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A NOTE ON THE GEOMETRICITY OF OPEN HOMOMORPHISMS

BETWEEN THE ABSOLUTE GALOIS GROUPS OF p-ADIC LOCAL

FIELDS

Yuichiro Hoshi

Abstract

In the present paper, we prove that an open continuous homomorphism between

the absolute Galois groups of p-adic local fields is geometric [i.e., roughly speaking,

arises from an embedding of fields] if and only if the homomorphism is HT-preserving

[i.e., roughly speaking, satisfies the condition that the pull-back by the homomorphism

of every Hodge-Tate representation is Hodge-Tate].

Introduction

Let p be a prime number. Write Qp for the p-adic completion of the field
of rational numbers Q. For b A f�; �g, let kb be a p-adic local field [i.e.,

a finite extension of Qp] and kb an algebraic closure of kb. Write Gkb ¼
def

Galðkb=kbÞ. Let

a : Gk� ! Gk�

be an open continuous homomorphism. In [1], [2], S. Mochizuki discussed
the geometricity [cf. [2], Definition 3.1, (iv)] of such an a. In particular,
Mochizuki proved that the following conditions are equivalent [cf. [2], Theorem
3.5, (i)]:

(i) a is geometric, i.e., arises from an isomorphism of fields k� !@ k� that
determines an embedding k� ,! k�.

(ii) a is of CHT-type [cf. [2], Definition 3.1, (iv)], i.e., a is compatible with
the respective p-adic cyclotomic characters of Gk� , Gk� , and, moreover,
there exists an isomorphism of topological modules [but not necessarily
the topological fields] k5� !

@
k5�—where, for b A f�; �g, we write k5b

for the p-adic completion of kb—that is compatible with the respective
natural actions of Gk� , Gk� on k5� , k5� [relative to a].
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(iii) a is of 01-qLT-type [cf. [2], Definition 3.1, (iv)], i.e., for every pair of
open subgroups H�JGk� , H�JGk� of Gk� , Gk� such that aðH�ÞJH�,
and every character f : H� ! E� of qLT-type [cf. [2], Definition 3.1,
(iii)]—where E is a p-adic local field all of whose Qp-conjugates are

contained in the fixed fields kH�
� , kH�

� —the composite H� �!
ajH�

H� �!
f

E�

is Hodge-Tate, and the set of Hodge-Tate weights of this composite is
contained in f0; 1g.

We shall say that a is HT-preserving [cf. Definition 1.3, (i)] if a preserves
the Hodge-Tate-ness of p-adic representations, i.e., for every finite dimensional
continuous representation f : Gk� ! GLnðQpÞ of Gk� , if f is Hodge-Tate, then the

composite Gk� !
a
Gk� !

f
GLnðQpÞ is Hodge-Tate. Then it is immediate that

if a is of CHT-type, then a is HT-preserving.

Moreover, since a character of qLT-type is Hodge-Tate, and its set of Hodge-Tate
weights is contained in f0; 1g, one verifies easily that

if a is not only HT-preserving but also preserves the sets of Hodge-Tate
weights of Hodge-Tate representations, then a is of 01-qLT-type.

On the other hand, it does not seem to be clear that the following assertion
holds:

If a is HT-preserving, then a is either of CHT-type or of 01-qLT-type.

In particular, the following question may be regarded as a natural question con-
cerning the geometricity of open continuous homomorphisms between the abso-
lute Galois groups of p-adic local fields:

Is every HT-preserving open continuous homomorphism between the
absolute Galois groups of p-adic local fields geometric?

In the present paper, we answer this question in the a‰rmative by refining the
argument of Mochizuki applied in [1], [2]. The main consequence of the present
paper is as follows [cf. Corollaries 3.4; 3.5].

Theorem. Let p be a prime number. For b A f�; �g, let kb be a p-adic

local field and kb an algebraic closure of kb. Write Gkb ¼
def

Galðkb=kbÞ. Let

a : Gk� ! Gk�

be an open continuous homomorphism. Then a is geometric [cf. [2], Definition 3.1,
(iv)] if and only if a is HT-preserving [cf. Definition 1.3, (i)]. In particular, if we
write

Embðk�=k�; k�=k�Þ

for the set of isomorphisms of fields k� !@ k� that determine embeddings k� ,! k�;

Embðk�; k�Þ
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for the set of embeddings of fields k� ,! k�;

Homopen
HT ðGk� ;Gk� Þ

for the set of HT-preserving open continuous homomorphisms Gk� ! Gk� , then we
have a commutative diagram of natural maps

Embðk�=k�; k�=k�Þ Hom
open
HT ðGk� ;Gk� Þ???y

???y
Embðk�; k�Þ Homopen

HT ðGk� ;Gk� Þ=InnðGk� Þ

�������!@

������!@

—where the vertical arrows are surjective, and the horizontal arrows are bijective.

Remark. The various discussions given in the present paper may be
regarded as just slight modifications or improvements of the discussions of
[1], [2]. From this point of view, one may consider that some arguments in §2
and the observation that a similar technique of [1], §4, can be available in the
situation of the proof of Theorem 3.3 are essentially the only new contributions
of the present paper.

