ON HERMITIAN MODULAR FORMS OF SMALL WEIGHT OVER IMAGINARY QUADRATIC FIELDS

Hisashi Kojima, Yasuhide Miura, Hiroshi Sakata and Yasushi Tokuno

Abstract

In this paper, we prove that an Hermitian modular form with small weight over the quadratic field with class number one is a linear combination of theta series associated with Hermitian quadratic forms.

Introduction

Resnikoff and Freitag proved that a Siegel modular form with small weight is a singular form. Shimura [8] generalized these results for more general modular forms. In [5], Freitag proved that a singular Siegel modular form is a linear combination of theta series.

The purpose of this note is to discuss analogous results in the case of Hermitian modular forms over the quadratic fields. By virture of [8], we can see that Hermitian modular forms with small weight are singular forms. Using this theorem and the results in [4], we deduce that an Hermitian modular form with small weight over the quadratic field with class number one is a linear combination of theta series. We mention that we can not remove the condition that the quadratic field is class number one.

§1. Notation and preliminaries

We denote by $\mathbf{Z}, \mathbf{Q}, \mathbf{R}$ and \mathbf{C} the ring of rational integers, the field of rational numbers, the field of real numbers and the field of complex numbers. For a ring A, we denote by A_{m}^{n} the set of all $n \times m$ matrices with entries in A and, we put $A_{1}^{n}=A^{n}$ (resp. $\left.A_{n}^{m}=M_{n}(A)\right)$. Let $K=\mathbf{Q}(\sqrt{-D})$ be the imaginary quadratic field of discriminant $-D$ and \mathfrak{D} the ring of integers in K. Put $G L_{n}(\mathfrak{D})=\left\{g \in M_{n}(\mathfrak{D}) \mid \operatorname{det} g \in \mathfrak{D}^{\times}\right\}$, where \mathfrak{D}^{\times}means the group of all invertible

[^0]elements in \mathfrak{D}. Let $\Gamma_{\mathfrak{y}}^{s}(K)$ be the Hermitian modular group of degree s over K, i.e.,
\[

\Gamma_{\mathfrak{y}}^{s}(K)=\left\{M=\left($$
\begin{array}{cc}
A & B \tag{1.1}\\
C & D
\end{array}
$$\right) \in M_{2 s}(\mathfrak{D}) \left\lvert\, M^{*}\left($$
\begin{array}{cc}
0 & E_{s} \\
-E_{s} & 0
\end{array}
$$\right) M=\left($$
\begin{array}{cc}
0 & E_{s} \\
-E_{s} & 0
\end{array}
$$\right)\right.\right\}
\]

where $M^{*}=^{t}(\bar{M})$ and E_{s} means the unity of $G L_{s}(\mathfrak{D})$. Let $\mathcal{Z}_{\mathfrak{y}}^{s}$ be the complex Hermitian half space of degree s, i.e.,

$$
\begin{equation*}
\mathcal{Z}_{\mathfrak{5}}^{s}=\left\{Z \in M_{s}(\mathbf{C}) \left\lvert\, \frac{1}{2 \sqrt{-1}}\left(Z-Z^{*}\right)>0\right.\right\} \tag{1.2}
\end{equation*}
$$

We define an action of $\Gamma_{\mathfrak{y}}^{s}(K)$ on $\mathcal{3}_{\mathfrak{5}}^{s}$ by

$$
\begin{equation*}
Z \mapsto M\langle Z\rangle=(A Z+B)(C Z+D)^{-1} \tag{1.3}
\end{equation*}
$$

for all $Z \in \mathcal{3}_{\mathfrak{y}}^{s}$ and $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma_{\mathfrak{5}}^{s}(K)$. A holomorphic function F on $\mathcal{3}_{\mathfrak{5}}^{s}$ is called an Hermitian modular form of weight γ and of degree s over K, if the following condition is satisfied

$$
\begin{equation*}
F(M\langle Z\rangle)=\operatorname{det}(C Z+D)^{\gamma} F(Z) . \tag{1.4}
\end{equation*}
$$

