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LIMITING DISTRIBUTION OF THE MAXIMUM OF
A NULL RECURRENT DIFFUSION PROCESS

Yuit KASAHARA AND GENKI TAHARA

Abstract

A limit theorem for the maximum processes of a class of null recurrent linear
diffusions is proved. The limiting distribution is a mixture of the Mittag-Leffler
distribution.

1. Introduction

Let X = (X(1)),», be a regular, recurrent diffusion process on an interval
I=(r;,rn) @R (=0 <1 <0< ry <o) with the local generator

2
(1.1) & = a(x)%er(x)% (a(x) > 0)

and let X*(f) = max{X(s);0 <s<t}. In the present paper we are interested in
the limiting laws of

b
v (1)

for suitable normalizing functions ¥(¢) > 0 and ¢(¢).

On this subject we should mention the classical result of Berman [1]. He
proved that, if the diffusion is positive recurrent, then the problem is reduced
to that for the maximum of i.i.d. random variables and therefore, by the well-
known Fisher-Tippet theorem, all possible limit distributions are the Gumbel, the
Fréchet, and the Weibull distribution.

On the other hand, in the case of null recurrent diffusions, [1] says that, in
some cases, the Mittag-Leffler distribution is possible. By Mittag-Leffler distri-
bution we mean the distribution x, , (0 <« < 1,7>0) on [0, o) characterized by

(1.2) (X7(1) —q(1) (1= )

0

—s (—S)k k
e, (dx) =) —————t" 5>0
J[o.,oc) Ha{45) ,;F(kwrl)

(see [4, p. 453] or [11]). Especially, if o =0,1/2 or 1, then y, , is an exponential
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distribution, a truncated normal distribution, or the unit mass at x = ¢, respecti-
vely. The distribution function of u, ; is

o0

1JX (=177 . -
gu(x) = — ’ sinzoe- I(oj+ D™ du (x>0
0=z, 255 (o4 +1) (x>0)

provided that 0 <« < 1. Another characterization of x,, (0 <a<1) is the
following: Let Z, = (Z,(t)),», be a-stable subordinator (increasing Lévy pro-
cess) such that

(1.3) Ele™%0) =™ §>0,1>0.

Then the one-dimensional marginal distribution of the inverse process Z,!(z)
obeys u, , (cf. [4, p. 453]). Note that Z;!(-) is o-self-similar:

(1.4) (Z, ! (et), £ ("2, (1), ¥e >0,

which follows immediately from (Z,(ct)), £ (c'*Z,(1)), (here, ‘L denotes the
equivalence in law). This characterization of p,, in terms of Z, helps us to
understand why [1] says that u, , is possible for the limiting distribution of (1.2)
if we recall that the inverse process (X *)_l(t) has (time-inhomogenous) inde-
pendent increments due to the strong Markov property of the diffusion. How-
ever, as far as the authors know, no concrete examples satisfying the conditions
given in [1] are known except for the case o= 1/2.

The aim of the present article is to give a limit theorem for (1.2) where the
limit distribution is not the Mittag-Leffler distribution itself but is its ‘mixture’.
Our main result will be given in Section 2, and here we only give a typical
example. Let 1 < p < 2 and consider the diffusion corresponding to

1/ d? -1 d
ff:E(E#‘pTl(_xﬁ_l)(x)a), —o0 < X < 00.
Then, X;/t* (o = (2 — p)/2), converges in law to the product of two independent
random variables; one is u, -distributed and the other Fréche-distributed (see
Example 2.4). '

Remark 1.1. As we mentioned above our problem is closely related to the
study of 7, := (X*)"'(x), which is the first-hitting time of X to x. Therefore,
our problem may be regarded as the study of the limit theorem for 7, as
x — o0. On this subject we should mention the results of Yamazato (e.g. [12]).
However, we are treating quite different type of diffusions and there seems no
direct relations.

