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Abstract

We investigate addition relations for multiple sine functions from the view point
of formal group laws. We find that the functions which appear in the coefficients
are related to classical Eisenstein serires. As application we obtain a limit formula for
automorphic forms.

1. Introduction

The addition theorem for the multiple sine function is a quite important
problem. Indeed a suitable addition relation would imply the algebraicity of the
division value of the multiple sine function, which would lead to Kronecker’s
Jugendtraum as studied by Shintani [S1] in 1977.

In this paper we investigate addition relations for multiple sine functions
from the view point of formal group laws. The central problem is to determine
characters of coefficients. We see that important functions are appearing in these
coefficients and that they are intimately related to classical Eisenstein serires.
Consequently we obtain some limit formulas for automorphic forms.

Let

(-1
Si(x, (@1, ..., 0,)) = H(n-w—i—x)(H(m-a)—x))

n>0 m>1

=T, (x,0) 'T,(jo| - x, w)(fl)r
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be the multiple sine function, where

I (x,m) = exp (% { (s, x, @)
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is the normalized multiple gamma function obtained from the multiple Hurwitz
zeta function

Cr(s7 X, w) = Z(n ‘o + X) 7S'

n>0
Here we use the notation @ = (wy,...,®,) and |o|=w; +---+w,. It is ob-
vious that S,(x, (w,...,w,)) is symmetric with respect to wi,...,®,. In what

follows we denote S,(x):= S,(x,(1,...,1)).

As was shown in our previous papers, the values of the multiple sine
functions at rational points are important for the study of special values of the
Riemann zeta and the Dirichlet L-functions. For example, we would obtain the
transcendency of {(3)/n?, if we prove the rationality of their division values.
Thus the addition formula is crucial.

We put the addition formula for S,(x,®) as

Si(x + y,0) = O(S,(x, 0), S,(y, ®))
with

(1.1) DX, Y)=X+Y+ > ¢ XY

=1

Our chief concern lies in the coefficients ¢; ;. In this paper we calculate for r =2
the coefficients ¢ 1, ¢1,2, ¢2,1 and find their mutual relations. We also establish
their relation to the Eisenstein series.

We first observe more general facts. Let F(x) be an analytic function in x
with F(0) =0 and F’(0) # 0. Then there exists a two variable function ®(X, Y)
given by (1.1) such that

F(x+y) = ©(F(x), F(y)).
In this case it is easily shown that

F// (O)

(1.2) C1,1 :F’(O)2

and

F"(0)F'(0) — F//(O)Z

(1~3) Cl2 =01 = 2F’(O)4
Example 1. When r = 1, we have S;(x) = 2 sin(zx). The addition formula
is

P 2
%—F&(y) 1_M:<D(Sl(x),Sl(J/))-

Si(x+y)=S1(x)\/1~- i
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Thus

Y2 X2 1 1
DX, Y):X\/l—T+ Y\/l—T:X+ Y—§X2Y—§XY2+~--.

Then

1
c11=0, c2=0c1= -3

It is easy to verify they satisfy the identities (1.2) and (1.3).

In what follows we fix F(x) = S,(x,w) and write ¢; ; = ¢; j(w). It is easy to
see the following facts.
_ 5/0,0)
$/(0,)
(i) c1,1(A®) = c1,1(w) for any 4> 0.
(iii) ¢1,1(o) is symmetric.