1. HT-preserving homomorphisms

In the present §1, we define the notion of an HT-preserving [i.e., ‘‘Hodge-
Tate-preserving’’] homomorphism [cf. Definition 1.3, (i), below]. Let p be a
prime number. Write Qp for the p-adic completion of the field of rational
numbers Q. For b A f�; �; jg, let kb be a p-adic local field [i.e., a finite
extension of Qp] and kb an algebraic closure of kb. Write okb for the ring of
integers of kb, Gkb ¼

def
Galðkb=kbÞ, Ikb JGkb for the inertia subgroup of Gkb,

and Pkb J Ikb for the wild inertia subgroup of Gkb. Now let us recall from local
class field theory that we have a natural isomorphism

G ab
k !

@ ðk�Þ5

—where we write ðk�Þ5 for the profinite completion of the topological group
k�—that determines an isomorphism

ðG ab
k KÞ ImðIk ,! Gk !! G ab

k Þ !
@

o�k ðJ ðk�Þ5Þ:
In the following, let us regard o�k as a closed subgroup of G ab

k by means of this
isomorphism, i.e., o�k JG ab

k .

Proposition 1.1. Let a : Gk� ! Gk� be an open continuous homomorphism.
Then aðIk� Þ, aðPk� ÞJGk� are open subgroups of Ik� , Pk� , respectively. Moreover,
it holds that KerðaÞJPk� .

Proof. This follows immediately from [2], Proposition 3.4 [cf. also the proof
of [2], Proposition 3.4]. r
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Definition 1.2.
(i) Let A be a topological group; f1; f2 : Gk ! A continuous homomor-

phisms. Then we shall say that f1 is inertially equivalent to f2 if f1 and
f2 coincide on an open subgroup of Ik JGk [cf. the discussion preceding
[4], Chapter III, §A.5, Theorem 2].

(ii) Let E be a finite Galois extension of Qp that admits an embedding
s : E ,! k. Let p A ok be a uniformizer of ok. Then we shall write

wLT
s;p : Gk ! E�

for the continuous character obtained by forming the composite

Gk !! G ab
k !

@ ðk�Þ5!@ o�k � ẐZ!! o�k ! o�E !
@

o�E ,! E�

—where the first arrow is the natural surjection, the second arrow is
the natural isomorphism arising from local class field theory, the third
arrow is the isomorphism determined by the uniformizer p A ok, the
fourth arrow is the first projection, the fifth arrow is the homomorphism
induced by the norm map k� ! E� [with respect to the embedding s],
the sixth arrow is the isomorphism given by mapping a to a�1, and
the seventh arrow is the natural inclusion [cf. [4], Chapter III, §A.4].
Since Ik JGk surjects onto ok � f1gJ ok � ẐZ [cf. the discussion at the
beginning of §1], one verifies easily that the inertial equivalence class
[cf. (i)] of wLT

s;p does not depend on the choice of p A ok. Thus, we shall

often write wLT
s to denote wLT

s;p for some unspecified choice of p A ok.

Definition 1.3. Let a : Gk� ! Gk� be an open continuous homomorphism.
(i) We shall say that a is HT-preserving [i.e., ‘‘Hodge-Tate-preserving’’] if,

for every finite dimensional continuous representation f : Gk� ! GLnðQpÞ
of Gk� that is Hodge-Tate, the composite Gk� !

a
Gk� !

f
GLnðQpÞ is

Hodge-Tate.
(ii) We shall say that a is of HT-qLT-type [i.e., ‘‘Hodge-Tate-quasi-Lubin-

Tate’’ type] (respectively, of weakly HT-qLT-type [i.e., ‘‘weakly Hodge-
Tate-quasi-Lubin-Tate’’ type]) if, for
� every pair of respective finite extensions k 0� ðJ k�Þ, k 0� ðJ k�Þ of k�, k�
such that aðGk 0� ÞJGk 0� ,

� every finite Galois extension E of Qp that admits a pair of embeddings
s� : E ,! k 0�, s� : E ,! k 0�,

the composite

Gk 0� ��!
ajG

k 0�
Gk 0� ��!

wLT
s�

E�

[cf. Definition 1.2, (ii)] is Hodge-Tate (respectively, is inertially equivalent
[cf. Definition 1.2, (i)] to a continuous character Gk 0� ! E� that factors
through the natural open injection Gk 0� ,! Galðk�=EÞ determined by the
embeddings E ,!s� k 0� ,! k�) [cf. Proposition 1.1]. [Here, we note that, as
is well-known—cf., e.g., [4], Chapter III, §A.1, Corollary 2—the issue of
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whether or not a finite dimensional continuous representation is Hodge-
Tate depends only on the inertial equivalence class of the given represen-
tation.]

Lemma 1.4. Let a : Gk� ! Gk� be an open continuous homomorphism. Con-
sider the following four conditions:

(1) a is HT-preserving [cf. Definition 1.3, (i)].
(1 0) For every pair of respective finite extensions k 0� ðJ k�Þ, k 0� ðJ k�Þ of k�, k�

such that aðGk 0� ÞJGk 0� , the restriction ajGk 0�
: Gk 0� ! Gk 0� is HT-preserving.