2. Main results
We first rewrite

(2.1) ¥ =a(x)—+ b(x)—x (a(x) > 0)
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into the form of Feller’s canonical representation. To this end it is convenient
to rewrite (2.1) as

(2.2) & = a(x) d—z - V'(x)i (a(x) > 0)
' B dx? dx '
where
Fb(u)
V(x :—J —, —00<x< 0.
0=, aw
Now define
(2.3) s(x) = J VW gy (xel)
0
and
Yl
2.4 m(x :J —e "W gy (xel).
(24) ® =], 2 (xel)
Here, fov =— jg if x <0 asusual. So far we did not mention detailed conditions

on a(x) and h(x), but we shall assume that a(x) and h(x) are measurable
functions such that V' (x), s(x) and m(x) are finite for all xe I. Throughout the
paper we shall confine ourselves to the case where s(x) — —oo(x | r1), s(x) —
o0(x T rp) so that s~'(x) is defined for all x € R, which condition means that the
process is recurrent. The function s(x) is referred to as the scale function, and
the Lebesgue-Stieltjes measure dm(x) is called the speed measure or the canonical
measure of X (see e.g. [5]). Using above functions we can rewrite % as follows:

d d d d
- V) Z [V )= 2 %
¥ = alx)e dx (e dx) dm(x) ds(x)’

Next, in order to describe the limiting distribution of (1.2) we prepare the fol-
lowing stochastic process (c.f. [3]). By a canonical extremal process we mean a
nonnegative, nondecreasing process (£(7)),., with the following finite-dimensional
marginal distributions; for 0 < <--- <, and 0 < x| < --- < Xy,

(2.5) P(E(h) < x1,...,E(t) < x0) = G(x1)"G(x2) 7" - G(x,) "

where G(x) = e~ !/~ (Fréche distribution). Such a process can be obtained as the
maximum process of a Poisson point process with the characteristic measure
v(dx) = x2 dx so that e () = G(x) (for the definition of Poisson point pro-
cess see [7]). Note that &(-) is 1-self-similar;

(2.6) (te60) L) Yoo

c

Also note that &(-) is stochastically continuous (i.e., P{(r) =<&(r—0)} =1
(V¢ > 0)), which is clear from E[1/&(¢)] =1/t
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Our main result is the following:

Throughout the paper B denotes the convergence of all finite-dimensional
marginal distributions.

THEOREM 2.1. Let y >0 and put o =1/(y+1).
If

(2.7) lim M:C>O> 1imM:O

X——00 ‘X| X— 0 x7 ’

C»ZS(X*W)))M 14 (éf(zal(t))> (1 — o),

t>0

where (4(1)),5 is a canonical extremal process which is independent of (Z,(1)),s,
and

Tl —a) (1 — ot ?
(2.8) Ca——mﬂ){ (1 —o0)}".
THEOREM 2.2. [If, in addition to the assumptions of Theorem 2.1,
(2.9) lim S_l(i;()—;gq“) — G(x), x>0,
Sfor some ¢(1) (>0), q(A), and continuous G(x) (x> 0), then
1 * o o)? i) L -1 _
e 0 a0} L 6(EeZ W) (- o)

The proofs will be given in Section 4.
Remark 2.3. The function G(x) (x > 0) in (2.9) is necessarily of the same
type as one of the following three functions
xf —x7F logx (B >0),

and the law of G(&(1)) is the Fréche, the Weibull, and the Gumbel distribution,
respectively.

Example 2.4. Let 0 <p, <p_ <2 and let

1/d> px)—14d
’3’—5(@* Y dx

), —00 < X < 0,

where
p- (x<-—1)
P =41 (K <1).
Py (x>1)
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Then
W' (< 1)
e’ =1x (Ix[ < 1),
x7Pe (x>1)

—1 —p_
H(mz -D)-1 (x<-1)
s(¥) =4 x (Ixl < 1)
E— (X7 =1D+1  (x>1)
2 - -2 (r< -
mx)={2x (x < 1) -
p%(x/’+—l)+2 (x>1)

Therefore, putting y=p_/(2—p_), f=1/(2—p,), we have

_ -1 _ Y -1
i GO 22 m ()
X——00 |x|} pP_ X—00 x7

and

s(x) . s (x) x\*

xﬁrr%m:ﬁ, so that A11_)1101672 (B) , x>0.

Therefore, we have

(& xwt (jrevz o) am

t BC, ” ’
where o =1/(y+1)=(2—-p_)/2 and
22-p.) _22-p )"

P P

3. Preliminaries

The basic idea of the proofs is to represent all necessary processes as
functionals of a fixed Brownian motion.

