bnðz1z2Þn
 !

ð2Þ

g21ðz1; z2Þ ¼
 
z1 þ r

X
nb2

anz
n
1 ;�a2z1ð3Þ

þ r �z1ðz2 � a2Þ þ
X

nb2;nbkb0

bnkz
n
1 ðz2 � a2Þk

( )!

g22ðz1; z2Þ ¼
 
z1 þ r

X
nb2

anz
n
1 ; a2 þ a2z1ð4Þ

þ r z1ðz2 � a2Þ þ
X

nb2;nbkb0

bnkz
n
1 ðz2 � a2Þk

( )!

Proof. On the chart U 1, ~FF can be written in the form

~FF :¼ F � pðz1; z2Þ ¼ ðz1 þ az21 ; 2z
2
2 � z2Þ:

Therefore, we see that p1 ¼ ð0; 0Þ, p2 ¼ ð0; 1=2Þ, a1 ¼ 0, and a2 ¼ 1=2. By direct
calculation,

J ~FFp1 ¼
1 0

0 �1

� �
; J ~FFp2 ¼

1 0

0 1

� �
;

and, the Taylor expansion of Gj2 at p ¼ ð0; 0Þ

G1ðz1; z2Þ ¼ z1 þ
X
nb2

anz
n
1 ;�z2 þ

X
kb2

bkz
k
2

 !
;

G2ðz1; z2Þ ¼ ð0; a2Þ þ z1 þ
X
nb2

anz
n
1 ; z2 þ

X
kb2

bkz
k
2

 !
:

Then, it follows from the definitions,

G1 � pp1ðz1; z2Þ ¼ z1 þ
X
nb2

anz
n
1 ;�z1z2 þ

X
nb2

bnðz1z2Þn
 !

;

G2 � pp1ðz1; z2Þ ¼ z1 þ
X
nb2

anz
n
1 ; a2 þ z1z2 þ

X
nb2

bnðz1z2Þn
 !

;
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G1 � pp2ðz1; z2Þ ¼
 
z1 þ

X
nb2

anz
n
1 ;�ða2z1 þ z1ðz2 � a2ÞÞ

þ
X
nb2

bnða2z1 þ z1ðz2 � a2ÞÞn
!
;

G2 � pp2ðz1; z2Þ ¼
 
z1 þ

X
nb2

anz
n
1 ; a2 þ ða2z1 þ z1ðz2 � a2ÞÞ

þ
X
nb2

bnða2z1 þ z1ðz2 � a2ÞÞn
!
:

Together with (4.1), we obtain (1) and (2) of Lemma 4.1. On the other hand,
the second element of g21 has the following form:

�a2z1 þ r �z1ðz1 � a2Þ þ
X
nb2

bnða2z1 þ z1ðz2 � a2ÞÞn
( )

ð4:2Þ

¼ �a2z1 þ r �z1ðz1 � a2Þ þ
X
nb2

bn
Xn
kb0

nCkða2z1Þn�kðz1ðz2 � a2ÞÞk
( )

¼ �a2z1 þ r �z1ðz1 � a2Þ þ
X
nb2

bn
Xn
kb0

nCka
n�k
2 zn1 ðz2 � a2Þk

( )

By changing coe‰cients of this power series,

ð4:2Þ ¼ �a2z1 þ r �z1ðz1 � a2Þ þ
X

nb2;nbkb0

bnkz
n
1 ðz2 � a2Þk

( )
:

Hence, the claim (3) holds. By similar calculation, we obtain the claim (4). We
remark that r ¼ 0 on C2nD2

j1
ð2rÞ and gj1 j2 are well-defined on C2. r

Let g be a positive constant satisfying 0 < g < 1 and C
pj1
g be the set of a

function f : C ! C which is Lipshitz continuous with Lipshitz constant LipðfÞa g
and fð0Þ ¼ aj1 ,

Cg :¼ Cp1
g UCp2

g ;

and define a function d : Cg � Cg ! R by

dðf;cÞ :¼
sup

z1 ACnf0g

jfðz1Þ � cðz1Þj
jz1j

if f;c A Cpk
g

3 if f A Cpk
g and c A Cpl

g ðk0 lÞ:

8><
>:

Lemma 4.2. Cg is a complete metric space with respect to the metric d.
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Proof. Here, we only prove that d satisfies the triangle inequality. If
f;c A Cp1

g and h A Cp2
g , then dðf; hÞ ¼ dðh;cÞ ¼ 3. On the other hand, dðf;cÞ

< 2. Indeed, it implies from the definition of Cg that jfðz1Þ � fð0Þj < gjz1j and
jcðz1Þ � cð0Þj < gjz1j and fð0Þ ¼ cð0Þ ¼ a1. Therefore,

dðf;cÞa sup
z1 ACnf0g

jfðz1Þ � a1j þ jcðz1Þ � a1j
jz1j

a 2g < 2:

Hence, dðf;cÞa dðf; hÞ þ dðh;cÞ holds. By similar arguments, the same in-
equality holds for the other cases. It is easy to check that Cg is a complete
metric space with this metric. r

Next, we define some graph transformation on Cg. In the following part,
we will go along the same line as in [7, Lemma 6.2.16].

Set

Aðz1; z2Þ :¼ rðz1; z2Þ
X
nb2

anz
n
1 ;

A1ðz1; z2Þ :¼ ReðAðz1; z2ÞÞ; A2ðz1; z2Þ :¼ ImðAðz1; z2ÞÞ;

Bðz1; z2Þ :¼ rðz1; z2Þ
X
nb1

bnðz1z2Þ and zl ¼ ul þ ivl ðl ¼ 1; 2Þ:

Then, we define a mapping

~AAk : R
4 ! R by ~AAkðu1; v1; u2; v2Þ :¼ Akðu1 þ iv1; u2 þ iv2Þ

and put ð ~AAkÞul :¼ q ~AAk=qul , ð ~AAkÞvl :¼ q ~AAk=qvl ðk; l ¼ 1; 2Þ.

Lemma 4.3. There exist positive constants r > 0 and d0 > 0 such that
(1) sup

ðz1; z2Þ AC2

jAðz1; z2Þj < d0 < 1,

(2) jAjC1
:¼ sup

ðul ; vlÞ AR2k; l¼1;2

fjð ~AAkÞul j; jð ~AAkÞvl jg < d0,

(3) For any f A Cg and z1; z
0
1 A C,

(i) jAðz1; fðz1ÞÞ � Aðz 01; fðz 01ÞÞja 8d0ð1þ gÞjz1 � z 01j and

(ii) jBðz1; fðz1ÞÞ � Bðz 01; fðz 01ÞÞja 8d0ð1þ gÞjz1 � z 01j,

(4) 0 < 8d0ð1þ gÞ < 1,
8d0ð1þ gÞ

1� 8d0ð1þ gÞ < 1.

Proof. Since Að0; 0Þ ¼ 0, for any d0 with 0 < d0 < 1 there exists r > 0 such
that

sup
ðz1; z2Þ AC2

jAðz1; z2Þj ¼ sup
ðz1; z2Þ AD2

j ð2rÞ
r
X
nb2

anz
n
1

�����
�����a sup

ðz1; z2Þ AD2
j ð2rÞ

X
jb2

ajz
j
1

�����
����� < d0:
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Then, (1) follows. Since
P

jb2 ajz
j
1 does not have linear terms and r is a C1-

function, similarly, one can prove (2). To prove (3), first we show that for any
ðz1; z2Þ; ðz 01; z 02Þ A C2

jAðz1; z2Þ � Aðz 01; z 02Þja 8jAjC1
jðz1 � z 01; z2 � z 02Þjð4:3Þ

Indeed, it follows from the triangle inequality that

jAðz1; z2Þ � Aðz 01; z 02Þja
X2
k¼1

jAkðz1; z2Þ � Akðz 01; z 02Þjð4:4Þ

Define a mapping ~llðtÞ : ½0; 1� ! R4 by

t 7! ðu 0
1 þ tðu1 � u 0

1Þ; v 01 þ tðv1 � v 01Þ; u 0
2 þ tðu2 � u 0

2Þ; v 02 þ tðv2 � v 02ÞÞ
and Ak ~llðtÞ :¼ ~AAkð~llðtÞÞ. Then, there exists t0 A ½0; 1� such that