(2) a is of HT-qLT-type [cf. Definition 1.3, (ii)].
(3) a is of weakly HT-qLT-type [cf. Definition 1.3, (ii)].

Then we have an equivalence and implications

ð1Þ , ð1 0Þ ) ð2Þ ) ð3Þ:

Proof. The implication (1 0)) (1) is immediate. Next, let us verify that
the implication (1)) (1 0) follows from the following well-known argument: Let
k 0� ðJ k�Þ, k 0� ðJ k�Þ be respective finite extensions of k�, k� such that
aðGk 0� ÞJGk 0� ; f : Gk 0� ! GLnðQpÞ a finite dimensional continuous representation
of Gk� that is Hodge-Tate. Now let us observe [cf., e.g., [4], Chapter III, §A.1,
Corollary 2] that, to verify that the composite f � ajGk 0�

is Hodge-Tate—by

replacing k 0�, k 0� by suitable finite extensions of k 0�, k 0�, respectively—we may
assume without loss of generality that k 0�, k

0
� are Galois over k�, k�, respectively.

Write fk� for the finite dimensional continuous representation of Gk� obtained
by inducing f from Gk 0� to Gk� . Then since [one verifies easily that] fk� jGk 0�

is
isomorphic to the direct product of ½k 0� : k�� copies of f, it holds that fk� is
Hodge-Tate. Thus, since a is HT-preserving, it holds that fk� � a, hence also
ðfk� � aÞjGk 0�

, is Hodge-Tate. On the other hand, one verifies easily that f � ajGk 0�
is isomorphic to a subrepresentation of ðfk� � aÞjGk 0�

. In particular, we conclude

that f � ajGk 0�
is Hodge-Tate. This completes the proof of the implication

(1)) (1 0).
The implication (1 0)) (2) follows from the fact that ‘‘wLT

s;p’’ defined in

Definition 1.2, (ii), is Hodge-Tate [cf. [4], Chapter III, §A.5, Corollary]. Finally,
we verify the implication (2)) (3). We shall apply the notational conventions
established in Definition 1.3, (ii). Then since a is of HT-qLT-type, the character
w : Gk 0� ! E� obtained by forming the composite

Gk 0� ��!
ajG

k 0�
Gk 0� ��!

wLT
s�

E�

is Hodge-Tate. Thus, since E is Galois over Qp, it follows immediately from [4],
Chapter III, §A.5, Corollary, that w is inertially equivalent [cf. Definition 1.2, (i)]
to the character

Y
s AGalðE=QpÞ

ðwLT
s��sÞ

ns : Gk 0� ! E�
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for some choices of integers ns. On the other hand, one verifies easily from local
class field theory that this character is inertially equivalent to the restriction to
Gk 0� JGalðk�=EÞ of the character

Y
s AGalðE=QpÞ

ðwLT
s Þ

ns : Galðk�=EÞ ! E�:

This completes the proof of the implication (2)) (3), hence also of Lemma 1.4.
r

Remark 1.4.1. In the notation of Lemma 1.4, consider the following four
conditions:

(4) a is of qLT-type [cf. [2], Definition 3.1, (iv)].
(5) a is of 01-qLT-type [cf. [2], Definition 3.1, (iv)].
(6) a is of CHT-type [cf. [2], Definition 3.1, (iv)].
(7) a is of HT-type [cf. [2], Definition 3.1, (iv)].

Then we have equivalences and implications

ð7Þ ( ð4Þ , ð5Þ , ð6Þ ð) ð1Þ , ð1 0Þ ) ð2Þ ) ð3ÞÞ:
Indeed, the equivalences (4), (5), (6) follow from [2], Theorem 3.5, (i); the
implications (6)) (1) and (6)) (7) are immediate. If, moreover, a is injective,
then we have equivalences and implications

ð4Þ , ð5Þ , ð6Þ , ð7Þ ð) ð1Þ , ð1 0Þ ) ð2Þ ) ð3ÞÞ:
Indeed, the implication (7)) (6) follows immediately from [1], Proposition 1.1.

2. Injectivity result

In the present §2, we prove that every open continuous homomorphism of
weakly HT-qLT-type is injective [cf. Proposition 2.4 below]. We maintain the
notation of the preceding §1.

Definition 2.1.
(i) Let G be a profinite group. Then we shall write

ðG !!Þ Gp-ab-free

for the maximal pro-p abelian torsion-free quotient of G.
(ii) Let A be an abelian topological group and f : Gk ! A a continuous

homomorphism. Then we shall write

iner-dimðfÞ ¼def dimQp
ðfðIkÞp-ab-free nZp

QpÞ
[cf. (i)] and refer to iner-dimðfÞ as the inertial dimension of f.