Let B= (B(t)),», be a one-dimensional standard Brownian motion starting
at 0 and {/(t,x);¢ > 0,x € R} be the local time of B with respect to the measure
2 dx:

JIIE(B(S)) ds = ZJ /(%) dx, EeRR).

0 E
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One of the standard ways to construct a diffusion (X(7)),., with the generator

d? d d d

(3.1) ¥ =al) a2 PN = G B

is the following: Let m(x) = m(s~'(x)) and let

(3.2) A(f) = JR /(%) din(x), 1> 0.

Then, it is well known that

(3.3) Y(t) = B(47'(¢)), t=0

. e . - d d

is a diffusion with the generator ¥ = ——— — and therefore,
dm(x) dx

(3.4) X(0):=s"1Y(1)), (t=0)

corresponds to (3.1) with the initial condition X (0) =0 (see It6-McKean [6]).
Therefore, in what follows we shall adopt (3.4) for the ‘definition’ of (X(7)),,.
Note that (3.3) and (3.4) imply

(3.5) X“(6)=s (Y1) and Y*(r)=B*(A7\(1)), =0,

where X *(¢), Y*(¢) and B*(¢) are the maximum processes of X (¢), Y (¢) and B(¢),
respectively.

Throughout the paper let us say that a cadlag stochastic process (Z(?)),- is
parametrized by (x(t), y(¢)) if x(-) is a cadlag process, y(-) is a non-negative,
nondecreasing cadlag process, and if Z(f) =x(y~'(¢)) as. For example,
(3.5) means that X*(f) and Y*(¢) are parametrized by (s~'(B*(¢)),A(t)) and
(B*(t), A(1)), respectively. In this way the study of X*(¢) (or Y*(f)) may be
reduced to that of (B*(¢),A(?)).

LemMma 3.1. For every A >0,

C Y*(cil/“z))
4 >0
is parametrized by
(3.6) (13*(121) 1 A("Zt)>
. - ,—— AL .
A C)»l/a >0

Proof. Simply compute the inverse process of the second component and
use (3.5). O
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To find the limiting distribution of (3.6) we prepare

LemMMa 3.2.  For every A > 0,

(3.7) GB*(%), 11 /1A(zzz)) 4 (B*(z),lj /(t,x) dm, (x)>
) >0 CJr 1>0
where
- 1
m;(x) = Wm(/lx)7 xeR.

Proof. Since

(3B020.0G20%)) L (B0

t>0

1
we have (IB*(/IZZ)) 4 (B*(1)), and, simultaneously,

t

1 1 _
(3.8) 7 A(X%) (: WJR /(3% x) dm(x))
is equivalent in law to
(3.9) ILJ /(t,x) dm(Ax) = J ((t,x) dm;,(x).
2V Jr R

We next find the limiting process of (3.7):

Lemma 3.3.  Under the assumptions of Theorem 2.1,

(3.10) GB*(AZZ),MIWA(A%O L (B (1), 44(1) 10

t>0

over the function space C(]0,0);R?), where

_ ® @y _ (=07 (x<0)
Am(t)—JR/(t,x) A (%), m (x)—{o e
Proof. We first note that (2.7) implies
1 1 1 m(s™' (2
) = pm(s~ ) = )

—m¥(x) (1— o), VxeR.

x) converges vaguely to dm®(x); i.e.,

—~

Therefore, % dm;

|-

j £ () ding(x) — j £(x) dn®(x) (4 — o)
R

R

635
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for all continuous function f(x) vanishing outside a compact set. Thus we have
1
(3.11) EJ /(1,x) dri;(x) HJ (1, x) dm™ (x)
R R

for every fixed t > 0. In fact, this convergence is automatically uniform in ¢ on
every finite interval because the both sides are nondecreasing and the right-hand
side is continuous by Pdlya’s extension of Dini’s theorem (see e.g. [2, 1.11.22]).
Now combining (3.11) with Lemma 3.2 we can deduce (3.10). O

ProPOSITION 3.4.  Under the assumptions of Theorem 2.1,
c* ., fd. w1
JE Y* (1) — (B*(4,°(1));s9 (4— ).
g t>0

Proof. In (3.10), each side is a parametrization of (1/4)Y*(cA'*f) or of
B*(A;!(1)). Therefore, Lemma 3.1 implies that

Gren) Lm o)., -

For this kind of arguments see Appendix. Now change the variable (replace
AV by ). O

For the proof of Theorem 2.1 our next task is to show that the limit process
B*(A4;'(#)) in Proposition 3.4 is distributed like ¢(Z, (7)) in Theorem 2.1 up to
a multiplicative constant C,. To this end let us represent Z,(-) and &(-) as
functionals of the Brownian motion B():

Let A,(t) be as before and let

(3.12)  T,(t) = A,(/71(1,0)) ( L £(¢71(1,0), x) dm(“)(x)), t>0.