jAkðz1; z2Þ � Akðz 01; z 02Þj ¼ jAk ~llð1Þ � Ak ~llð0Þj ¼ jðAk ~llÞ
0ðt0Þj

a
X2
l¼1

jð ~AAkÞul ð ~llðt0ÞÞj jul � u 0
l j þ jð ~AAkÞvl ð ~llðt0ÞÞj jvl � v 0l j

It follows from the inequalities for l ¼ 1; 2

jul � u 0
l j; jvl � v 0l ja jðz1 � z 01; z2 � z 02Þj

that

the right-hand side of ð4:4Þa 8jAjC1
jðz1 � z 01; z2 � z 02Þj;

and (4.3).
Put z2 ¼ fðz1Þ. Together with the fact f A Cg, we prove (i) with respect to

A. Similarly, we prove (ii) with respect to B.
From the proof of (1), by rechoosing r > 0, we assume that d0 satisfies (4).

r

For f A Cg, define the graphðfÞ :¼ fðz1; z2Þ A C2 j z2 ¼ fðz1Þg and the map
Kf : C ! C by

Kfðz1Þ :¼ z1 þ rðz1; fðz1ÞÞ
X
nb2

anz
n
1 :

Then, we have the following lemma.

Lemma 4.4. For any f A Cp1
g , there exists c A Cp1

g such that

g11ðgraphðfÞÞ ¼ graphðcÞ:

Proof. First, we will show that Kf is a bijection. To do this, for any fixed
Z1 A C, we need to find a unique z1 A C such that Z1 ¼ Kfðz1Þ, that is,

Z1 ¼ z1 þ rðz1; fðz1ÞÞ
X
nb2

anz
n
1 :ð4:5Þ
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Define the map ~KKf : C ! C by

~KKfðz1Þ :¼ Z1 � rðz1; fðz1ÞÞ
X
nb2

anz
n
1 :

Then, ~KKf is a contracting map. Indeed, it follows from (3) of Lemma 4.3 that
for any z1; z

0
1 A C,

j ~KKfðz1Þ � ~KKfðz 01Þja jAðz1; fðz1ÞÞ � Aðz 01; fðz 01ÞÞja 8d0ð1þ gÞjz1 � z 01j:

From (4) of Lemma 4.3, ~KKf is contracting. Thus, by the contraction mapping
principle, we see that equation ð4:5Þ has a unique solution and Kf is a bijection.
Moreover, there exists a unique function c on C such that

g11ðgraphðfÞÞ ¼ graphðcÞ:

Next, we show that c is Lipschitz continuous with Lipschitz constant
LipðcÞa g. To do this, for any ðz1; fðz1ÞÞ; ðz 01; fðz 01ÞÞ A graphðfÞ, set

ðZ1;Z2Þ :¼ g11ðz1; fðz1ÞÞ; ðZ 0
1;Z

0
2Þ :¼ g11ðz 01; fðz 01ÞÞ:

It follows from Lemma 4.3 that

ð4:6Þ
jZ 0

2 � Z2j ¼ jBðz 01; fðz 01ÞÞ � Bðz1; fðz1ÞÞja 8d0ð1þ gÞjz 01 � z1j;
jZ 0

1 � Z1jb jz 01 � z1j � jAðz 01; fðz 01ÞÞ � Aðz1; fðz1ÞÞj
¼ jz 01 � z1j � 8d0ð1þ gÞjz 01 � z1j ¼ ð1� 8d0ð1þ gÞÞjz 01 � z1j:

8<
:

Along with (4.6), we have

jZ 0
2 � Z2ja

8d0ð1þ gÞ
1� 8d0ð1þ gÞ jZ

0
1 � Z1j:

It follows from (4) of Lemma 4.3 that one can obtain 8d0ð1þ gÞ=f1� 8d0ð1þ gÞg
< g. r

From an argument similar to the discussion of Lemma 4.3 and 4.4, we show
the same claim for all gj1 j2 ð j1; j2 ¼ 1; 2Þ and define the graph transformation

Gj2 : Cg ! C
pj2
g by f 7! c ¼ Gj2ðfÞ with gj1 j2ðgraphðfÞÞ ¼ graphðcÞ; if f A C

pj1
g :