We denote by $M\left(\Gamma_{\mathfrak{5}}^{s}(K), \gamma\right)$ the space of such all forms $F(Z)$ (cf. [1, 2, 3, 4]).
Here we introduce theta series (cf. [7]). Let H be a positive Hermitian matrix of degree γ and let \mathfrak{E} stand for a lattice in \mathbf{C}_{s}^{γ} considered as a real vector space. Then we define the theta series on $\mathcal{B}_{\mathfrak{y}}^{s}$ associated with H and \mathfrak{L} by

$$
\begin{equation*}
\boldsymbol{\Theta}_{\mathfrak{Q}}(Z, H)=(\operatorname{vol} \mathfrak{L})^{1 / 2} \sum_{N \in \mathfrak{I}} \exp \left(\pi \sqrt{-1} \operatorname{tr}\left(Z N^{*} H N\right)\right) \quad \text { for all } Z \in \mathcal{B}_{\mathfrak{G}}^{s} \tag{1.5}
\end{equation*}
$$

By [7], we obtain

$$
\begin{equation*}
\boldsymbol{\Theta}_{\hat{\mathfrak{P}}}\left(-Z^{-1}, H^{-1}\right)=(\operatorname{det}(-\sqrt{-1} Z))^{\gamma}(\operatorname{det} H)^{s} \boldsymbol{\Theta}_{\mathfrak{Q}}(Z, H) \tag{1.6}
\end{equation*}
$$

where $\quad \hat{\mathfrak{L}}=\left\{\hat{N} \in \mathbf{C}_{s}^{\gamma} \mid \operatorname{tr}(\hat{N} N) \in \mathbf{Z}\right.$ for all $\left.N \in \mathfrak{Q}.\right\}$. We take $\mathcal{Z}=\mathfrak{D}_{s}^{\gamma}$. Since $\hat{\mathfrak{L}}=\frac{2}{\sqrt{-D}} \mathfrak{L}$, we see that

$$
\boldsymbol{\Theta}_{\hat{\mathfrak{Z}}}(Z, H)=\frac{1}{\operatorname{vol}(\mathfrak{D})} \boldsymbol{\Theta}_{\mathfrak{Z}}\left(Z, \frac{4}{D} H\right) .
$$

Therefore

$$
\begin{equation*}
\boldsymbol{\Theta}_{\mathfrak{I}}\left(-Z^{-1}, \frac{4}{D} H^{-1}\right)=(-\sqrt{-1})^{\gamma s}(\operatorname{det} Z)^{\gamma}(\operatorname{det} H)^{s} \operatorname{vol}(\mathfrak{I}) \boldsymbol{\Theta}_{\mathfrak{I}}(Z, H) . \tag{1.7}
\end{equation*}
$$

Suppose that $\boldsymbol{\Theta}_{\mathfrak{Z}}(Z, H)$ is an Hermitian modular form of weight γ and of degree s. Then we see that

$$
\boldsymbol{\Theta}_{\mathfrak{Q}}\left(-Z^{-1}, H\right)=(-\sqrt{-1})^{\gamma s}(\operatorname{det} Z)^{\gamma} \boldsymbol{\Theta}_{\mathfrak{Q}}(Z, H),
$$

which yields that

$$
\begin{equation*}
\boldsymbol{\Theta}_{\mathfrak{Q}}\left(Z, \frac{4}{D} H^{-1}\right)=(\operatorname{vol} \mathfrak{L})(\operatorname{det} H)^{s} \boldsymbol{\Theta}_{\mathfrak{Q}}(Z, H) \tag{1.8}
\end{equation*}
$$

Put $Z=X+\sqrt{-1} Y$ with X and Y Hermitian, and compute the limit as the eigenvalue of Y approach infinity (and X remains in some compact set). Then, by $[4,(8)]$, we see that

$$
\begin{equation*}
\operatorname{det} H=2^{\gamma} D^{-\gamma / 2} . \tag{1.9}
\end{equation*}
$$

We refer to $[4,(23)]$ for the existence of Hermitian matrices satisfying (1.9). Consider an Hermitian matrix $H=\left(h_{i j}\right)$ of degree γ such that

$$
H \in \frac{2}{\sqrt{-D}} M_{\gamma}(\mathfrak{D}), \quad h_{i i} \in 2 \mathfrak{D} \quad(1 \leq i \leq \gamma)
$$

We call H an even integral Hermitian matrix of degree γ. The following proposition is proved in [4].

