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ON VANISHING FERMAT QUOTIENTS AND

A BOUND OF THE IHARA SUM

Igor E. Shparlinski

Abstract

We improve an estimate of A. Granville (1987) on the number of vanishing Fermat

quotients qpðlÞ modulo a prime p when l runs through primes laN. We use this

bound to obtain an unconditional improvement of the conditional (under the Gener-

alised Riemann Hypothesis) estimate of Y. Ihara (2006) on a certain sum, related to

vanishing Fermat quotients. In turn this sum appears in the study of the index of

certain subfields of cyclotomic fields Qðexpð2pi=p2ÞÞ.

1. Introduction

For a prime p and an integer u with gcdðu; pÞ ¼ 1 we define the Fermat
quotient qpðuÞ as the unique integer with

qpðuÞ1
up�1 � 1

p
ðmod pÞ; 0a qpðuÞa p� 1:

We also define qpðuÞ ¼ 0 for u1 0 ðmod pÞ.
Fermat quotients appear and play a major role in various questions of com-

putational and algebraic number theory and thus have been studied in a number
of works: see, for example, [1, 2, 3, 5, 6, 8, 10, 12] and references therein.
Understanding the vanishing of Fermat quotients qpðaÞ is important for many
applications and in particular, the smallest value lp of ub 1 with qpðuÞ0 0, has
been investigated in [1, 2, 3, 5, 10]. For example, in [1], improving the previous
estimate lp ¼ Oððlog pÞ2Þ of Lenstra [10] (see also [3, 6, 8]), the following bounds
have been given:

lp a
ðlog pÞ463=252þoð1Þ for all primes p;

ðlog pÞ5=3þoð1Þ for almost all primes p;

(

(where ‘‘almost all primes p’’ means for all primes p but a set of relative density
zero).
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For integers Mb 0 and Nb 1 we consider the sets

QpðM;NÞ ¼ fM þ 1a naM þN : qpðnÞ ¼ 0g;
RpðM;NÞ ¼ fM þ 1a laM þN : l prime; qpðlÞ ¼ 0g;

and also put

QpðNÞ ¼ Qpð0;NÞ and RpðNÞ ¼ Rpð0;NÞ:

Here we use some results of [1], combined with the approach of Granville [4]
and some other arguments, to obtain new estimates on the cardinalities of these
sets.

For example, for small N our estimates on aQpðNÞ and aRpðNÞ improve
those of [4]. We apply these improvements to study the sums

Sp ¼
X

n AQpðpÞ

LðnÞ
n

introduced by Ihara [8], where, as usual,

LðnÞ ¼ log l; if n is a power of a prime l;

0; otherwise;

�

denotes the von Mangoldt function.
We note that in [8, Corollary 7], under the Generalised Riemann Hypothesis,

the bound

Sp a 2 log log pþ 2þ oð1Þð1Þ

as p ! y, has been obtained. Here we give an unconditional proof of a
stronger bound.

Throughout the paper, the implied constants in the symbols ‘O’, and ‘f’ may
occasionally depend on the real positive parameter a and are absolute otherwise
(we recall that the notation U fV is equivalent to U ¼ OðVÞ).

2. Preparations

We recall that for any integers m and n with gcdðmn; pÞ ¼ 1 we have

qpðmnÞ1 qpðmÞ þ qpðnÞ ðmod pÞ;ð2Þ

see, for example, [2, Equation (2)].
Let Gp be the group of the pth power residues in the unit group Z�

p2 of the
residue ring Zp2 modulo p2.

Lemma 1. For any u A Z�
p2 the conditions qpðuÞ ¼ 0 and u A Gp are equivalent.

Proof. Clearly qpðuÞ ¼ 0 for u A Z�
p2 is equivalent to up�1 1 1 ðmod p2Þ,

which in turn is equivalent to u A Gp. r
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For integers Mb 0 and Nb 1 Let TpðM;NÞ be the number of w A ½M þ 1;
M þN� such that their residues modulo p2 belong to Gp. Clearly,

aQpðM;NÞ ¼ TpðM;NÞ þOðN=pþ 1Þ;ð3Þ
(the term OðN=pþ 1Þ comes from w1 0 ðmod pÞ). The following estimate fol-
lows immediately from [1, Equation (12)] (we also note that although the proof
of [1, Equation (12)], given only for initial intervals it works without any changes
for any interval).