Lemma 4.5. Gj2 is a contraction. Here, to say Gj2 is a contraction means
that there is some constant 0 < l < 1 such that for any f1; f2 A Cg

dðGj2ðf1Þ;Gj2ðf2ÞÞa ldðf1; f2Þ:

Proof. Here, only consider the case of G1 and fi A Cp1
g . For any fi A Cp1

g ,
set ci :¼ G1ðfiÞ A Cp1

g ði ¼ 1; 2Þ. By using the previous estimates in the proof of
(3) of Lemma 4.3, we have the following:
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jc1ðKf1ðz1ÞÞ � c2ðKf1ðz1ÞÞjð4:7Þ
a jc1ðKf1ðz1ÞÞ � c2ðKf2ðz1ÞÞj þ jc2ðKf2ðz1ÞÞ � c2ðKf1ðz1ÞÞj
a jBðz1; f1ðz1ÞÞ � Bðz1; f2ðz1ÞÞj þ gjKf2ðz1Þ � Kf1ðz1Þj
a 8d0jf1ðz1Þ � f2ðz1Þj þ gjAðz1; f2ðz1ÞÞ � Aðz1; f1ðz1ÞÞj
a 8d0jf1ðz1Þ � f2ðz1Þj þ 8gd0jf2ðz1Þ � f1ðz1Þj
¼ 8d0ð1þ gÞjf1ðz1Þ � f2ðz1Þj:

Similarly, it follows from the fact Að0; fð0ÞÞ ¼ 0 that

jKf1ðz1Þj ¼ jz1 þ Aðz1; f1ðz1ÞÞjb jz1j � jAðz1; f1ðz1ÞÞ � Að0; f1ð0ÞÞj
b jz1j � 8d0ð1þ gÞjz1j ¼ ð1� 8d0ð1þ gÞÞjz1j:

From this together with ð4:7Þ, we show the following:

dðc1;c2Þ ¼ sup
z ACnf0g

jc1ðKf1ðz1ÞÞ � c2ðKf1ðz1ÞÞj
jKf1ðz1Þj

a
8d0ð1þ gÞ

1� 8d0ð1þ gÞ sup
z ACnf0g

jf1ðz1Þ � f2ðz1Þj
jz1j

a ldðf1; f2Þ;

where l :¼ 8d0ð1þ gÞ=f1� 8d0ð1þ gÞg: It follows from (4) of Lemma 4.3 that
0 < l < 1. r

Let S be the space of non-empty compact subsets of Cg. Then, S is a
complete metric space with respect to the Hausdor¤ metric. Defining a mapping

H : S ! S; by ~SS 7! Hð ~SSÞ :¼ G1ð ~SSÞUG2ð ~SSÞ;
we see that H is a contraction on S, since Gj is a contraction mapping.

Thus, it follows from the contraction mapping principle that H has the
unique fixed element ~ss A S, and Hnð ~SSÞ converges to ~ss for any ~SS A S. Here, we
choose a subset ~SS of S satisfying Gj2ð ~SSÞH ~SS for j2 ¼ 1; 2. Then

7
y

n¼0

Hnð ~SSÞ ¼ ~ss:

Since G1ð ~SSÞVG2ð ~SSÞ ¼ j, for every symbol sequence j A f1; 2gN, there exists a

unique function ~ccj A Cg such that ~ccj ¼ 7y
n¼1

Gj1 � � � � � Gjnð ~SSÞ. By using ~ccj, let
us set

~WWj :¼ fðz1; z2Þ A C2 j z2 ¼ ~ccjðz1Þg:
Then, it follows that Gj1ð ~ccsðjÞÞ ¼ ~ccj. Indeed,

7
y

n¼2

Gj2 � � � � � Gjnð ~SSÞ ¼ ~ccsðjÞ and Gj1ð ~ccsðjÞÞ A Gj1 � � � � � Gjnð ~SSÞ
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for every n A N. Hence, Gj1ð ~ccsðjÞÞ A 7y
n¼1

Gj1 � � � � � Gjnð ~SSÞ. By the uniqueness

of ~ss, Gj1ð ~ccsðjÞÞ ¼ ~ccj. Take a small positive constant d with 0 < d < r, and put

~WW d
j :¼ ~WWj V ðDðdÞ � CÞ and Wj :¼ pð ~WW d

j Þ:
By (1) of Proposition 2.1, one can obtain that

Wj ¼ fðx1; x2Þ A DðdÞ � C j x2 ¼ x1 ~ccjðx1Þ; x1 A DðdÞg:
Put cj :¼ x1 ~cjcj. This is our required in Theorem 2.3. It is clear from

Gj1ð ~ccsðjÞÞ ¼ ~ccj that fWjgj A f1;2gN is invariant. Thus, the proof of Theorem 2.3 is
complete.

