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TORUS INVARIANT SPECIAL LAGRANGIAN SUBMANIFOLDS IN

THE CANONICAL BUNDLE OF TORIC POSITIVE KÄHLER

EINSTEIN MANIFOLDS
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Abstract

In this paper we construct torus invariant special Lagrangian submanifolds in the

canonical bundle KM of the toric positive Kähler Einstein manifold M. We construct a

Ricci-flat metric on KM using the Calabi ansatz to show that KM is a Calabi-Yau

manifold. Then, using moment map techniques developed in [6], we construct special

Lagrangian submanifolds in KM .

1. Introduction

In 1982, Harvey and Lawson [4] introduced the notion of special Lagrangian
submanifolds in the study of minimal submanifolds. In general, it is known by
the Wirtinger inequality that the complex submanifold in a Kähler manifold
minimize its volume in its homology class. Generalizing this property, Special
Lagrangian submanifolds are defined in Calabi-Yau manifolds.

The study of special Lagrangian submanifolds is important in relation to
mirror symmetry in physics due to the SYZ conjecture. This conjecture was
presented by Strominger, Yau and Zaslow [12] in 1996 and it explains mirror
symmetry of compact Calabi-Yau 3-folds in terms of dual fibrations by special
Lagrangian 3-tori, including singular fibers. They also propose the constructing
way of the mirror of a compact Calabi-Yau manifold by an appropriate
compactification of the dual of the special Lagrangian torus fibration.

So to understand mirror symmetry more deeply, examples of special
Lagrangian submanifolds are constructed using various techniques. In the
beginning of the study, examples are mainly constructed on Cm. Joyce [8],
[9], [10] constructed special Lagrangian submanifolds in Cm using the method of
ruled submanifolds, integrable systems and evolution of quadrics, and Haskins [5]
gave examples of special Lagrangian cones in C3, etc.

Recently, some examples have also been constructed in non-flat Calabi-Yau
manifolds. Anciaux [1] constructed SOðnÞ-invariant examples in the cotangent
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bundle of the n-dimensional sphere with the Ricci-flat Stenzel metric. Ionel and
Min-Oo [6] constructed T 2-invariant and SOð3Þ-invariant special Lagrangian
submaniolds in the deformed conifold and the resolved conifold using moment
map techniques. The case of the deformed conifold was extended to the higher
dimensional case by Kanemitsu [11].

In this paper, using the Calabi ansatz and moment map techniques, we
construct special Lagrangian submanifolds in the canonical bundle KM of the
toric positive Kähler Einstein manifold M. The Calabi ansatz is the method
searching for Kähler forms oKM

of the form

oKM
¼ p�oM þ dd cFðtÞ

where p : KM ! M is the projection, the form oM is the Kähler form of the
positive Kähler Einstein metric on M, the function t is the logarithm of the norm
function and F is a function of one variable. Special Lagrangian submanifolds
are defined in Calabi-Yau manifolds and Calabi-Yau manifolds are defined to
have the Ricci-flat Kähler form o and the holomorphic volume form W that
satisfy the equation (2.1).

First, we will see that KM is a Calabi-Yau manifold. We construct a Ricci-
flat metric on KM using the Calabi ansatz. This construction is inspired by
[3]. We also define the holomorphic volume form W :¼ da on KM for some
concrete form a on KM . Using those, we can see that KM is a Calabi-Yau
manifold.

Then we will construct torus invariant special Lagrangian submanifolds by
the moment map techniques developed in [6]. Namely, in general, in Hamil-
tionian G-space, connected G-invariant Lagrangian submanifolds must be in the
level set of the moment map. We search for the submanifolds in the level set of
the moment map with the additional condition for special Lagrangian that Im W
vanishes on the submanifolds. At this point, the form a plays an important
role. In the case of KM , there exists a torus action preserving the Calabi-Yau
structure. For this torus action, we apply the above construction.

These are summarized in Theorem 3.2. (our main theorem) and the essentials
are proved in Propositon 3.1.

We now give a brief description of the contents of this paper. In section 2,
we review the basic definitions such as Calabi-Yau manifolds, and explain the
moment map techniques developed in [6]. In section 3, we prove that KM is
a Calabi-Yau manifold and describe the moment map. Then we construct
special Lagrangian submaniolds on KM using moment map techniques. In
section 4, we give examples of special Lagrangian submanifolds by applying
our method.

Acknowledgements. The author is very grateful to the advisor Hiroshi
Konno. By his many helpful comments and encouragements, I could improve
and finish this Master thesis.