Lemma 2. For any fixed

a >
463

252
;

and

Nb pa

we have

TpðM;NÞfN=p:

Furthermore, we need the following estimate which is derived by Heath-
Brown and Konyagin [7, Section 2] from [7, Lemma 4] (more general results are
given by Malykhin [11, Theorems 1 and 2]).

Lemma 3. We have

Wp f p5=2;

where

Wp ¼afw1;w2;w3;w4 A Gp : w1 þ w2 1w3 þ w4 ðmod p2Þg:

Let tsðnÞ be the number of representations of n as a product of s positive
integers:

tsðnÞ ¼afðn1; . . . ; nsÞ A Ns j n ¼ n1n2 � � � nsg:
We also need the following upper bound from [13]:

Lemma 4. Uniformly over n and s we have

tsðnÞa exp
ðlog nÞðlog sÞ
log log n

1þO
log log log nþ log s

log log n

� �� �� �
:

In particular, we have:

Corollary 5. If s ¼ ðlog nÞoð1Þ then

tsðnÞa noð1Þ:

as n ! y.
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3. Distribution of vanishing Fermat quotients

Here we estimate the cardinality of the sets QpðM;NÞ and RpðM;NÞ. For
large values of N, namely for Nb pa with some fixed a > 463=252 an essen-
tially optimal boundaQpðM;NÞfN=p follows from (3) and Lemma 2. Hence,
for Na p463=252 we have

aQpðM;NÞfminfN; p211=252þoð1Þg;ð4Þ

as p ! y.
Here we consider the case of smaller values of N.
We start with the case of M ¼ 0, that is, with the sets QpðNÞ and RpðNÞ.

In this case, Granville [4] has given a nontrivial bound on the cardinality of the
set RpðNÞ. Namely, it is shown in [4] that for u ¼ 1; 2; . . .

aRpðp1=uÞa up1=2u:ð5Þ

We note that the argument used in the proof of (5) can be used to estimate
aRpðp1=uÞ for any real ub 1.

We derive now upper bounds on aQpðNÞ and aRpðNÞ that improve (5).

Theorem 6. For any fixed

a >
463

252
;

for 1a u ¼ ðlog pÞoð1Þ, where

u ¼ log p

log N
;

we have

aQpðNÞfNp�ð1þoð1ÞÞ=daue

as p ! y.

Proof. We put

s ¼ daue:

We consider ðaQpðNÞÞs products n ¼ n1 � � � ns where ðn1; . . . ; nsÞ A QpðNÞs. By
(2) we see that

qpðnÞ1 qpðn1Þ þ � � � þ qpðnsÞ1 0 ðmod pÞ;

thus qpðnÞ ¼ 0.
Furthermore, using Corollary 5 we see that each naNs < paþ1 has at

most

tsðnÞ ¼ poð1Þ
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such representations. We also note that Ns b pa. Therefore, combining
Lemmas 1 and 2, we derive

ðaQpðNÞÞs aTpðNsÞpoð1Þ
aNsp�1þoð1Þ;

which implies the desired result. r

Corollary 7. If

log p

log N
¼ ðlog pÞoð1Þ and

log p

log N
! y

then

aQpðNÞaN 211=463þoð1Þ

as p ! y.

For the set RpðNÞ we have a bound in a wider range of u.

Theorem 8. For any fixed

a >
463

252
;

for ub 1, where

u ¼ log p

log N
;

we have

aRpðNÞf uNp�1=daue

as p ! y.

Proof. The proof is the same as that of Theorem 6 except that instead of
Corollary 5 we note that there are at most s! products of s primes l1 � � � ls that
take the same value. So, we derive

ðaRpðNÞÞs f s!TpðNsÞf s!Nsp�1;

and the result now follows. r

Corollary 9. If N ¼ poð1Þ then

aRpðNÞaN 211=463þoð1Þ log p

as p ! y.

The method that has been used in Theorems 6 and 8 does not apply to
shifted intervals. To estimate QpðM;NÞ for an arbitrary M we use a di¤erent
method.
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Theorem 10. We have,

aQpðM;NÞfN 1=4p5=8:

Proof. We may assume that N < 0:5p2 as otherwise the bound is trivial.
Let

VpðlÞ ¼afw1;w2 A Gp : w1 þ w2 1 l ðmod p2Þg:
Clearly X

l A ½2M;2Mþ2N�
VpðlÞbTpðM;NÞ2:ð6Þ

Furthermore, by the Cauchy inequality

X
l A ½2M;2Mþ2N�

VpðlÞ

0
@

1
A
2

aN
X

l A ½2M;2Mþ2N�
VpðlÞ2ð7Þ

aN
Xp2

l¼1

VpðlÞ2 ¼ NWp;

where Wp is as in Lemma 3.
Combining the inequalities (6) and (7) and using Lemma 3, we obtain