Lemma 2.2. Let A be an abelian topological group and f : Gk ! A a con-
tinuous homomorphism. Then the following hold:
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(i) It holds that

0a iner-dimðfÞa ½k : Qp�

[cf. Definition 2.1, (ii)].
(ii) Let HJ Ik be a closed subgroup of Ik. Suppose that H contains an open

subgroup of Pk [e.g., H is an open subgroup of Ik or Pk]. Then

iner-dimðfÞ ¼ dimQp
ðfðHÞp-ab-free nZp

QpÞ

[cf. Definition 2.1, (i)].
(iii) Let f 0 : Gk ! A be a continuous homomorphism that is inertially equiv-

alent to f [cf. Definition 1.2, (i)]. Then

iner-dimðfÞ ¼ iner-dimðf 0Þ:

(iv) In the notation of Definition 1.2, (ii), it holds that

iner-dimðwLT
s Þ ¼ ½E : Qp�

[cf. (iii)].
(v) Let a : Gk� ! Gk be an open continuous homomorphism. Then it holds

that

iner-dimðfÞ ¼ iner-dimðf � aÞ:

Proof. First, I claim that the following assertion holds:

Claim 2.2.A: The natural surjection Ik !! fðIkÞp-ab-free factors through
the natural surjection Ik !! o�k !! ðo�k Þ

p-ab-free [cf. the discussion at the
beginning of §1].

Indeed, this follows immediately from our assumption that A is abelian. This
completes the proof of Claim 2.2.A.

Assertion (i) follows immediately from Claim 2.2.A, together with the fact
that ðo�k Þ

p-ab-free nZp
Qp is of dimension ½k : Qp�. Assertion (ii) follows immedi-

ately from Claim 2.2.A, together with the [easily verified] fact that the composite
Pk ,! Ik !! o�k is open. Assertion (iii) follows immediately from assertion (ii).
Assertion (iv) follows immediately from the definition of the character wLT

s ,
together with the fact that ðo�E Þ

p-ab-free nZp
Qp is of dimension ½E : Qp�. Finally,

we verify assertion (v). Let us first observe that it follows from Proposition 1.1
that a determines an open homomorphism Pk� ! Pk. Thus, assertion (v) follows
immediately from assertion (ii). This completes the proof of assertion (v). r

Lemma 2.3. Let NJGk be a nontrivial normal closed subgroup of Gk.
Then there exists an open subgroup HJGk of Gk such that the image of the
composite N VH ,! H !! Hp-ab-free [cf. Definition 2.1, (i)] is nontrivial.

Proof. Assume that, for every open subgroup HJGk of Gk, the image of
the composite N VH ,! H !! Hp-ab-free is trivial, i.e., if we write JH JH for the
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kernel of the natural surjection H !! Hp-ab-free, then N VHJ JH . Now since N
is nontrivial, it is immediate that there exists a normal open subgroup HJGk

such that the composite N ,! Gk !! Gk=H is nontrivial. In particular, one
verifies easily that, to verify Lemma 2.3, by replacing Gk by the inverse image
of the image of N in Gk=H via Gk !! Gk=H, we may assume without loss of
generality that the composite N ,! Gk !! Gk=H is [nontrivial and] surjective.
Thus, since [we have assumed that] N VHJ JH , it follows immediately that
the composite N ,! Gk !! Gk=JH determines a splitting of the exact sequence of
profinite groups

1! Hp-ab-free ! Gk=JH ! Gk=H ! 1:

[Here, we note that since HJGk is normal, and JH JH is characteristic, one
verifies easily that JH is normal in Gk.] In particular, since NJGk is normal,
the natural action [determined by the above exact sequence] of Gk=H on
Hp-ab-free, hence also on Hp-ab-free nZp

Qp, is trivial. On the other hand, if we
write k 0 ðJ kÞ for the finite Galois extension of k corresponding to HJGk, then
it follows immediately from local class field theory that there exists a Gk=H
ð¼ Galðk 0=kÞÞ-equivariant injection of Qp-vector spaces k 0 ,! Hp-ab-free nZp

Qp,
which contradicts the fact that the action of Gk=H on Hp-ab-free nZp

Qp is trivial.
This completes the proof of Lemma 2.3. r

Next, we prove the main result of the present §2. Note that the injectivity
result was shown in the proof of the implication (c)) (d) of [2], Theorem 3.5, (i),
for homomorphisms of qLT-type, and that Proposition 2.4 is its improvement for
homomorphisms of weakly HT-qLT-type.

Proposition 2.4. Let a : Gk� ! Gk� be an open continuous homomorphism.
Suppose that a is of weakly HT-qLT-type [cf. Definition 1.3, (ii)]. Then a is
injective.

Proof. Assume that the homomorphism a is not injective. Then it follows
immediately from Lemma 2.3 that there exists a finite Galois extension E of Qp

that admits a pair of embeddings E ,! k�, E ,! k� such that if we write E�J k�,
E�J k� for the respective images of these embeddings [so E�  @ E !@ E�], then
k�JE�, k�JE�, and, moreover, the image of the composite KerðaÞVGE� ,!
GE� !! G

p-ab-free
E�

[cf. Definition 2.1, (i)] is nontrivial.