The author is also grateful to Kota Hattori for the help of the modification.
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2. Preliminaries

2.1. Basic definitions

Definition 2.1. Let ðM; J;oÞ be an m-dimensional Kähler manifold where
M is a complex manifold, J is the complex structure on M, and o is the Kähler
form on M.

A Kähler manifold ðM; J;oÞ is a positive Kähler Einstein manifold if M is
the Kähler Einstein manifold with the positive Einstein constant. A Kähler
manifold ðM; J;oÞ is toric if m-dimensional torus Tm ¼ ðS1Þm acts on ðM; J;oÞ
e¤ectively as holomorphic isometries.

Definition 2.2. The pair ðM; J;o;WÞ is an m-dimensional Calabi-Yau
manifold if the following conditions are satisfied:

� ðM; J;oÞ is a Kähler manifold.
� W is a nonzero holomorphic section of the canonical bundle KM on M.

�
om

m!
¼ ð�1Þmðm�1Þ=2

ffiffiffiffiffiffiffi
�1

p

2

 !m
W5�WW:

ð2:1Þ

Remark 2.3. If a Kähler form o and a holomorphic m-form W satisfies
(2.1), the corresponding Riemannian metric g of o is Ricci-flat and W is parallel
with respect to the Levi-Civita connection of g.

Definition 2.4. Let ðM; J;o;WÞ be a Calabi-Yau m-fold and LHM a real
oriented m-dimensional submanifold of M. Then L is called a special Lagran-
gian submanifold of M if ojL 1 0, Im WjL 1 0.

Remark 2.5. The condition ojL 1 0 says that L is a Lagrangian subma-
nifold. Therefore, special Lagrangian submanifolds are Lagrangian with the
extra condition Im WjL 1 0.

2.2. Moment map techniques
To construct special Lagrangian submanifolds, we use the moment map

techniques developed in [6].
In the moment map techniques, we search for G-invariant special Lagrangian

submanifolds for some Lie group G. Though only concrete examples are dis-
cussed in [6], they are essentially stated as follows.

Let G be a Lie group, g the Lie algebra of G, g� the dual of g, and Ada the
coadjoint action of G on g�. We define the center Zðg�Þ of g� as

Zðg�Þ :¼ fx A g� jAdaðgÞx ¼ x ðEg A GÞg:

Fact 2.6. Let ðM;o;G; mÞ be a Hamiltonian G-space. Namely, ðM;oÞ is a
symplectic manifold and a connected Lie group G acts on M preserving o with the
moment map m : M ! g�.
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Let OHM be any G-orbit. Then the G-orbit O is isotropic (i.e. ojO ¼ 0) if
and only if OH m�1ðcÞ for some c A Zðg�Þ.

We also see that if LHM is the connected G-invariant Lagrangian sub-
manifold,

LH m�1ðcÞ

for some c A Zðg�Þ.

Using this fact, we will construct G-invariant special Lagrangian submani-
folds for some Lie group G as follows.

Proposition 2.7. Assume the following four conditions:
1. Let ðM; J;o;WÞ be a Calabi-Yau manifold of complex dimension m.
2. A compact connected Lie group G of real dimension m� 1 acts on M

preserving Calabi-Yau structure. Namely, G-action preserves J, o, W. Its
generic orbits in M are of real dimension m� 1.

3. There exists a moment map m : M ! g� for G-action.
4. There exists a G-invariant ðm� 1Þ-form a such that for any v1; . . . ; vm�1 A g,

Im Wð�; v�1 ; . . . ; v�m�1Þ ¼ dðaðv�1 ; . . . ; v�m�1ÞÞ

on M where v�i is the real vector field on M generated by vi.
Then for any c A Zðg�Þ, c 0 A R and any basis fX1; . . . ;Xm�1gH g, the set

Lc; c 0 :¼ m�1ðcÞV ðaðX �
1 ; . . . ;X

�
m�1ÞÞ

�1ðc 0Þ

is a G-invariant special Lagrangian submanifold of M. The set Lc; c 0 is singular
where the isotropy group is not discrete.

We sketch the proof of this proposition.
If there exists a G-invariant special Lagrangian submanifold L, we see from

Fact 2.6. that LH m�1ðcÞ for some c A Zðg�Þ.
Next, since L is G-invariant, for any X A g, X �

p A TpL at any point p A L.
So if we take the any basis fX1; . . . ;Xm�1gH g, X1; . . . ;Xm�1 must satisfy
Im Wð�;X �

1 ; . . . ;X
�
m�1ÞjL ¼ 0 for Im WjL 1 0. From the assumption 4, this con-

dition can be described as aðX �
1 ; . . . ;X

�
m�1ÞjL ¼ c 0 for some c 0 A R.