TpðM;NÞfN 1=4p5=8. Recalling (3), and verifying that N 1=4p5=8 bN=p for
Na 0:5p2, we obtain the desired result. r

Clearly, the bound of Theorem 10 improves the bound (4) for

p5=6 aNa p107=126:

4. Ihara sums

First we consider approximations of Sp by partial sums

SpðNÞ ¼
X

n AQpðNÞ

LðnÞ
n

:

Theorem 11. For N ¼ poð1Þ we have

Sp ¼ SpðNÞ þOðN�252=463þoð1Þ log pÞ
as p ! y.

Proof. Clearly, we have

Sp � SpðNÞ ¼
X
l>N

l ARpðpÞ

log l

l
þOðN�1 log NÞ:ð8Þ
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We now see from Corollary 9 that for any

L < N 3

we have X
2Lb l>L

l ARpðpÞ

log l

l
a

log L

L

X
l ARpð2LÞ

1ð9Þ

a
log L

L
L211=463þoð1Þ log p ¼ L�252=463þoð1Þ log p:

For

pbL > N 3

we choose

a ¼ 463

251

and note that for ub 1 we have

dauea 3

2
au:

Thus Theorem 8 implies the bound

aRpðLÞfL1�2=3a log pfL2=3 log p:

Hence in the above range, we haveX
2Lb l>L

l ARpðpÞ

log l

l
a

log L

L

X
l ARpð2LÞ

1ð10Þ

a
log L

L
L2=3 log p ¼ L�1=3þoð1Þ log p:

Thus covering the range ½N; p� by dyadic intervals of the form ½L; 2L� and using
the bounds (9), and (10) we deriveX

l>N

l ARpðpÞ

log l

l
aN�252=463þoð1Þ log p;

which after the substituting it in (8) implies the desired estimate. r

Since by the Mertens formula (see, for example, [9, Equation (2.14)])

SpðNÞa
X
naN

LðnÞ
n

¼ log N þOð1Þ;

we derive from Theorem 11:
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Corollary 12. For N ¼ poð1Þ we have

Sp a log N þOðN�252=463þoð1Þ log pþ 1Þ
as p ! y.

We now obtain an unconditional improvement of the conditional estimate
(1).

Corollary 13. We have

Sp a ð463=252þ oð1ÞÞ log log p

as p ! y.

Proof. Taking N ¼ dðlog pÞae with a > 463=252 in the bound of Corollary
12 leads to the estimate

Sp a a log log pþOð1Þ:
Since a is arbitrary, the result now follows. r

5. Index of some subfields of cyclotomic fields

We recall that the index IðKÞ of an algebraic number field K is the greatest
common divisor of indexes ½OK : Z½x�� taken over all x A OK, where OK is the ring
of integers of K.

As in [8], we denote by Ip the index of the field Kp, which is the unique
cyclic extension of degree p over Q that is contained in the cyclotomic field
Qðexpð2pi=p2ÞÞ.

It has been shown in [8, Proposition 4 (i)] that under the Generalised
Riemann Hypothesis the bound

log Ip a ð1þ oð1ÞÞp2 log log pð11Þ
holds as p ! y. Also [8, Proposition 5] gives an unconditional but weaker
bound

log Ip a ð1=4þ oð1ÞÞp2 log p:

We use Corollary 13 to obtain an unconditional improvement of (11).

Theorem 14. We have

log Ip a
463

504
þ oð1Þ

� �
p2 log log p

as p ! y.

Proof. By [8, Equation (2.4.1)] we have

log Ip ¼
X

n AQpðpÞ
apðnÞLðnÞ;ð12Þ
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where

apðnÞ ¼
p

n

� �
p� 1

2
n� 1

2

p

n

� �
n

� �
:

Since

apðnÞ ¼
p

n

� �
p� 1

2
n 1þ p

n

� �� �� �
a

p

n

� �
p

2
a

p2

2n
;

we see from (12) that

log Ip a
p2

2
Sp:

Using Corollary 13, we conclude the proof. r

One certainly expects that Ip is much smaller than the bound given in
Theorem 14, however no unconditional lower bound seems to be known. How-
ever, Ihara [8, Proposition 4 (ii)] gives a conditional lower bound of the type

log Ip g p3=2;

with an explicit value of the implied constant.
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