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ALMOST COMPLETE INTERSECTIONS

AND STANLEY’S CONJECTURE
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Abstract

Let K be a field and I a monomial ideal of the polynomial ring S ¼ K½x1; . . . ; xn�.
We show that if either: 1) I is almost complete intersection, 2) I can be generated by

less than four monomials; or 3) I is the Stanley-Reisner ideal of a locally complete

intersection simplicial complex on ½n�, then Stanley’s conjecture holds for S=I .

1. Introduction

Throughout this paper, let K be a field and I a monomial ideal of the
polynomial ring S ¼ K ½x1; . . . ; xn�.

A decomposition of S=I as direct sum of K-vector spaces of the form
D : S=I ¼ 0r

i¼1
uiK ½Zi�, where ui is a monomial in S and Zi J fx1; . . . ; xng,

is called a Stanley decomposition of S=I . The number sdepth D :¼ minfjZij :
i ¼ 1; . . . ; rg is called Stanley depth of D. The Stanley depth of S=I is defined
to be

sdepth S=I :¼ maxfsdepth D : D is a Stanley decomposition of S=Ig:

Stanley conjectured [St] that depth S=I a sdepth S=I . This conjecture is known
as Stanley’s conjecture. Recently, this conjecture was extensively examined by
several authors; see e.g. [A1], [A2], [HP], [HSY], [P], [R], [S2] and [S3]. On the
other hand, the present third author [S2] conjectured that there always exists a
Stanley decomposition D of S=I such that the degree of each ui is at most
reg S=I . We refer to this conjecture as h-regularity conjecture. It is known that
for square-free monomial ideals, these two conjectures are equivalent. Our main
aim in this paper is to determine some classes of monomial ideals such that these
conjectures are true for them.
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A basic fact in commutative algebra says that there exists a finite chain

F : I ¼ I0 H I1 H � � �H Ir ¼ S

of monomial ideals such that Ii=Ii�1 GS=pi for monomial prime ideals pi of
S. Dress [D] called the ring S=I clean if there exists a chain F such that all the
pi are minimal prime ideals of I . By [HSY, Proposition 2.2] if I is complete
intersection, then the ring S=I is clean. Lemmas 2.4 and 2.8 provide two other
classes of clean rings.

Herzog and Popescu [HP] called the ring S=I pretty clean if there exists a
chain F such that for all i < j for which pi J pj, it follows that pi ¼ pj. Obvi-
ously, cleanness implies pretty cleanness and when I is square-free, it is known
that these two concepts coincide; see [HP, Corollary 3.5].

If S=I is pretty clean, then S=I is sequentially Cohen-Macaulay and depth of
S=I is equal to the minimum of the dimension of S=p, where p A AssS S=I ; see
[S1] for an easy proof. If S=I is pretty clean, then [HP, Theorem 6.5] asserts
that Stanley’s conjecture holds for S=I . In fact, if S=I is pretty clean, then
[HVZ, Proposition 1.3] yields that depth S=I ¼ sdepth S=I . Also if S=I is pretty
clean, then by [S2, Theorem 4.7] h-regularity conjecture holds for S=I .

We prove that if the monomial ideal I is either almost complete intersection
or it can be generated by less than four monomials, then S=I is pretty clean.
Thus, for such monomial ideals both Stanley’s and h-regularity conjectures hold.
Also, we show that if I is the Stanley-Reisner ideal of a locally complete inter-
section simplicial complex on ½n�, then S=I satisfies Stanley’s conjecture.