Let k 0� ðJ k�Þ be a finite extension of k� such that E�J k 0�, and, moreover,
aðGk 0� ÞJGE� . Write w for the composite

Gk 0� ��!
ajG

k 0�
GE� ��!

wLT
id

E�� ð @ E� !@ E�� Þ

[cf. Definition 1.2, (ii)]. Then since ajGk 0�
is open, it follows from Lemma 2.2,

(iv), (v), that

iner-dimðwÞ ¼ iner-dimðwLT
id Þ ¼ ½E� : Qp�
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[cf. Definition 2.1, (ii)]. On the other hand, since a is of weakly HT-qLT-type,
the character w is inertially equivalent to the continuous character factors as the
composite

Gk 0� �! GE� �!
wE�

E�� ð @ E� !@ E�� Þ

of the natural open injection Gk 0� ,! GE� and a continuous character wE� : GE� !
E�� . Thus, it follows from Lemma 2.2, (iii), (v), that

ð½E� : Qp� ¼Þ iner-dimðwÞ ¼ iner-dimðwE� Þ:

Now let us recall from Proposition 1.1 that KerðaÞJPk� . In particular, it
holds that KerðaÞ ¼ KerðaÞV Ik� , which thus implies that KerðaÞV Ik 0� is open in
KerðaÞ. On the other hand, it follows from the definition of w that KerðaÞV Ik 0�
ð¼ KerðaÞVGk 0� ÞJKerðwÞ. Thus, since w is inertially equivalent to wE� jGk 0�

, we

conclude that there exists an open subgroup JJKerðaÞ of KerðaÞ such that
JJKerðwE� ÞJGE� . Now since JJKerðaÞ is open in KerðaÞ, and [we have
assumed that] the image of the composite KerðaÞVGE� ,! GE� !! G

p-ab-free
E�

is

nontrivial, it follows that the image of the composite J ,! GE� !! G
p-ab-free
E�

is
nontrivial. Thus, one verifies easily that the image of the homomorphism
J ! o�E� ðJG ab

E�
Þ [cf. the discussion at the beginning of §1] determined by the

composite J ,! GE� !! G ab
E�

[where we recall that JJ IE� ] is infinite. In partic-
ular, since JJKerðwE� Þ, we conclude that the kernel of the character ðIE� !!Þ
o�E� ! E�� determined by the restriction of wE� to IE� JGE� is infinite. Thus, we
obtain an inequality

ð½E� : Qp� ¼Þ iner-dimðwE� Þ < dimQp
ððo�E� Þ

p-ab-free nZp
QpÞ ¼ ½E� : Qp�;

which contradicts the fact that E�  @ E !@ E�. This completes the proof of
Proposition 2.4. r

3. The main results

In the present §3, we prove the main theorem of the present paper [cf.
Theorem 3.3 below]. We maintain the notation of §1.

Definition 3.1. Let a : Gk� !
@

Gk� be a continuous isomorphism and
b : k� !@ k� an isomorphism of fields. Then we shall say that b is inertially
compatible with a if the composite

o�k� ,! k�� !
@

k�� ,! ðk�� Þ
5

—where the second arrow is the isomorphism determined by b—and the
composite

o�k� ,! G ab
k�
!@ G ab

k�
!@ ðk�� Þ

5

—where the first arrow is the natural inclusion arising from local class field
theory [cf. the discussion at the beginning of §1], the second arrow is the
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isomorphism determined by a�1, and the third arrow is the isomorphism arising
from local class field theory—coincide on an open subgroup of o�k� .

Lemma 3.2. Let a : Gk� !
@

Gk� be a continuous isomorphism; b1; b2 : k� !
@

k�
isomorphisms of fields. Suppose that b1, b2 are inertially compatible with a [cf.
Definition 3.1]. Then b1 ¼ b2.

Proof. Since b1, b2 are inertially compatible with a, one verifies easily from
the various definitions involved that there exists an open subgroup S�J o�k� of o

�
k�

such that b1jS� ¼ b2jS� . On the other hand, let us recall from [1], Lemma 4.1,
that the sub-Qp-vector space of k� generated by S� coincides with k�. Thus, the
equality b1jS� ¼ b2jS� implies the equality b1 ¼ b2. This completes the proof of
Lemma 3.2. r

Next, we prove the main theorem of the present paper. Note that the
argument given in the proof of Theorem 3.3 is essentially the same as the
argument applied in [1] to prove the main theorem of [1].

Theorem 3.3. Let p be a prime number. For b A f�; �g, let kb be a p-adic

local field and kb an algebraic closure of kb. Write Gkb ¼
def

Galðkb=kbÞ. Let

a : Gk� ! Gk�

be an open continuous homomorphism. Suppose that a is of HT-qLT-type [cf.
Definition 1.3, (ii)]. Then a is geometric [cf. [2], Definition 3.1, (iv)], i.e., arises
from an isomorphism of fields k� !@ k� that determines an embedding k� ,! k�.

Proof. First, let us observe that it follows from Proposition 2.4, together
with the implication (2)) (3) of Lemma 1.4, that a is injective. Next, let us
observe that, to verify Theorem 3.3, by replacing Gk� by the image of a, we may
assume without loss of generality that a is an isomorphism.