To prove Theorem 2.4, for any j A f1; 2gN, put

W 1
j :¼ p�1ðWjnfpgÞ:

It is clear that W 1
j H ~WjWj. From the facts Gj1ð ~ccsðjÞÞ ¼ ~ccj we have pj1 A W 1

j . Put

W 2
j :¼ p�1

j1
ðW 1

j nfpj1gÞ:
Then, we have the following lemma (see Figure 5).

Lemma 4.6. pj1 j2 A Ej1 VW 2
j .

Proof. First, we remark that pj2 A W 1
sðjÞ such that Gj1ðWsðjÞÞ ¼ W 1

j . It is
clear from (1) of Proposition 2.1 that

W 1
j ¼ fðz1; z2Þ A U 1 j z2 ¼ ~ccjðz1Þ; z1 A DðdÞg and

p�1
j1
ðW 1

j nfpj1gÞ ¼ fðw1;w2Þ A U 1
j1
jw1w2 ¼ ~ccjðw1Þ;w1 A DðdÞ�g;

Figure 5
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where DðdÞ� :¼ DðdÞnf0g. Define c2
j ðw1Þ :¼ ~ccjðw1Þ=w1. Then, c2

j is continuous

for w1 A DðdÞ�. Put Cðw1Þ :¼ ðw1;c
2
j ðw1ÞÞ. It follows that for w1 A DðdÞ�,

~FFj1ðCðw1ÞÞ ¼ p�1 � ~FF � pj1ðCðw1ÞÞ is biholomorphic;

~FFj1ðCðw1ÞÞ A W 1
sðjÞ and lim

w1!0

~FFj1ðCðw1ÞÞ ¼ pj2 :

By Theorem 2.1, there exists a point pj1 j2 ¼ ð0; aj1 j2Þ A Ej1 VU 1
j1
such that pj1 j2 ¼

~FF �1
j1

ðpj2Þ and ~FFj1 is biholomorphic at pj1 j2 , we know that limw1!0 Cðw1Þ ¼ pj1 j2 .

By defining c2
j ð0Þ :¼ aj1 j2 , we see that c2

j is continuous at w1 ¼ 0. Hence,
pj1 j2 A W 2

j . r

Moreover, by setting

W 2
j :¼ fðw1;w2Þ A U 1

j1
jw2 ¼ c2

j ðw1Þ;w1 A DðdÞg
and repeating this process inductively, the sequence of points pj1��� jn in Theorem
2.1 satisfies pj1��� jn A Wn

j for any nb 1. Take a positive constant dn with dn >

d > 0 and D2
j1��� jnðdnÞIWn

j . Then,

Wj H p � pj1 � � � � � pj1��� jn�1
ðD2

j1��� jnðdnÞÞ:
From ð�1Þ, we have

Wj H fðx1; x2Þ A C2 j jx1j < dn; jx2 � jj1��� jn�1
ðx1Þj < dnjx1jng

and we have proved Theorem 2.4.

Remark 4.1. Generally, ~ccj depends on the construction of an extension
mapping gj1 j2 and is not always unique (see [7]). Put

qðx1Þ :¼ x1 þ ax2
1 and P :¼ fx1 A C j qnðx1Þ ! 0g:

It is known that P is non empty open set and 0 A qP (see [8]). Then,

F nðx1; x2Þ ! p as n ! y for any ðx1; x2Þ A Wj V fP� Cg with x1 0 0

and cjðx1Þ is determined uniquely for any x1 A P. By Theorem 2.2, it implies
that for any fixed n A N and any su‰ciently small open neighborhood Np of p
there exists a constant e > 0 such that

6
j A f1;2gN

Wj V fP� CgVNp HLH 6
j1��� jnþ1¼1;2

Lj1��� jnþ1
ðeÞ:
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