2. Main results

A simplicial complex D on ½n� :¼ f1; . . . ; ng is a collection of subsets of ½n�
with the property that if F A D, then all subsets of F are also in D. Any
singleton element of D is called a vertex. An element of D is called a face of D
and the maximal faces of D, under inclusion, are called facets. We denote by
FðDÞ the set of all facets of D. The dimension of a face F is defined as
dim F ¼ jF j � 1, where jF j is the number of elements of F . The dimension of
the simplicial complex D is the maximal dimension of its facets. A simplicial
complex D is called pure if all facets of D have the same dimension. We denote
the simplicial complex D with facets F1; . . . ;Ft by D ¼ hF1; . . . ;Fti. According
to Björner and Wachs [BW], a simplicial complex D is said to be (non-pure)
shellable if there exists an order F1; . . . ;Ft of the facets of D such that for
each 2a ia t, hF1; . . . ;Fi�1iVhFii is a pure ðdim Fi � 1Þ-dimensional simplicial
complex. If D is a simplicial complex on ½n�, then the Stanley-Reisner ideal of
D, ID, is the square-free monomial ideal generated by all monomials xi1xi2 � � � xit
such that fi1; i2; . . . ; itg B D. The Stanley-Reisner ring of D over the field K is
the K-algebra K ½D� :¼ S=ID. Any square-free monomial ideal I is the Stanley-
Reisner ideal of some simplicial complex D on ½n�. If FðDÞ ¼ fF1; . . . ;Ftg, then
ID ¼ 7 t

i¼1
pFi

, where pFi
:¼ ðxj : j B FiÞ; see [BH, Theorem 5.1.4].
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Recall that the Alexander dual D4 of a simplicial complex D is the simplicial
complex whose faces are f½n�nF jF B Dg. Let I be a square-free monomial ideal
of S. We denote by I4; the square-free monomial ideal which is generated by all
monomials xi1 � � � xik , where ðxi1 ; . . . ; xik Þ is a minimal prime ideal of I . It is easy
to see that for any simplicial complex D, one has ID4 ¼ ðIDÞ4. A monomial ideal
I of S is said to have linear quotients if there exists an order u1; . . . ; um of GðIÞ
such that for any 2a iam, the ideal ðu1; . . . ; ui�1Þ :S ui is generated by a subset
of the variables.

Lemma 2.1. Let I be a square-free monomial ideal of S. Then S=I is clean
if and only if I4 has linear quotients.

Proof. Dress [D, Theorem on page 53] proved that a simplicial complex D
is (non-pure) shellable if and only if K ½D� is a clean ring. On the other hand, by
[HHZ, Theorem 1.4], a simplicial complex D is (non-pure) shellable if and only if
ID4 has linear quotients. Combining these facts, yields our claim. r

Lemma 2.2. Let I and J be two monomial ideals of S. Assume that I ¼ uJ
for some monomial u in S and ht Jb 2. If S=J is pretty clean, then S=I is pretty
clean too.

Proof. With the proof of [S3, Lemma 1.9], the claim is immediate. r

In what follows for a monomial ideal I of S, we denote the number of
elements of GðIÞ by mðIÞ.

Definition 2.3. A monomial ideal I of S is said to be almost complete
intersection if mðIÞ ¼ ht I þ 1.

Lemma 2.4. Let I be an almost complete intersection square-free monomial
ideal of S. Then S=I is clean.

Proof. The claim is obvious when ht I ¼ 0. Let ht I ¼ 1. Then I ¼
ðu1; u2Þ for some monomials u1 and u2. We can write I as I ¼ uðu 0

1; u
0
2Þ, where

u ¼ gcdðu1; u2Þ and u 0
1, u

0
2 are monomials forming a regular sequence on S. So

in this case, the claim is immediate by Lemma 2.2 and [HSY, Proposition 2.2].
Now, assume that h :¼ ht I b 2. By [KTY, Theorem 4.4] I can be written in
one of the following forms, where A1;A2; . . . ;B1;B2; . . . are non-trivial square-free
monomials which are pairwise relatively prime, and p, p 0 are integers with
2a pa h and 1a p 0 a h.