Now I claim that the following assertion holds:

Claim 3.3.A: Suppose that k� is Galois over Qp. Then there exists
a(n) [necessarily unique—cf. Lemma 3.2] isomorphism of fields
bk�;k� : k� !

@
k� that is inertially compatible with a [cf. Definition 3.1].

Indeed, let E be a finite Galois extension of Qp that admits embeddings E ,! k�,
E ,! k� such that if we write E�J k�, E�J k� for the respective images of
these embeddings [so E�  @ E !@ E�], then k�JE�, k�JE�. Let k 0� ðJ k�Þ be a
finite Galois extension of k� such that k 0� contains E�, and, moreover, the finite
[necessarily Galois] extension k 0� ðJ k�Þ of k� corresponding to the open subgroup
aðGk 0� ÞJGk� contains E�. For b A f�; �g, write sb : Eb ,! k 0b for the natural
inclusion. Write w for the composite

Gk 0� ��!
ajG

k 0�@
Gk 0� ��!

wLT
s�

E�� ð @ E� !@ E�� Þ:
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Then since a is of HT-qLT-type, it holds that w is Hodge-Tate. Thus, since E�
is Galois over Qp, it follows from [4], Chapter III, §A.5, Corollary, that w is
inertially equivalent to the character

Y
s AGalðE�=QpÞ

ðwLT
s��sÞ

ns : Gk 0� ! E�� ð @ E� !@ E�� Þ

for some choices of integers ns.
For b A f�; �g, write Verk 0

b
=kb : G ab

kb
! G ab

k 0
b

for the Verlagerung map with

respect to the finite Galois extension k 0b=kb. Then since w is inertially equivalent
to

Q
s AGalðE�=QpÞðw

LT
s��sÞ

ns , and [one verifies easily from local class field theory that]
Verk 0

b
=kb maps o�kb JG ab

kb
[cf. the discussion at the beginning of §1] to o�k 0

b
JG ab

k 0
b
,

we conclude that there exists an open subgroup S�J o�k� ðJG ab
k�
Þ of o�k� such that

if we write S�J o�k� for the image of S�J o�k� by the isomorphism

ðG ab
k�

KÞ o�k� !
@

o�k� ðJG ab
k�
Þ

induced by a [where let us recall from Proposition 1.1 that a induces an iso-
morphism Ik� !

@
Ik� ], then the diagram of topological modules

S� ������������! G ab
k�

������������!
Verk 0�=k�

G ab
k 0�

������������!
Q

s AGalðE�=QpÞ
ðwLT

s��sÞ
ns

E��  
@

E�

o

???y
����

S� ������������! G ab
k�

������������!
Verk 0�=k�

G ab
k 0�

������������!wLT
s�

E��  
@

E�

—where the left-hand vertical arrow is the isomorphism induced by a, and
the left-hand horizontal arrows are the natural inclusions—commutes. On the
other hand, it follows immediately from local class field theory, together with
Definition 1.2, (ii), that, for b A f�; �g, if we write ImðIkbÞJG ab

kb
for the image

of the composite Ikb ,! Gkb !! G ab
kb

[i.e., ‘‘o�kb’’JG ab
kb
—cf. the discussion at

the beginning of §1], then we have commutative diagrams of topological
modules

ImðIk� Þ �����������������!
Verk 0�=k�

ImðIk 0� Þ �����������������!
Q

s AGalðE�=QpÞ
ðwLT

s��sÞ
ns

E��  
@

E�

o

???y o

???y
����

o�k� o�k 0� E��  
@

E�;��������������������! ������������������!
Q

s AGalðE�=QpÞ
ðs�1�Nmk 0�=E�

Þns

ImðIk� Þ ����!
Verk 0�=k�

ImðIk 0� Þ ����!wLT
s�

E��  
@

E�

o

???y o

???y
����

o�k� o�k 0� E��  
@

E��������! ������!
Nmk 0�=E�
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—where the left-hand and middle vertical arrows are isomorphisms that arise
from local class field theory; the lower left-hand horizontal arrows are the homo-
morphisms induced by the natural inclusions k� ,! k 0�, k� ,! k 0�, respectively;
we write ‘‘Nm’’ for the norm map. In particular, if, for b A f�; �g, we write
ImðSbÞJE�b for the image of Sb in E�b, then the following hold:

(a) Since k�JE�J k 0�, and k� is Galois over Qp [which thus implies that
every s A GalðE�=QpÞ preserves k�JE�], it holds that

ImðS�Þ ¼
Y

s AGalðE�=QpÞ
ðs�1 �Nmk 0�=E�

ÞðS�Þns

¼
Y

s AGalðE�=QpÞ
s�1ðSns�½k 0�:E��� ÞJ k�� ;

i.e., that the subgroup ImðS�ÞJE�� is contained in k�� JE�� .
(b) Since k�JE�J k 0�, it holds that the subgroup ImðS�ÞJE�� coincides

with the subgroup ðo�k� Þ
½k 0�:E��JE�� , which thus implies that the subgroup

ImðS�ÞJE�� is an open subgroup of o�k� JE�� .
For each b A f�; �g, write VbJEb for the sub-Qp-vector space of Eb generated
by ImðSbÞJEb. Now we have a commutative diagram of topological modules