THEOREM 0. (i) ¢1,1(®)

For each non-zero complex number k we put

Ek(‘[) — C(l ; k) + zw: Cr1 (n)qn
n=1

with

ak_l(n) = deil,

d|n

where 7 belongs to the upper half plane and ¢ = ¢***. As is well-known, for an
even integer k >4, Ej(7) is the Eisenstein series of weight k& with respect to the
modular group SL»(Z). Especially, it satisfies the automorphy

1
Ek <— ;) = ‘L'kEk(‘L')
and the corresponding zeta function is given by
L(s,E) =(s){(s—k+1).
We consider Ej(7) as the principal Eisenstein series of weight k for k € C\{0} in

general, where ““principal” indicates the “principal character.” It seems to be an
interesting problem to see the automorphy of Ei(z), that is, to calculate

Ri(7) = E (— %) — ()

concretely. We know the result in the following cases:
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(1) Rk(r) =0 for each even integer k > 4,
Q) Ro() =7

CAmi
From these results we obtain
Eq(i)=0
and
. 1
Ez(l) = — % .
In other words,
0 5 1

Znifi
16’2””—1_504

and
f:L _11
e2m —1 24 8xn
n=1

as noted by Ramanujan. We remark that the case (2) is shown from the
transformation formula

for the Dedekind y-function. It would be a non-trivial problem to investigate
R () for k e C\{0} in general.
In papers [K2] [KKS5] we proved

(—1)* By

lim R =
Tl_l’ﬂ k(T) 27

and its higher dimensional analogue for each positive integer k, where By is the
Bernoulli number.
In the previous paper we examined the case kK =1, where

1 & 1
El(f):——"'zd(”)qn:—z-F g™

and

Ri() = Ei (— 1) E(r).

We notice that this k is the only one case when L(s, Ej) has the double pole; in
fact L(s, Ey) = {(s)* has the double pole at s= 1.
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In this paper we calculate boundary values at all cusps M/N as
follows:

THEOREM 1. Let M,N > 1 be integers which are coprime. It holds that

1 i n m n i
lim (E(-2)—E@)) = vt Nl o
H1Mm/N( 1( T) T l(f)> 2Nm—OZM71M Nl €° (nM N>+2nN
Im(7)>0 n=0....N—1
(m,m) #(0,0)

This is a generalization of the previous result obtained in [K1] recalled in
Section 2.

Acknowledgement. Both authors would like to express their profound grat-
itude to their Mentor Professor Tsuneo Kanno (June 4, 1928—March 11, 2011)
for his indicating the way for many years.

2. Preliminary propositions

In this section we prepare some facts which will be used in the proof of our

theorems.
We first recall the properties of the multiple sine function. In the previous

paper [K1] we proved the following facts.

ProposITION 1. (i) Let N be a positive integer. Then Ri(t) has the
following transcendental numbers as boundary values at cusps N and N

(v/2) .
(1) lim Ry(7) = % (% > (N = 2k) cot<ﬁk> — %) .

k=1

We recall the following facts which were proved in [KKI].
PrOPOSITION 2
(i) (periodicity)

Sy (x 4+ w;, 0) = Sp(x, w)S,l,l(x,w(i))_l,

where (i) = (w1, ..., 0i_1,Wit1,...,0).
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(i) (homogeneity)
Sy (ex, co) = S;(x, o)

for ¢ > 0.
(iii) (differential equation)

%’:(x) - (-1)"%(?_ 1) cot(nx).

X

S1(x, ) =2 sin (a))

_ [
Sy (w1, (w1,m2)) = .
_ [
So (2, (w1, 7)) = ..
We define the multiple cotangent function as
/
Cot,(x,0) = = (x,0)
We put
S/
Coty(x) = Coty(x, (1,1)) = S£(x).
2
Lemma 1
Coty(x) = (1 — x) cot(mx).
LemMma 2
1 X k1
COtZ(xa (MvN)) :W - Z B COtZ(W‘f’ﬁ‘i‘ﬁ)

Proof. By [KK2] we have
X k1
S:(x, (M, N)) = H Sz(w-FN—‘rM).
0,

Its logarithmic derivative gives the result. O
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By Proposition 2(ii), it is easy to see that
LemMma 3

1
Coty(cx, (coy, cp)) = - Coty(x, (w1, 7).

3. Results

THEOREM 2. For Im(z) > 0, it holds that

cii(1,7) :% <E1 ({) _TEI(T)).