So we see LH m�1ðcÞV ðaðX �
1 ; . . . ;X

�
m�1ÞÞ

�1ðc 0Þ.
But the right hand is G-invariant and already satisfies the special Lagrangian

condition. Its real dimension is generically m because of the assumption 2. So
we can construct special Lagrangian submanifolds as Proposition 2.7.

Concerning the sigularities, it is clear that if the isotropy group at
p A Lc; c 0 is not discrete, the set Lc; c 0 ¼ fhm;Xii� hc;Xii ¼ 0 ð1a iam� 1Þ;
aðX �

1 ; . . . ;X
�
m�1Þ � c 0 ¼ 0g is singular at p. We can also show that if the isotropy

group at p A Lc; c 0 is discrete, namely the tangent vectors fðX �
1 Þp; . . . ; ðX �

m�1Þpg are

linearly independent, the set Lc; c 0 is smooth at p. Calculate the Jacobian matrix
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about the linearly independent set fðX �
1;holÞp; . . . ; ðX �

m�1;holÞp; vg. Here, X �
i;hol is

the holomorphic vector field generated by Xi A g such that X �
i ¼ X �

i;hol þ X �
i;hol

and v A TpM � kerðIm Wð�; ðX �
1 Þp; . . . ; ðX �

m�1ÞpÞÞ. Since dhm;Xii ¼ �oðX �
i ; �Þ

and the assumption 4, the Jacobian matrix about this set is as follows:

ð�oðX �
i;hol ;X

�
j;holÞÞ1ai; jam�1 �
0 g

� �
where g ¼ Im Wðv;X �

1 ; . . . ;X
�
m�1Þ. This shows that the set Lc; c 0 is smooth at p.

Remark 2.8. From the construction, these are ‘‘maximal’’ G-invariant
special Lagrangian submanifolds. Namely, for any connected G-invariant special
Lagrangian submanifold L, there exists c A Zðg�Þ and c 0 A R such that LHLc; c 0 .

3. Constructing special Lagrangian submanifolds in the canonical bundle

Let M be an m-dimensional toric positive Kähler Einstein manifold. For
simplicity, we suppose that M is connected. It is easy to extend to the non-
connected case.

We lift the Tm-action on M and consider Tm acts on the canonical bundle
KM . Since Tm acts e¤ectively, the generic orbit of Tm is of real dimension m.

Using moment map techniques developed in [6], we construct Tm-invariant
special Lagrangian submanifolds in the canonical bundle KM of M.

Proposition 3.1. Consider the condition above. Multiplying some constant
to the Kähler form, we may assume the Kähler form oM and its Ricci form rM
satisfy

rM ¼ 2oM :

Then we have
1. The canonical bundle KM admits the Calabi-Yau structure. Its complex

structure JKM
is the canonical one, the holomorphic volume form W is da

for a concrete T m-invariant m-form a on KM , and the Kähler form oKM
is

given by

oKM
¼ p�oM þ dd cF ðtÞ

where p : KM ! M is the canonical projection and F A CyðRÞ with

F 0ðtÞ ¼ ððmþ 1Þe2t þ 1Þ1=ðmþ1Þ � 1:

Here, t ¼ log r A CyðKM � f0-sectiongÞ, and r is the distance function
form the 0-section measured by the induced fiber metric from oM. The
Kähler form oKM

extends to the 0-section smoothly.
2. The T m-action preserves the Calabi-Yau structure.
3. There exists a moment map F : KM ! ðtmÞ� for the T m-action.
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4. For any v1; . . . ; vm A tm,

Im Wð�; ~vv�1 ; . . . ; ~vv�mÞ ¼ dðIm að~vv�1 ; . . . ; ~vv�mÞÞ

where ~vv�i is the real vector field on KM generated by vi.

From this proposition, we can apply Proposition 2.7. to KM to construct Tm-
invariant special Lagrangian submanifolds in KM . Remark ZððtmÞ�Þ ¼ ðtmÞ�.

Theorem 3.2. Let M be a connected m-dimensional toric positive Kähler
Einstein manifold. Multiplying some constant to the Kähler form, we may assume
the Kähler form oM and its Ricci form rM satisfy

rM ¼ 2oM :

From Proposition 3.1., the canonical bundle KM is a Calabi-Yau manifold with
the canonical complex structure JKM

, the Kähler form oKM
, and the holomorphic

volume form W ¼ da for some concrete m-form a on KM. The m-dimensional
torus T m acts on KM preserving the Calabi-Yau structure, and there exists a
moment map F : KM ! ðtmÞ� for the T m-action.