Proposition 1. Let H be a positive even integral Hermitian matrix of degree γ of determinant $2^{\gamma} D^{-\gamma / 2}$. Then 4 divides γ and the theta series

$$
\begin{equation*}
\boldsymbol{\Theta}(Z, H)=\sum_{N \in \mathfrak{D}_{s}^{\prime}} \exp \left(\pi \sqrt{-1} \operatorname{tr}\left(Z N^{*} H N\right)\right) \tag{1.10}
\end{equation*}
$$

belongs to $M\left(\Gamma_{\mathfrak{5}}^{s}(K), \gamma\right)$.

§2. Main theorem

The purpose of this section is to investigate the space $M\left(\Gamma_{\mathfrak{5}}^{s}(K), \gamma\right)$ where $s>\gamma$. If $s>\gamma$ and 4 does not divide γ, then $M\left(\Gamma_{\mathfrak{y}}^{s}(K), \gamma\right)=0$ (cf. [4, Theorem $3]$). We deduce the following theorem.

Theorem 2. Suppose that K is class number one and $s>4 k$. Then $M\left(\Gamma_{\mathfrak{5}}^{s}(K), 4 k\right)$ is spanned by theta series of the type discribed in Proposition 1.

Proof. Let $F(Z)$ be an element of $M\left(\Gamma_{\mathfrak{5}}^{s}(K), 4 k\right)$. Then $F(Z)$ has a Fourier expansion of the form

$$
\begin{equation*}
F(Z)=\sum_{H \in L(s)} a(H) \exp (\pi \sqrt{-1} \operatorname{tr}(H Z)), \tag{2.1}
\end{equation*}
$$

where $L(s)=\{H \mid H$ is even integral Hermitian matrix of degree s and $H \geq 0\}$. From [8], we see that $F(Z)$ is a singular form. Using this and the property that $F\left(U^{*} Z U\right)=F(Z)$ for every $U \in G L_{s}(\mathfrak{D})$, we obtain that
(2.2) $\quad a(H) \neq 0 \Rightarrow \operatorname{det} H=0 \quad$ and $\quad U^{*} H U \in L(s) \quad$ for every $U \in G L_{s}(\mathfrak{D})$.

First we prove the following assertion: Suppose that $F(Z)$ is a non-zero element of $M\left(\Gamma_{\mathfrak{5}}^{s}(K), 4 k\right)$. Then there exists a matrix $H_{0} \in L(4 k)$ such that

$$
a\left(\left(\begin{array}{cc}
0 & 0 \tag{2.3}\\
0 & H_{0}
\end{array}\right)\right) \neq 0 \quad \text { and } \quad \operatorname{det} H_{0}=2^{4 k} D^{-2 k}
$$

To verify this fact, let ρ be the maximal rank of those H for which $a(H) \neq 0$. Then $0<\rho<s$; any H of rank ρ with $a(H) \neq 0$ can be represented as

$$
H=U^{*}\left(\begin{array}{cc}
0 & 0 \\
0 & H_{0}
\end{array}\right) U
$$

with $H_{0} \in L(\rho), H_{0}>0$ and $U \in G L_{s}(\mathfrak{D})$ because of class number one of K and (2.2). Choose H and U such that $\operatorname{det} H_{0}$ becomes minimal under these conditions and fix H_{0} from now on. Then

$$
a\left(\left(\begin{array}{cc}
0 & 0 \tag{2.4}\\
0 & H_{0}
\end{array}\right)\right) \neq 0 .
$$