ImðS�Þ ���! E��  
@

E�

o

???y
����

ImðS�Þ ���! E��  
@

E�

—where the left-hand vertical arrow is the isomorphism induced by a, and the
left-hand horizontal arrows are the natural inclusions. Thus, it is immediate that
the isomorphisms of fields E�  @ E !@ E� determine an isomorphism V� !@ V�,
which thus implies that dimQp

ðV�Þ ¼ dimQp
ðV�Þ. Moreover, it follows from (a)

(respectively, (b), together with [1], Lemma 4.1) that V�J k�JE� (respectively,
V� ¼ k�JE�). Thus, since ½k� : Qp� ¼ ½k� : Qp� [cf. [1], Proposition 1.2], we con-
clude that V� ¼ k�, V� ¼ k�, and, moreover, the isomorphism of Qp-vector spaces
V� !@ V� [determined by the isomorphisms of fields E�  @ E !@ E�] is compatible
with the structures of fields of k�, k�. In particular, we obtain an isomorphism of
fields bk�;k� : k� ¼ V� !@ V� ¼ k�. On the other hand, it follows from the defini-
tion of bk�;k� , together with the above discussion concerning ImðSbÞ, that bk�;k� is
inertially compatible with a. This completes the proof of Claim 3.3.A.

Next, I claim that the following assertion holds:

Claim 3.3.B: For every pair of respective finite extensions k 0� ðJ k�Þ,
k 0� ðJ k�Þ of k�, k� such that aðGk 0� Þ ¼ Gk 0� , there exists a(n) [necessarily
unique—cf. Lemma 3.2] isomorphism of fields bk 0�;k 0� : k

0
� !

@
k 0� that is

inertially compatible with the restriction ajGk 0�
: Gk 0� !

@
Gk 0� .

Indeed, let k 00� ðJ k�Þ be a finite extension of k 0� that is Galois over Qp. Write
k 00� ðJ k�Þ for the finite [necessarily Galois] extension of k 0� corresponding to the
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open subgroup aðGk 00� ÞJGk� . Then it follows from Claim 3.3.A that there exists
an isomorphism of fields bk 00� ;k 00� : k

00
� !

@
k 00� that is inertially compatible with the

restriction ajGk 00�
: Gk 00� !

@
Gk 00� . Then one verifies easily from Lemma 3.2, together

with the fact that bk 00� ;k 00� is inertially compatible with the restriction ajGk 00�
, that

bk 00� ;k 00� is compatible with the respective natural actions of Galðk 00� =k 0�Þ, Galðk 00� =k 0�Þ
on k 00� , k 00� [relative to the isomorphism Galðk 00� =k 0�Þ ¼ Gk 0�=Gk 00� !

@
Gk 0�=Gk 00� ¼

Galðk 00� =k 0�Þ induced by ajGk 0�
]. Thus, we conclude that the isomorphism bk 00� ;k 00�

determines an isomorphism bk 0�;k 0� : k
0
� !

@
k 0�. On the other hand, again by Lemma

3.2, together with the fact that bk 00� ;k 00� is inertially compatible with the restriction

ajGk 00�
, it follows immediately that this isomorphism bk 0�;k 0� is inertially compatible

with the restriction ajGk 0�
. This completes the proof of Claim 3.3.B.

Now, by applying Claim 3.3.B to the various finite extensions of k�, we
obtain an isomorphism of fields b

k�;k�
: k� !@ k� that determines an isomorphism

k� !@ k�. Moreover, again by applying Claim 3.3.B, one verifies easily that a
arises from this isomorphism b

k�;k�
. This completes the proof of Theorem 3.3.

r

Remark 3.3.1. Theorem 3.3 leads naturally to the following observation:

Let p be an odd prime number and Qp an algebraic closure of the
p-adic completion Qp of the field of rational numbers Q. Write GQp

¼def
GalðQp=QpÞ. Then there exist an automorphism a of GQp

and a finite
dimensional continuous representation f : GQp

! GLnðQpÞ of GQp
such

that f is potentially locally algebraic, i.e., the restriction of f to an open
subgroup of GQp

is locally algebraic [cf. [4], Chapter III, §1, Definition]
[hence Hodge-Tate], the set of Hodge-Tate weights of f is contained in
f0; 1g, but f � a is not Hodge-Tate.

Indeed, let us first observe that it follows immediately from the discussion given
at the final part of [3], Chapter VII, §5, that we have an automorphism a of GQp

that is not geometric [cf. [2], Definition 3.1, (iv)]. Thus, it follows from Theorem
3.3 that a is not of HT-qLT-type [cf. Definition 1.3, (ii)]. In particular, since the
character ‘‘wLT

s ’’ defined in Definition 1.2, (ii), is locally algebraic [cf. [4], Chapter
III, §1, Example (2)], and the set of Hodge-Tate weights is contained in f0; 1g
[cf., e.g., [4], Chapter III, §A.5, Theorem 2], it follows from the definition of
a homomorphism of HT-qLT-type that there exist normal open subgroups
H1;H2 JGQp

and a finite dimensional continuous representation fH2
: H2 !