For any X A tm, let ~XX � and X � be the real vector field on KM and M
generated by X , respectively. Denote ‘M the Levi-Civita connection of oM

and JM the complex structure on M.
Then T m-invariant special Lagrangian submanifolds in ðKM ; JKM

;oKM
;WÞ are

given by the equations:

hF;Xii ¼ Ai ð1a iamÞ
Imðað ~XX �

1 ; . . . ;
~XX �
mÞÞ ¼ Amþ1

�

, ððmþ 1Þr2 þ 1Þ1=ðmþ1Þ
trð‘MðJMX �

i ÞÞ ¼ Ai ð1a iamÞ
Imðað ~XX �

1 ; . . . ;
~XX �
mÞÞ ¼ Amþ1

(

where fX1; . . . ;Xmg is the any basis of tm and A1; . . . ;Amþ1 are any real constants.

Proof of Proposition 3.1.:

Proof of 1:
� Let the complex structure JKM

be the canonical one on KM .
� We construct the holomorphic volume form W on KM as follows.
Let p : KM ! M be the projection. For any ðx; xÞ A KM where x A M,

x A ðKMÞx, we can define the pull back map

ðdpÞ0�ðx;xÞ : T 0�
x M ! T 0�

ðx;xÞKM

where T 0�M, T 0�KM is a holomorphic cotangent bundle of M, KM , respectively.
We also use the same notation for the extension:

ðdpÞ0�ðx;xÞ : 5
�
T 0�
x M ! 5�

T 0�
ðx;xÞKM
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Then we define a holomorphic m-form a on KM and W as

aðx;xÞ :¼ ðdpÞ0�ðx;xÞðxÞ

W :¼ da:

Using local coordinates, a and W can be described as follows.
Let ðz1; . . . ; zmÞ be the local coordinate of M, and z is a fiber coordinate

of KM with respect to dz15� � �5dzm. We also denote ðz1; . . . ; zmÞ for the pull-
backed local coordinates on KM . When x ¼ z dz15� � �5dzm,

a ¼ z dz15� � �5dzm

W ¼ dz5dz15� � �5dzm:

� Next, we construct the Ricci-flat Kähler form oKM
on KM .

We search for oKM
of the form

oKM
¼ p�oM þ dd cFðtÞ

where F A CyðRÞ, t ¼ log r, and r is the distance function form the 0-section
measured by the induced fiber metric from oM .

For the construction, it is enough to show the following lemma.

Lemma 3.3. Under the condition above, there exists a function F A CyðRÞ
satisfying the following conditions:

� 1A.

omþ1
KM

ðmþ 1Þ! ¼ ð�1Þmðmþ1Þ=2
ffiffiffiffiffiffiffi
�1

p

2

 !mþ1

W5�WW

� 1B. The form oKM
extends to the 0-section.

� 1C. The form oKM
determines the metric on KM.

First, we consider the condition 1A. It is enough to consider locally.
Let ðz; z1; . . . ; zmÞ be the local coordinate of KM where ðz1; . . . ; zmÞ is the

pull back of the local coordinate of M and z is the fiber coordinate with respect
to dz15� � �5dzm.

Then the Kähler form oM on M and the distance function r can be
described as follows:

oM ¼
ffiffiffiffiffiffiffi
�1

p

2

X
i; j

gM; ij dz
i5dz j

r2 ¼ detðgij
MÞjzj2

where Sg
ij
MgM;kj ¼ d ik.

525torus invariant special lagrangian submanifolds



Then

dd cF ðtÞ ¼ dðF 0ðtÞd ctÞ
¼ F 00ðtÞ dt5d ctþ F 0ðtÞ dd ct

¼ F 00ðtÞ dt5d ctþ F 0ðtÞp�rM

¼ F 00ðtÞ dt5d ctþ F 0ðtÞp�oM

2qt ¼ qðlog r2Þ

¼ q logðdetðgij
MÞÞ þ dz

z

dt5d ct ¼
ffiffiffiffiffiffiffi
�1

p
qt5qt

¼
ffiffiffiffiffiffiffi
�1

p

4
ðg0 þ g1 þ g2Þ

g0 ¼ q logðdetðgij
MÞÞ5q logðdetðgij

MÞÞ

g1 ¼ q logðdetðgij
MÞÞ5 dz

z
þ dz

z
5q logðdetðgij

MÞÞ

g2 ¼
dz5dz

jzj2
:

Therefore,

oKM
¼ p�oM þ dd cF ðtÞ
¼ ð1þ F 0ðtÞÞp�oM þ F 00ðtÞ dt5d ct

omþ1
KM

ðmþ 1Þ! ¼ ð1þ F 0ðtÞÞmF 00ðtÞ ðp
�oMÞm

m!
5dt5d ct

¼ ð1þ F 0ðtÞÞmF 00ðtÞ
2r2

ð�1Þmðmþ1Þ=2
ffiffiffiffiffiffiffi
�1

p

2

 !mþ1

W5�WW:

To satisfy the Calabi-Yau condition, it is enough to solve the following
equation:

ð1þ F 0ðtÞÞmF 00ðtÞ
2e2t

¼ 1

We can solve this equation easily,

d

dt
ðð1þ F 0ðtÞÞmþ1Þ ¼ 2ðmþ 1Þe2t:

For simplicity, we choose the following solution:

F 0ðtÞ ¼ ððmþ 1Þe2t þ 1Þ1=ðmþ1Þ � 1:
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Next, we consider the condition 1B. From the construction of oKM
, to

show oKM
extends to the 0-section, it is enough to prove the following:

lim
t!�y

F 00ðtÞ
e2t

< y

Di¤erentiating F 0ðtÞ obtained above,

F 00ðtÞ ¼ 2e2tððmþ 1Þe2t þ 1Þ1=ðmþ1Þ�1:

From this, we can also see that oKM
extends to the 0-sexton smoothly.

Next, we consider the condition 1C. It is enough to prove the positive
definiteness of oKM

on KM .
From 1A, the determinant of oKM

1 1 > 0 on KM , eigenvalues of oKM
vary

continuously, and KM is connected since M is connected, it is enough to prove
the positive definiteness of oKM

on KM at one point of KM .
If we choose any one point on the 0-section of KM , using the local

coordinate above,

oKM
¼ p�oM þ

ffiffiffiffiffiffiffi
�1

p

2
detðgij

MÞ dz5dz:

Since this is clearly positive definite, we see oKM
is the Ricci-flat Kähler form

on KM .

Proof of 2:
We will see the lifted Tm-action preserves the Calabi-Yau structure. Since

Tm-action is the holomorphic isometry, oKM
and JKM

is preserved under the
Tm-action. We will see that Tm-action preserves W. For that, we will see
that Tm-action preserves a.

For g A Tm, let cg be the action of g on M and jg :¼ ðc�1
g Þ� be the lifted

action of g on KM .

KM ���!jg
KM

p

???y p

???y
M ���!cg

M

Take the local coordinate ðz; z1; . . . ; zmÞ as above. From the theory of the
Lie group, all the elements of Tm can be described as the finite products of the
elements in the neighborhood of the identity element. So it is enough to prove
in the case that the image of jg is also in the same local coordinate.

If we put

cgðz1; . . . ; zmÞ ¼ ðc1
g ðz1; . . . ; zmÞ; . . . ;cm

g ðz1; . . . ; zmÞÞ:
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Then, from jg ¼ ðc�1
g Þ�

jgðz; z1; . . . ; zmÞ ¼ z � det
qc i

g�1

qz j

 !
� cg;c

1
g ; . . . ;c

m
g

 !
:

From this, we can see

j�
ga ¼ z � det

qc i
g�1

qz j

 !
� cg dc

1
g5� � �5dcm

g

¼ z � det
qc i

g�1

qz j

 !
� cg � det

qc i
g

qz j

 !
dz15� � �5dzm

¼ a:

Therefore,

j�
gW ¼ W:

Proof of 3:
We construct the moment map F : KM ! ðtmÞ�.
� First, we construct the moment map F : KM � f0-sectiong ! ðtmÞ�.
We will see F extends to the 0-section later. From the continuity, the

extended F is also the moment map.
To begin with, oKM

was the following form:

oKM
¼ oT þ dd cFðtÞ
¼ dðd cðtþ F ðtÞÞÞ

Since Tm-action preserves r and J, Tm-action also preserves d cðtþ FðtÞÞ. So for
any X A tm,

L ~XX �d cðtþ FðtÞÞ ¼ 0

namely,

ið ~XX �ÞoKM
¼ �dðið ~XX �Þd cðtþ FðtÞÞÞ

where ið�Þ is the inner product.
So we can define the moment map F : KM � f0-sectiong ! ðtmÞ� as follows:

hF;Xi ¼ ið ~XX �Þd cðtþ F ðtÞÞ

¼ ð1þ F 0ðtÞÞd ctð ~XX �Þ

¼ ððmþ 1Þr2 þ 1Þ1=ðmþ1Þ
d ctð ~XX �Þ

� Next, we see F extends to the 0-section.
For this, we will compute ~XX � explicitly in the local coordinate. Let