1) I1 ¼ ðA1B1;A2B2; . . . ;ApBp;Apþ1; . . . ;Ah;B1B2 � � �BpÞ:
2) I2 ¼ ðA1B1;A2B2; . . . ;Ap 0Bp 0 ;Ap 0þ1; . . . ;Ah;Ahþ1B1B2 � � �Bp 0 Þ.
3) I3 ¼ ðB1B2;B1B3;B2B3;A4; . . . ;Ahþ1Þ.
4) I4 ¼ ðA1B1B2;B1B3;B2B3;A4; . . . ;Ahþ1Þ.
5) I5 ¼ ðA1B1B2;A2B1B3;B2B3;A4; . . . ;Ahþ1Þ.
6) I6 ¼ ðA1B1B2;A2B1B3;A3B2B3;A4; . . . ;Ahþ1Þ.
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Let I ¼ I1. Since A1;A2; . . . ;Ap;Apþ1; . . . ;Ah;B1;B2; . . . ;Bp are pairwise rela-
tively prime, it turns out that Apþ1; . . . ;Ah is a regular sequence on S=ðA1B1;
A2B2; . . . ;ApBp;B1B2 � � �BpÞ. So, in view of [R, Theorem 2.1], we may and do
assume that I ¼ ðA1B1;A2B2; . . . ;ApBp;B1B2 � � �BpÞ. Next, we are going to show
that I is of forest type. Let G be a subset of fA1B1;A2B2; . . . ;ApBp;B1B2 � � �Bpg
with at least two elements. If B1B2 � � �Bp B G, then any a A G can be taken as a
leaf and any b A G di¤erent from a can be taken as a branch for this leaf. If
B1B2 � � �Bp A G, then any a A G di¤erent from B1B2 � � �Bp can be taken as a leaf
and then B1B2 � � �Bp is a branch for this leaf. So, I is of forest type. Thus,
since I is square-free, by [SZ, Theorem 1.5], we obtain that S=I is clean. By the
similar argument, one can see that if I ¼ I2, then S=I is clean. Set

J :¼ ðC1B1B2;C2B1B3;C3B2B3;A4; . . . ;Ahþ1Þ;
where Ci is either Ai or 1 for each i ¼ 1; 2; 3. Since each of I3, I4, I5 and I6
are the particular cases of the ideal J, we can finish the proof by showing that
S=J is clean. Since, by the assumption A4; . . . ;Ahþ1, B1, B2, B3, C1, C2, C3 are
pairwise relatively prime, it follows that A4; . . . ;Ahþ1 is a regular sequence on
S=ðC1B1B2;C2B1B3;C3B2B3Þ. So by [R, Theorem 2.1], we can assume that J ¼
ðC1B1B2;C2B1B3;C3B2B3Þ. Set T :¼ k½u; v;w; x; y; z� and L :¼ ðuxy; vxz;wyzÞ.
Since B1, B2, B3, C1, C2, C3 is a regular sequence on S, by [HSY, Proposition
3.3], the cleanness of T=L implies the cleanness of S=J. So, by Lemma 2.1, it
is enough to prove that L4 has linear quotients. As

L ¼ ðx; yÞV ðx; zÞV ðx;wÞV ðy; zÞV ðy; vÞV ðz; uÞV ðu; v;wÞ;
one has L4 ¼ ðxy; xz; xw; yz; yv; zu; uvwÞ; which clearly has linear quotients by
the given order. r

Let u ¼
Qn

i¼1 x
ai
i be a monomial in S ¼ K ½x1; . . . ; xn�. Then

up :¼
Yn
i¼1

Yai
j¼1

xi; j A K ½x1;1; . . . ; x1;a1 ; . . . ; xn;1; . . . ; xn;an �

is called the polarization of u. Let I be a monomial ideal of S with GðIÞ ¼
fu1; . . . ; umg. Then the ideal I p :¼ ðup

1 ; . . . ; u
p
mÞ of T :¼ K ½xi; j : i ¼ 1; . . . ; n; j ¼

1; . . . ; ai� is called the polarization of I . [S3, Theorem 3.10] implies that S=I is
pretty clean if and only if T=I p is clean.

Recently, Cimpoeaş [C1] proved that if I is an almost complete intersection
monomial ideal of S, then Stanley’s conjecture holds for S=I . The next result
shows that in this case S=I is even pretty clean.

Theorem 2.5. Let I be an almost complete intersection monomial ideal of S.
Then S=I is pretty clean.