Proof. By Proposition 1(ii), we have

st0.0.0) =25 (&) - <m0

On the other hand, we already know the fact in our previous paper ([KK3]
Section 2) that

Sé(()? (177)) =

SN

The result follows by (1.2). O

THEOREM 3 (r =2)

NN
e (o1, ) = # Coty(wy, (w1, ®2))
NN
= le Coty(wy, (w1, ®)).
Proof. In the previous paper [K1, p. 399], we proved
" 4 S)
(31) S2(Oa(1af)):W'S_i(fa(laf))'
Hence
S/
COtZ(Tv (17 T)) = _2(77 (17 T))
S
VT
:ES{(Oa (l,’L’))

= gSZ’(O, (1,7))201,1(171—)
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by (1.2). The fact that
2n
S2/(07 (1,7)) = \/%

leads to the result. O

THEOREM 4 (r=2). Let M,N > 1 be coprime integers. It holds that

1 m m n 1
A (M,N) = ——— = Zleot( nj— — =] ) - .
1M, N) \/—zmvm:g;%1 M N ( M N) 7/ MN
n:O’..;N—l
(m,n)#(0,0)
Proof. Putting x = M in Lemma 2, it follows that
1 1+k
M, (M = —
Coty(M, (M, N)) MY, ()Z Cotz( ~ —i—M)
=0,..,N—1
1=0,..., M—~1

under the convention that when (k,/) = (N —1,0), we interpret

1-—
Cota(1) = lim Cot(x) = lim (1 - x) cot(rx) = lim m(1 = x) cos(ax) _

x—1 x—1 sin(7x)
Taking Theorem 3 into account, we have
Clﬁl(M, N)
vVMN
=—— Cot,(M,(M,N))
7
1 1+k 1
= Cot + —
v MNI»:ONZ‘:N—I 2< N M)
1=0,..., M—1
1 k+1 k+1 [ 1
=— ] ——————cot|{n —
MN /c:OZN—l ( N ) ( < N M)> v MN
=0, M—1
(k,1) # (N—1,0)
1 m ( m n > 1
= - — ——|cot| |———| | —
VMN , 4 IM N M N v/ MN
n=0,...,N—1
(m,n)#(0,0)

by putting k+1=N —n. ]

4. Proof of Theorem 1

From the results in the preceding section, we extend Proposition 1(i) to
arbitrary positive rational numbers M /N as follows.
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Proof of Theorem 1. We compute

lim (El(—%) —rEl(r)> = lim gcl_l(l,f) (by Theorem 2)

—M/N —M/N 21
Im(7)>0 Im(7)>0

\/\/Mﬁcl_l(N,M) (by Theorem O0(ii)).

T2
Theorem 4 leads to the result. O

5. Relation between Coefficients

THEOREM 5. It holds that

ci2(l,7) = e1(l,7) = —%cm(],ﬂz _ 1 (TJF%)
for 7€ C\(—0,0].

Proof. Put
Sy ur) = SUL0, (ury - up, 1))
for k > 0. By [KK6, Theorem 4], we have

3 _ 1 1
#(1) =250 A0 -1+ ) A0
4 8 T
From the fact that

S(0) = 8,70, (1,7)),
the basic identity (1.3) and (1.2) leads to

S(0)%(0) — £ (1)
2 (1)*

61"2(1,‘[) = 0211(1,‘[) =

and that
S1(7)
61‘1(1,‘5) = .
1(7)?
By combining these identities we have
=¢3(T) 1 2
cia2(l,7) = i(l,7) = —=ci(l,T
12(1,7) = e21(1,7) 2@y 2 111, 7)

130 1 1 1
2 (Z #@ 8 <’+?>> T

117
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3 1 N\ 1
:gcu(l,fﬁ e <T+—> ficl,l(l,f)z

T
1 , 1 1
7—§6111(1,T) —E<T+;> I:‘
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