ðz; z1; . . . ; zmÞ be the same local coordinate as in the Proof of 2. For X A tm,
we put X � A XðMÞ as follows:
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X � ¼ X �
hol þ X �

hol

X �
hol ¼ SðX �Þ i q

qzi

ðX �Þ i ¼
dc i

expðtX Þ
dt

����
t¼0

Then from the description of jg in local coordinate in the Proof of 2, we
see

d

dt
det

qc i
expð�tX Þ
qz j

 !
� cexpðtXÞ

����
t¼0

¼ �S
qðX �Þ i

qzi
:

So

~XX �
hol ¼ X �

hol � S
qðX �Þ i

qzi
z
q

qz

~XX � ¼ ~XX �
hol þ ~XX �

hol :

Then

d ctð ~XX �
holÞ ¼ � dr2

4r2
ðJ ~XX �

holÞ

¼ �
ffiffiffiffiffiffiffi
�1

p

4

dr2

r2
X �

hol �
X
i

qðX �Þ i

qzi
z
q

qz

 !

¼ �
ffiffiffiffiffiffiffi
�1

p

4

X �
holðdetðg

ij
MÞÞ

detðgij
MÞ

�
X
i

qðX �Þ i

qzi

( )

¼ �
ffiffiffiffiffiffiffi
�1

p

4

X
i;k; l

ðX �Þ i qg
kl
M

qzi
ðgMÞ

kl
�
X
i

qðX �Þ i

qzi

( )

¼
ffiffiffiffiffiffiffi
�1

p

4

X
i

dzið‘q=qz iX
�
holÞg

¼
ffiffiffiffiffiffiffi
�1

p

4
trð‘MX �

holÞ

hF;Xi ¼
ffiffiffiffiffiffiffi
�1

p

4
ððmþ 1Þr2 þ 1Þ1=ðmþ1Þftrð‘MX �

holÞ � trð‘MX �
holÞg

¼ 1

4
ððmþ 1Þr2 þ 1Þ1=ðmþ1Þ

trð‘MðJMX �ÞÞ

where ‘M is the Levi-Civita connection of oM and JM is the complex structure
on M. From this description, we can see F extends to the 0-section.
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Proof of 4:
Recall W ¼ da. We will show that a (up to the sign) satisfies the condition.
It is shown that a is Tm-invariant in the Proof of 2. So for X A tm,

L ~XX �a ¼ 0

ið ~XX �ÞW ¼ �dðið ~XX �ÞaÞ:

Moreover, for Y A tm, since tm is commutative Lie algebra,

L ~YY � ðið ~XX �ÞaÞ ¼ 0:

Therefore,

ið ~YY �Þið ~XX �ÞW ¼ dðið ~YY �Þið ~XX �ÞaÞ:

Iterating this, we have for any v1; . . . ; vm A tm,

Im Wð�; ~vv1; . . . ; ~vvmÞ ¼GdðImðað~vv1; . . . ; ~vvmÞÞÞ:

This completes the proof.

4. Examples

Applying the method of section 4, we construct special Lagrangian sub-
manifolds in the case of M ¼ CPm.

� First, we will see that KCPm is a Calabi-Yau manifold.
Let Ui :¼ f½z1 : . . . : zmþ1� A M j zi 0 0gHCPm ð1a iamþ 1Þ and p : KM

! M be the projection. Let the complex structure JKM
, JM on KM , M be the

canonical one, respectively. We define the Kähler form oM as

oM :¼ mþ 1

2

ffiffiffiffiffiffiffi
�1

p
qq log

Xmþ1

j¼1

z j

zi

����
����2

 !

on Ui. This metric is the Fubini-Study metric (multiplied some constant). We
can easily see rM ¼ 2oM .

We also define the action of torus Tm on M as follows:

ðg1; . . . ; gmÞ � ½z1 : . . . : zmþ1� :¼ ½g1z1 : . . . : gmzm : zmþ1�

where ðg1; . . . ; gmÞ A Tm; ½z1 : . . . : zmþ1� A M. We consider gi A S1 HC.
From this, ðM;oMÞ is toric and from Theorem 3.2 we have the Ricci-flat

metric on KM

oKM
¼ p�oM þ dd cF ðtÞ

F 0ðtÞ ¼ ððmþ 1Þe2t þ 1Þ1=ðmþ1Þ � 1:

This metric is the same (up to constant factors) as the one in [7] (Calabi’s metric
on CPm in [2]). For more details, see Appendix.
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If we take W ¼ da as the former section, ðKM ; JKM
;oKM

;WÞ becomes Calabi-
Yau manifold.