Proof. From [F, Proposition 2.3], one has ht I ¼ ht I p. On the other hand
mðIÞ ¼ mðI pÞ, and so I p is an almost complete intersection square-free monomial
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ideal of T . Hence, by Lemma 2.4, the ring T=I p is clean. Now, [S3, Theorem
3.10] implies that S=I is pretty clean, as desired. r

In the situation of Theorem 2.5, there is no need that S=I is clean. For
instance, although ðx2; xyÞ is an almost complete intersection monomial ideal, the
ring k½x; y�=ðx2; xyÞ is not clean.

In [C2, Theorem 2.3], it is shown that if I is a monomial ideal of S with
mðIÞa 3, then Stanley’s conjecture holds for S=I . The next result extends this
fact.

Corollary 2.6. Let I be a monomial ideal of S. If mðIÞa 3, then S=I is
pretty clean.

Proof. Clearly, we may assume that I is non zero. Assume that mðIÞ ¼ 3
and ht I ¼ 1. Then I ¼ uJ, where u is a monomial in S and J is a monomial
ideal of S with mðJÞ ¼ 3 and ht Jb 2. By Lemma 2.2, it is enough to prove
that S=J is pretty clean. If ht J ¼ 2, then mðJÞ ¼ ht J þ 1, and so by Theorem
2.5, S=J is pretty clean. If ht J ¼ 3, then J is complete intersection, and hence
by [HSY, Proposition 2.2], S=J is pretty clean.

Since 0 < ht I a mðIÞ, in all other cases, it follows that I is either complete
intersection or almost complete intersection. Thus, the proof is completed by
[HSY, Proposition 2.2] and Theorem 2.5. r

Definition 2.7 ([TY, Definition 1.1 and Lemma 1.2]). A simplicial complex
D on ½n� is said to be locally complete intersection if ff1g; f2g; . . . ; fnggJD and
ðIDÞp is a complete intersection ideal of Sp for all p A Proj S=I .

A simplicial complex D is said to be connected if for any two facets F and G
of D, there exists a sequence of facets F ¼ F0;F1; . . . ;Fq�1;Fq ¼ G such that
Fi VFiþ1 0j for all 0a i < q. Also, a simplicial complex D on ½n� is said to be
n-pointed path (resp. n-gon) if nb 2 (resp. nb 3) and, after a suitable change of
variables,

FðDÞ ¼ ffi; i þ 1g j 1a i < ng
(resp.

FðDÞ ¼ ffi; i þ 1g j 1a i < ngU ffn; 1ggÞ:
Clearly, any n-pointed path (resp. n-gon) is one-dimensional and pure.

Let D be a connected simplicial complex on ½n� which is locally complete
intersection. Then, it is known that D is shellable; see e.g. [TY, Proposition 1.11
and Theorem 1.5]. Hence, by [D, Theorem on page 53] it turns out that S=ID is
clean. So, we record the following:

Lemma 2.8. Let D be a connected simplicial complex on ½n� which is locally
complete intersection. Then S=ID is clean.
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Let D be as in Lemma 2.8. Then S=ID is clean, and so [HP, Theorem 6.5]
implies that S=ID satisfies Stanley’s conjecture. In Theorem 2.11, we prove that
the later assertion holds without assuming that D is connected.

Proposition 2.9. Let I HS1 ¼ K ½x1; . . . ; xm�, JHS2 ¼ K ½xmþ1; . . . ; xn�
be two monomial ideals and S ¼ K ½x1; . . . ; xm; xmþ1; . . . ; xn�. Assume that
depth S1=I > 0 and depth S2=J > 0. Then Stanley’s conjecture holds for
S=ðI ; J; fxixjg1aiam;mþ1a janÞ.