(Here, /7(1,0) := inf{s;/(5,0) > ¢}.) Then, it is well-known that (T(1) ;5 1s
an o-stable subordinator such that
(3.13) Efe™T0) = =G5 1>0,5>0,

where C, is the same as in (2.8) (see e.g. [9]). Therefore, comparing (1.3) and
(3.13), we see that (7,(t/C.)),s is identical in law to (Z,(t)),.,. Thus in what
follows it is harmless to assume that

(3.14) Z,(t) = T,(t/ C,).

We next construct a process &(¢) given in Theorem 2.1; i.e., a process which is
independent of Z, and has the marginal distribution (2.5). An answer is

=B (7'(1), 120, /(1) =1(10).

Indeed, this is a canonical extremal process because the right-hand side is the
maximum process of a (0, o0)-valued Poisson point process with characteristic
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measure v(dx) = x~2 dx, which fact is well-known in the excursion theory for the
Brownian motion (see [7, Sec. 4.3]). It remains to check that B*(/~!(-)) is
independent of Z,(-). However, it is clear because B*(/~'(-)) is a functional of
positive excursions while Z,(-) is a functional of negative excursions (positive
excursions and negative excursions are independent).

LemmA 3.5. Let &(t) and Z,(t) be as above. Then, for every t >0,

B 0) =1 0) =< 20 0) s

o

Proof. Since the latter equality follows from (3.14) we shall prove the first
only. By the definition of 7,(¢) (see (3.12)), we have

T, (0) = (4, (1)),
where /(f) = /(¢,0). Combining this with &(z) = B*(¢/~'(f)) we roughly have
(3.15) ST (1) = B (™ ol 0 4] (1) = BY (47 (1),

o

This heuristic argument involves a problem because, precisely speaking, /! o /(1)
=t fails. To be strict (3.15) should be replaced by

&T, (1= 0) = 0) < B* (4, (1) < &1, (1))

(see Theorem 5.1 in Appendix). Therefore, it remains to show that
E(T, Y (t—0)—0)=¢&(T,(r)) with probability one for every fixed > 0. Since

o

T '(t—0)=T;'(t) as (when ¢ is fixed), it is sufficient to prove
PET, (1) - 0)=&(T, (1) =1, Vi>0.

o

However, by the independence (see (i)), the left-hand side equals
| Pes=0) = eur (@) =1
(0,0)
because &(-) is stochastically continuous as we mentioned before. O

Now we have that the limit process in Theorem 2.1 and that in Proposition
3.4 are equivalent in law;

PropoOSITION 3.6.

(3.16) (B (A4 (1))1ay L (Ci%f(z;(r))) O

Proof. By Lemma 3.5 the left-hand side is identical in law to

(t(e=0)).,
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and, by the l-self-similarity of &(-) (see (2.6)), the right-hand side is equivalent in
law to the right-hand side of (3.16). O
COROLLARY 3.7.
* -1 d 1 -1
B (Aa (1)) = F é(l) : Zoc (1)

Proof. The left-hand side is identical in law to Cif(Z(; (1)) by Proposition

3.6. Since &(-) and Z;!(1) are independent and &(-) is l-self-similar, we see
that &(Z;1(1)) is equivalent in law to Z;!(1)-&(1). O

4. Proofs of Theorems 2.1 and 2.2

Proof of Theorem 2.1. Combining Propositions 3.4 and 3.6 we have

(%Y“M> ﬁi@%f@f@ﬂ (4= o).

t>0 t>0

Then recall that Y*(¢) = s(X*(¢)) (see (3.5)). O

Proof of Theorem 2.2. Let

(/9™ — gl
G =G

, x>0.