� Next, we apply the construction in the former section.
We want to describe the moment map F : KM ! ðtmÞ� and að ~XX1; . . . ; ~XXmÞ

explicitly. For that, we will describe r and ~XX � A XðKMÞ generated by X A tm.

We discuss on p�1ðUmþ1Þ. We take the local coordinate ðw;w1; . . . ;wmÞ

on p�1ðUmþ1Þ as wi ¼ zi

zmþ1
, w is a fiber coordinate of KM with respect to

dw15� � �5dwm. If we put

oM jUmþ1
¼

ffiffiffiffiffiffiffi
�1

p

2

X
i; j

gM; ij dw
i5dw j :

Then

r2 ¼ detðgij
MÞjwj2

¼ 1

mþ 1

� �mþ1

ð1þ Sjw j j2Þmþ1jwj2:

The action of Tm is:

ðg1; . . . ; gmÞ � ðw;w1; . . . ;wmÞ ¼ ðg�1
1 � � � g�1

m w; g1w
1; . . . ; gmw

mÞ:

Therefore, the real vector field ~XX � A XðKMÞ generated by X ¼ ðX 1; . . . ;XmÞ A
ð
ffiffiffiffiffiffiffi
�1

p
RÞm ¼ tm is

~XX � ¼ ~XX �
hol þ ~XX �

hol

~XX �
hol ¼

Xm
i¼1

X iwi q

qwi
� ðX 1 þ � � � þ XmÞw q

qw
:

So

d ctð ~XX �
holÞ ¼ �

ffiffiffiffiffiffiffi
�1

p

4
SX iwi

q

qwi
detðgij

MÞ

detðgij
MÞ

� SX i

8><
>:

9>=
>;

¼ �
ffiffiffiffiffiffiffi
�1

p

4
SX i ðmþ 1Þjwij2

1þ Sjw jj2
� 1

( )
:

So we can describe describe the moment map F as

hF;Xi ¼ �
ffiffiffiffiffiffiffi
�1

p

2
ððmþ 1Þr2 þ 1Þ1=ðmþ1ÞXm

i¼1

X i ðmþ 1Þjzij2Pmþ1
j¼1 jz jj2

� 1

( )
:

Next, we describe will að ~XX1; . . . ; ~XXmÞ explicitly.
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If we put Xi :¼ ð0; . . . ;
ffiffiffiffiffiffiffi
�1

p
; . . . ; 0Þ A ð

ffiffiffiffiffiffiffi
�1

p
RÞm G tm (

ffiffiffiffiffiffiffi
�1

p
is the i-th entry),

~XX �
i;hol ¼

ffiffiffiffiffiffiffi
�1

p
wi q

qwi
� w

q

qw

� �
:

Since a ¼ w dw15� � �5dwm,

að ~XX1; . . . ; ~XXmÞ ¼ ð
ffiffiffiffiffiffiffi
�1

p
Þmðww1 � � �wmÞ:

On other coordinates p�1ðUiÞ ð1a iamÞ, we can also describe að ~XX1; . . . ; ~XXmÞ in
the same way.

Theorem 4.1. Let KCPm be the canonical bundle of CPm and p : KCPm !
CPm the projection. We consider KCPm ¼ fð½z1 : . . . : zmþ1�; xÞ j ½z1 : . . . : zmþ1� A
CPm; x A ðKCPmÞ½z1:...:zmþ1�g and r is the distance function between x and the

0-section measured by the fiber metric of KCPm induced by the Fubini-Study metric
on CPm of Einstein constant 2.

Then T m-invariant special Lagrangian submanifolds in KCPm are given by the
equations:

ððmþ 1Þr2 þ 1Þ1=ðmþ1Þ ðmþ 1Þjzij2Pmþ1
j¼1 jz jj2

� 1

( )
¼ Ai ð1a iamÞ

Imðað ~XX1; . . . ; ~XXmÞÞ ¼ Amþ1

where A1; . . . ;Amþ1 are any real constants and að ~XX1; . . . ; ~XXmÞ is a complex valued
function on KM.