Proof. For convenience, we set Q1 :¼ ðx1; . . . ; xmÞ, Q2 :¼ ðxmþ1; . . . ; xnÞ
and Q :¼ ðxixjÞ1aiam;mþ1a jan. So, Q ¼ Q1 VQ2. Since I JQ1 and JJQ2,
it follows that

ðI ; J;QÞ ¼ ðI ; J;Q1ÞV ðI ; J;Q2Þ ¼ ðJ;Q1ÞV ðI ;Q2Þ:

By the assumption, we have Q1 B AssS1
S1=I and Q2 B AssS2

S2=J. Hence

ðx1; . . . ; xm; xmþ1; . . . ; xnÞ B AssS S=ðI ;Q2Þ
and

ðx1; . . . ; xm; xmþ1; . . . ; xnÞ B AssS S=ðJ;Q1Þ;
and so

depth
S

ðJ;Q1Þ
l

S

ðI ;Q2Þ

� �
> 0 ¼ depth

S

Q1 þQ2

� �
:

Now, in view of the exact sequence

0 ! S

ðJ;Q1ÞV ðI ;Q2Þ
! S

ðJ;Q1Þ
l

S

ðI ;Q2Þ
! S

Q1 þQ2
! 0;

[V, Lemma 1.3.9] implies that

depth
S

ðI ; J;QÞ

� �
¼ depth

S

ðJ;Q1ÞV ðI ;Q2Þ

� �
¼ 1:

Now the proof is complete, because [C2, Theorem 2.1] yields that for any
monomial ideals L of S if depth S=La 1, then Stanley’s conjecture holds for
S=L. r

Corollary 2.10. Let D1 and D2 be two non-empty disjoint simplicial
complexes and D :¼ D1 UD2. Then Stanley’s conjecture holds for S=ID.

Proof. For two natural integers m < n, we may assume that D1 and D2

are simplicial complexes on ½m� and fmþ 1; . . . ; ng, respectively. Then K ½D1� ¼
K½x1; . . . ; xm�=ID1

and K ½D2� ¼ K ½xmþ1; . . . ; xn�=ID2
, and so

K ½D� ¼ K ½x1; . . . ; xm; xmþ1; . . . ; xn�=ðID1
; ID2

; fxixjg1aiam;mþ1a janÞ:

401almost complete intersections and stanley’s conjecture



We claim that depthðK ½x1; . . . ; xm�=ID1
Þ > 0 and depthðK ½xmþ1; . . . ; xn�=ID2

Þ > 0.
Because if for example depthðK ½x1; . . . ; xm�=ID1

Þ ¼ 0, then ID1
¼ ðx1; . . . ; xmÞ.

But, this implies that D1 ¼ j which contradicts our assumption on D1. Now, the
claim is immediate by Proposition 2.9. r

Theorem 2.11. Let D be a locally complete intersection simplicial complex
on ½n�. Then Stanley’s conjecture holds for S=ID.

Proof. If D is connected, then Lemma 2.8 yields the claim. Otherwise, by
[TY, Theorem 1.15], D is the disjoint union of finitely many non-empty simplicial
complexes. So, in this case the assertion follows by Corollary 2.10. r

In [HP, Corollary 4.3] it is shown that if S=I is pretty clean, then it is
sequentially Cohen-Macaulay. In [S1] this fact is reproved by a di¤erent argu-
ment and, in addition, it is shown that depth of S=I is equal to the minimum of
the dimension of S=p, where p A AssS S=I . Also if S=I is pretty clean, then by
[S2, Theorem 4.7] h-regularity conjecture holds for S=I . This implies part a) of
the following remark.

Remark 2.12. Let I be a monomial ideal of S.
a) Assume that either:

i) I is almost complete intersection,
ii) mðIÞa 3; or
iii) I is the Stanley-Reisner ideal of a connected simplicial complex on ½n�
which is locally complete intersection.
Then both Stanley’s and h-regularity conjectures hold for S=I . Also, in
each of these cases S=I is sequentially Cohen-Macaulay and depth S=I ¼
minfdim S=p j p A AssS S=Ig.

b) We know that if S=I is pretty clean, then Stanley’s conjecture holds
for S=I . By using Corollary 2.10, we can provide an example of a
monomial ideal I of S such that Stanley’s conjecture holds for S=I ,
while it is not pretty clean. To this end, let D1, D2 and D be as in
Corollary 2.10 and dim Di > 0, i ¼ 1; 2. Evidently, D is not shellable,
and so [D, Theorem on page 53] implies that S=ID is not pretty
clean. On the other hand, Stanley’s conjecture holds for S=ID by
Corollary 2.10.
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