We consider the restriction F onto $\mathcal{3}_{\mathfrak{y}}^{s-\rho} \times \mathcal{3}_{\mathfrak{F}}^{\rho}$,

$$
F\left(\left(\begin{array}{cc}
w & 0 \tag{2.5}\\
0 & z
\end{array}\right)\right)=\sum_{H_{1} \in L(\rho), H_{1} \geq 0} \alpha_{H_{1}}(w) \exp \left(\pi \sqrt{-1} \operatorname{tr}\left(H_{1} z\right)\right)
$$

for all $z \in \mathcal{3}_{\mathfrak{\mathfrak { y }}}^{\rho}, w \in \mathcal{3}_{\mathfrak{y}}^{s-\rho}$. We see that

$$
\alpha_{H_{1}}(w)=\sum_{H} a(H) \exp \left(\pi \sqrt{-1} \operatorname{tr}\left(H_{2} w\right)\right)
$$

belongs to $M\left(\Gamma_{\mathfrak{y}}^{s-\rho}(K), 4 k\right)$, where the summation is taken over all positive semi-definite matrices $H=\left(\begin{array}{cc}H_{2} & t_{2} \\ t_{2}^{*} & H_{1}\end{array}\right)$ in $L(s)$. If $a\left(\left(\begin{array}{cc}H_{2} & t_{2} \\ t_{2}^{*} & H_{0}\end{array}\right)\right) \neq 0$, then $\left(\begin{array}{cc}H_{2} & t_{2} \\ t_{2}^{*} & H_{0}\end{array}\right)$ is of rank ρ because of the maximal condition for the rank. Therefore

$$
\left(\begin{array}{cc}
H_{2} & t_{2} \tag{2.6}\\
t_{2}^{*} & H_{0}
\end{array}\right)=V^{*}\left(\begin{array}{cc}
0 & 0 \\
0 & H^{\prime}
\end{array}\right) V
$$

with $V \in G L_{s}(\mathfrak{D}), H^{\prime} \in L(\rho)$ and $H^{\prime}>0$, which implies that $\operatorname{det} H^{\prime} \leq \operatorname{det} H_{0}$. We obtain $\operatorname{det} H^{\prime}=\operatorname{det} H_{0}$ because of the minimal condition for $\operatorname{det} H_{0}$. Hence we have $H_{0}=\left(V^{\prime}\right)^{*} H^{\prime} V^{\prime}$ for some $V^{\prime} \in G L_{\rho}(\mathfrak{D})$ and

$$
\alpha_{H_{0}}(w)=a\left(\left(\begin{array}{cc}
0 & 0 \\
0 & H_{0}
\end{array}\right)\right) \sum_{H} \exp \left(\pi \sqrt{-1} \operatorname{tr}\left(H_{2} w\right)\right)
$$ where $H=\left(\begin{array}{cc}H_{2} & t_{2} \\ t_{2}^{*} & H_{0}\end{array}\right)$ runs over $L(s)$ such that $H \geq 0$, which is represented as $H=W^{*}\left(\begin{array}{cc}0 & 0 \\ 0 & H_{0}\end{array}\right) W$ with $W \in G L_{s}(\mathfrak{D})$. We can check that this condition is equivalent to

$$
H=\left(\begin{array}{cc}
E_{s-\rho} & 0 \tag{2.7}\\
g & E_{\rho}
\end{array}\right)^{*}\left(\begin{array}{cc}
0 & 0 \\
0 & H_{0}
\end{array}\right)\left(\begin{array}{cc}
E_{s-\rho} & 0 \\
g & E_{\rho}
\end{array}\right),
$$

where g runs over the matrices in $\mathfrak{D}_{s-\rho}^{\rho}$. Hence

$$
\alpha_{H_{0}}(w)=a\left(\left(\begin{array}{cc}
0 & 0 \tag{2.8}\\
0 & H_{0}
\end{array}\right)\right) \sum_{g \in \mathfrak{D}_{s-p}^{p}} \exp \left(\pi \sqrt{-1} \operatorname{tr}\left(w g^{*} H_{0} g\right)\right)
$$

belongs to $M\left(\Gamma_{\mathfrak{5}}^{s-\rho}(K), 4 k\right)$. Comparing the weight, we see that $\rho=4 k$. Moreover, by virtue of (1.9), we see that det $H_{0}=2^{4 k} D^{-2 k}$. Therefore, we have the first assertion.