On p�1ðUiÞ ðUi :¼ f½z1 : . . . : zmþ1� A CPm j zi 0 0g ð1a iamþ 1ÞÞ, if we

take the local coordinate ðwðiÞ;w
1
ðiÞ; . . . ;w

i�1
ðiÞ ;wiþ1

ðiÞ ; . . . ;wmþ1
ðiÞ Þ on p�1ðUiÞ as

w
j

ðiÞ ¼
z j

zi
and wðiÞ is a fiber coordinate of KM with respect to dw1

ðiÞ5� � �5

dwi�1
ðiÞ 5dwiþ1

ðiÞ 5� � �5dwmþ1
ðiÞ , then

að ~XX1; . . . ; ~XXmÞ ¼ ð
ffiffiffiffiffiffiffi
�1

p
Þmð�1Þm�iþ1ðwðiÞw

1
ðiÞ � � �wi�1

ðiÞ wiþ1
ðiÞ � � �wmþ1

ðiÞ Þ:

Appendix: The Metric on KCPm

On [7] (Example 8.2.5), the metric on KCPm is given as follows.

Let Cmþ1 have complex coordinates ðz1; . . . ; zmþ1Þ, let z ¼ e2p
ffiffiffiffiffi
�1

p
=ðmþ1Þ, and

let z act on Cmþ1 by z : ðz1; . . . ; zmþ1Þ 7! ðzz1; . . . ; zzmþ1Þ. Then the group
generated by z is isomorphic to Zmþ1 because zmþ1 ¼ 1, and Zmþ1 acts freely
on Cmþ1 � f0g. Thus the quotient Cmþ1=Zmþ1 has an isolated singular point

at 0. Let ðX ; $Þ be the blow-up of Cmþ1=Zmþ1 at 0. X is biholomorphic to
KCPm . Let ~rr ¼ ðSjzij2Þ1=2 be the radius function on Cmþ1=Zmþ1.
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Define f : Cmþ1=Zmþ1 � f0g ! R by

f ¼ ð~rr2mþ2 þ 1Þ1=ðmþ1Þ þ 1

mþ 1

Xm
j¼0

z j logðð~rr2mþ2 þ 1Þ1=ðmþ1Þ � z jÞ:

Then, o :¼ dd c$�ð f Þ defines the Kähler form on X �$�1ð0Þ and extends to all
of X . This metric is given by Calabi [2] and in the case m ¼ 1, this is Eguchi-
Hanson metric.

We will show that this metric is the same (up to constant factors) as the one
in Examples of M ¼ CPm.

� First, we will describe the metric in Examples of M ¼ CPm more explicitly.
The Kähler form oKM

is given by

oKM
¼ p�oM þ dd cFðtÞ

where F A CyðRÞ with

F 0ðtÞ ¼ ððmþ 1Þe2t þ 1Þ1=ðmþ1Þ � 1:

We will integrate F 0ðtÞ. For that, we will change a variable from t to
r ¼ et.

If we describe GðrÞ :¼ F ðlog rÞ, then

dG

dr
ðrÞ ¼ ððmþ 1Þr2 þ 1Þ1=ðmþ1Þ � 1

r
:

We can easily see that

GðrÞ ¼ mþ 1

2
fððmþ 1Þr2 þ 1Þ1=ðmþ1Þ

þ 1

mþ 1

Xm
j¼0

z j logðððmþ 1Þr2 þ 1Þ1=ðmþ1Þ � z jÞg � log rþ const:

Remark for kmþ1 0 1,

Xm
j¼0

1

kz j � 1
¼ mþ 1

kmþ1 � 1
:

� Next, we define C : Cmþ1=Zmþ1 � f0g ! KCPm � f0-sectiong as

Cðz1; . . . ; zmþ1Þ ¼ ð�1Þ i�1ðziÞmþ1
d

z1

zi

� �
5� � �5d

zi�1

zi

� �

5d
ziþ1

zi

� �
5� � �5d

zmþ1

zi

� �
p �Cðz1; . . . ; zmþ1Þ ¼ ½z1 : . . . : zmþ1�

on fzi 0 0gHCmþ1=Zmþ1 � f0g.
C is well-defined and biholomorphic.
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Then

r2 �Cðz1; . . . ; zmþ1Þ ¼ 1

mþ 1

� �mþ1

jzij2mþ2 1þ
X
j0i

z j

zi

����
����2

 !mþ1

¼ 1

mþ 1

� �mþ1 X
j

jz jj2
 !mþ1

¼ 1

mþ 1

� �mþ1

~rr2mþ2:

Therefore,

C�oKM
¼ C�ðp�oM þ dd cGðrÞÞ

¼ dd c mþ 1

2
log 1þ

X
j0i

z j

zi

����
����2

 !
þ G

1

mþ 1

� �ðmþ1Þ=2
~rrmþ1

 !( )

¼ dd c mþ 1

2
logð~rr2Þ þ G

1

mþ 1

� �ðmþ1Þ=2
~rrmþ1

 !( )
:

From the description of G, we see that metrics are the same up to constant
factors.
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