GLnðQpÞ of H2 such that aðH1ÞJH2, fH2
is locally algebraic, the set of Hodge-

Tate weights of fH2
is contained in f0; 1g, and, moreover, fH2

� a : H1 !
GLnðQpÞ is not Hodge-Tate. Thus, it follows immediately from a similar argu-
ment to the argument applied in the proof of the implication (1)) (1 0) of
Lemma 1.4 that if we write f for the finite dimensional continuous representation
of GQp

obtained by inducing fH2
from H2 to GQp

, then f is potentially locally
algebraic [cf. also [4], Chapter III, §A.7, Theorem 3], the set of Hodge-Tate
weights of f is contained in f0; 1g, but f � a is not Hodge-Tate.
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Corollary 3.4. In the notation of Theorem 3.3, consider the following nine
conditions:

(1) a is HT-preserving [cf. Definition 1.3, (i)].
(2) a is of HT-qLT-type [cf. Definition 1.3, (ii)].
(3) a is geometric [cf. [2], Definition 3.1, (iv)].
(4) a is of qLT-type [cf. [2], Definition 3.1, (iv)].
(5) a is of 01-qLT-type [cf. [2], Definition 3.1, (iv)].
(6) a is of CHT-type [cf. [2], Definition 3.1, (iv)].
(7) a is of HT-type [cf. [2], Definition 3.1, (iv)].
(8) a is [an isomorphism and ] RF-preserving [cf. [2], Definition 3.6, (iii)].
(9) a is [an isomorphism and ] uniformly toral [cf. [2], Definition 3.6, (iii)].

Then we have equivalences and implications

ð8Þ , ð9Þ ) ð1Þ , ð2Þ , ð3Þ , ð4Þ , ð5Þ , ð6Þ ) ð7Þ:
If, moreover, a is an isomorphism, then the above nine conditions are equivalent.

Proof. Let us recall from Remark 1.4.1 that we have implications

ð4Þ ) ð5Þ ) ð6Þ ) ð1Þ ) ð2Þ and ð6Þ ) ð7Þ:
The implication (2)) (3) follows from Theorem 3.3. The implication (3)) (4)
follows from [2], Theorem 3.5, (i). The equivalence (8), (9) and the implica-
tion (8)) (3) follow from [2], Corollary 3.7. Finally, the implication (7)) (6)
(respectively, (3)) (8)) in the case where a is an isomorphism follows immediately
from [1], Proposition 1.1 (respectively, [2], Corollary 3.7). This completes the
proof of Corollary 3.4. r

Corollary 3.5. Let p be a prime number. For b A f�; �g, let kb be a

p-adic local field and kb an algebraic closure of kb. Write Gkb ¼
def

Galðkb=kbÞ;
Embðk�=k�; k�=k�Þ

for the set of isomorphisms of fields k� !@ k� that determine embeddings k� ,! k�;

Embðk�; k�Þ
for the set of embeddings of fields k� ,! k�;

Homopen
HT ðGk� ;Gk� Þ

for the set of open continuous homomorphisms a : Gk� ! Gk� that are HT-
preserving [cf. Definition 1.3, (i)], i.e., for every finite dimensional continuous
representation f : Gk� ! GLnðQpÞ of Gk� , if f is Hodge-Tate, then f � a is Hodge-
Tate. Then we have a commutative diagram of natural maps

Embðk�=k�; k�=k�Þ Homopen
HT ðGk� ;Gk� Þ???y

???y
Embðk�; k�Þ Hom

open
HT ðGk� ;Gk� Þ=InnðGk� Þ

�������!@

������!@
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—where the vertical arrows are surjective, and the horizontal arrows are
bijective.

Proof. The injectivity of the horizontal arrows follow immediately from the
injectivity portion of [1], Theorem 4.2 [cf. also the proof of [1], Theorem 4.2].
The surjectivity of the horizontal arrows follow immediately from Theorem 3.3,
together with the implication (1)) (2) of Lemma 1.4. This completes the proof
of Corollary 3.5. r

References

[ 1 ] S. Mochizuki, A version of the Grothendieck conjecture for p-adic local fields, Internat. J.

Math. 8 (1997), 499–506.

[ 2 ] S. Mochizuki, Topics in absolute anabelian geometry I: Generalities, J. Math. Sci. Univ.

Tokyo 19 (2012), 139–242.

[ 3 ] J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of number fields, Grundlehren

der Mathematischen Wissenschaften 323, 2nd ed., Springer-Verlag, Berlin, 2008.

[ 4 ] J. P. Serre, Abelian l-adic representations and elliptic curves, McGill University lecture notes

written with the collaboration of Willem Kuyk and John Labute W. A. Benjamin, Inc., New

York-Amsterdam, 1968.

Yuichiro Hoshi

Research Institute for Mathematical Sciences

Kyoto University

Kyoto 606-8502

Japan

E-mail: yuichiro@kurims.kyoto-u.ac.jp

298 yuichiro hoshi