Then (2.9) implies
4.1 lim G,(x) =G(x), x>0.

A— 00

Note that the convergence in (4.1) is uniform on every compact set in (0, o0)
because G,(x) is monotone and G(x) is continuous. Therefore, (4.1) and
Theorem 2.1 imply

. < S I Gl Lz PR
42 Geen) He(gaz'n) -,
that is,
1 * . 1/c)? i i -1
e G — Gy 2 6 (e o)
Especially,



NULL RECURRENT DIFFUSION PROCESS 639

Since ¢(Z7'(1)) is equivalent in law to Z;!(1)¢(1) by the self-similarity of
(&(1)),;0, we have the assertion of the theorem. O

5. Appendix

In the present paper we said that a cadlag process (Z(t)),., is parametrized
by two cadlag processes X(-) and Y(-) if Y(-) is nondecreasing and if Z(¢) =
X(Y~1(7)) as. (see Section 3). In this section we prove two theorems on the
parametrized processes.

THEOREM 5.1. Let f(¢t), g(t), h(t) be nondecreasing, right-continuous and
nonnegative functions defined on [0,00) and define f,(t) = f(h(t)) and g,(t) =
g(h(t)). Then,

filgy 't =0) = 0) < f(g7"(1) < fulg, (1), 1>0.

Proof. Draw the graph G(g, f) = {(g(s), f(s)); s = 0} and see how f(g~'())
is determined. Then observe that G(g;, fi) = G(g, f). O

Let D = D([0, 0) : R) be the space of all R-valued cadag functions endowed
with the usual Skorohod Ji-topology (see [10] for the definition). We denote by
® (= D) the totality of cadlag nondecreasing functions f : [0, 00) — [0, 00) and
let ®, ={fe®:lim,,, f(x)=ow}. For fe®, we always define f(—0) =0
for convenience’ sake.

THEOREM 5.2. Let (X;(1));50, (Yi(2)),50, (X(1)),5¢ and (Y(2)),5o be sto-
chastic processes with sample paths in ® and suppose that P(Y, € d) o) =
P(Ye®,)=1 so that the inverse processes (Y;'(t)),5o and (Y7'(1)),5,
make sense.

(i) 7f
(5.1) (X,(0), Y(8) % (X (1), Y()) in Dx D
and if
(5.2) P{X(Y'(t=0)—0)=X(Y ')} =1, Vt>0
then,

X077 () 25 x (v (1),

(i) Each of the following two conditions is sufficient for (5.2):
(A1) (X(1)),5¢ has continuous paths and

PiY't—-0)=Y"'()} =1 (Vt=0).
(A2) (X(1)),50 and (Y(t)),5 are independent and
PIX()=X(t—-0)=P{Y ') =Y ' t—=0)} =1 (Vt>0).
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Proof. By Skorohod’s theorem (5.1) can be realized by an almost-sure
convergence: On a suitable probability space we can construct cadag processes
X;, X, Y,, Y with the following properties.

) (A:’A,A}A’;V) is equivalent in law to (X}, ¥))

(2) (X,Y) is equivalent in law to (X,7Y)

(3) (X, 1) 4 (X, Y) with probability one.

Since Jij-convergence implies the convergence at all continuity points of the
limit function, it follows from (1) that, with probability one,

X(1—0) < li}ninf X,(t—0) < limsup X;(1) < X(1), Yt>0
A— 00 1

and
Y7t = 0) < liminf ¥7!(r - 0) < limsup Yty <Y (), vixo.
— 00

A— 0

(Recall that we defined X(r—0) = Y !(r—0) =0 when =0.) Therefore,
X(Y '(1-0)-0) < lim inf X, (Y71 (t—0)-0)

< limsup X;(Y;'(¢) < X(Y~Y(1)), V=0
A—0
Thus we can deduce the assertion of (i). Let us prove (ii). Since it is clear that
(Al) is sufficient, let us see that (A2) implies (5.2). For every fixed # > 0, we
assume that P{Y () = Y~ !(t—0)} = 1. Therefore, it is sufficient to show that

PIX(Y ') -0)=X(Y (1)} =1

But this is easy because X and Y are independent;

PLX(Y (1) 0) = X(¥ (1))} =j[0 PN = X~ Oy () =1 O
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