Next we prove our theorem. Take a complete set H_{1}, \ldots, H_{ℓ} of representatives of the classes of all positive Hermitian matrices of degree $4 k$ which are even integral and of determinant $2^{4 k} D^{-2 k}$ (cf. [6]). We put

$$
\begin{equation*}
F^{*}(Z)=F(Z)-\sum_{i=1}^{\ell} c_{i} \mathbf{\Theta}\left(Z, H_{i}\right)=\sum_{H \in L(s), H \geq 0} a^{*}(H) \exp (\pi \sqrt{-1} \operatorname{tr}(H Z)) \tag{2.9}
\end{equation*}
$$

We obtain

$$
a^{*}\left(\left(\begin{array}{cc}
0 & 0 \\
0 & H_{i}
\end{array}\right)\right)=a\left(\left(\begin{array}{cc}
0 & 0 \\
0 & H_{i}
\end{array}\right)\right)-c_{i} \alpha\left(H_{i}, H_{i}\right)
$$

for $i=1,2, \ldots, \ell$, where $\alpha\left(H_{i}, H_{i}\right)$ is the number of units of H_{i}. Now, c_{i} can be determined by

$$
a^{*}\left(\left(\begin{array}{cc}
0 & 0 \tag{2.10}\\
0 & H_{i}
\end{array}\right)\right)=0
$$

for $i=1,2, \ldots, \ell$. Applying the above arguments for a singular form $F^{*}(Z)$, we obtain $F^{*}(Z) \equiv 0$. Hence we deduce that

$$
\begin{equation*}
F(Z)=\sum_{i=1}^{\ell} c_{i} \boldsymbol{\Theta}\left(Z, H_{i}\right) . \tag{2.11}
\end{equation*}
$$

This completes our proof of the theorem.

References

[^1][4] D. M. Cohen and H. L. Resnikoff, Hermitian quadratic forms and Hermitian modudar forms, Pacific J. of Math. 76 (1978), 329-337.
[5] F. Freitag, Stabile modulformen, Math. Ann. 230 (1977), 197-211.
[6] P. Humbert, Théorie de la réduction des formes quadratique définies positives dans un corps algébrique K fini, Comment. Math. Helv. 12 (1939/40), 263-306.
[7] H. L. Resnikoff, Theta functions for Jordan algebra, Invent. Math. 31 (1975), 87-104.
[8] G. Shimura, Differential operators, holomorphic projection and singular forms, Duke Math. J. 76 (1994), 141-173.

Hisashi Kojima
Department of Mathematics
Graduate School of Science and Engineering
Saitama University
Saitama, 338-8570
Japan
E-mail: hkojima@rimath.saitama-u.ac.jp
Yasuhide Miura
Department of Mathematics
Faculty of Humanities and Social Sciences
Iwate University
Morioka, 020-8550
Japan
E-mail: ymiura@iwate-u.ac.jp
Hiroshi Sakata
Waseda University Senior High School
Kamisyakujii 3-31-1, Nerima-ku
Токуо, 177-0044
Japan
E-mail: sakata@waseda.jp
Yasushi Tokuno
Sendai National College of Technology
Natori City, 981-1239
Japan
E-mail: tokuno@sendai-nct.ac.jp

[^0]: 2000 Mathematics Subject Classification. 11F55.
 Key words and phrases. Hermitian modular form, singular form. Received February 22, 2012.

[^1]: [1] H. Braun, Hermitian modular functions 1, Ann. of Math. 50 (1949), 827-855.
 [2] H. Braun, Hermitian modular functions 2, Ann. of Math. 51 (1950), 82-104.
 [3] H. Braun, Hermitian modular functions 3, Ann. of Math. 53 (1951), 143-160.

