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TORUS INVARIANT SPECIAL LAGRANGIAN SUBMANIFOLDS IN
THE CANONICAL BUNDLE OF TORIC POSITIVE KAHLER
EINSTEIN MANIFOLDS

Koraro Kawal

Abstract

In this paper we construct torus invariant special Lagrangian submanifolds in the
canonical bundle K}, of the toric positive Kdhler Einstein manifold M. We construct a
Ricci-flat metric on Kj, using the Calabi ansatz to show that K, is a Calabi-Yau
manifold. Then, using moment map techniques developed in [6], we construct special
Lagrangian submanifolds in Kj,.

1. Introduction

In 1982, Harvey and Lawson [4] introduced the notion of special Lagrangian
submanifolds in the study of minimal submanifolds. In general, it is known by
the Wirtinger inequality that the complex submanifold in a Kéhler manifold
minimize its volume in its homology class. Generalizing this property, Special
Lagrangian submanifolds are defined in Calabi-Yau manifolds.

The study of special Lagrangian submanifolds is important in relation to
mirror symmetry in physics due to the SYZ conjecture. This conjecture was
presented by Strominger, Yau and Zaslow [12] in 1996 and it explains mirror
symmetry of compact Calabi-Yau 3-folds in terms of dual fibrations by special
Lagrangian 3-tori, including singular fibers. They also propose the constructing
way of the mirror of a compact Calabi-Yau manifold by an appropriate
compactification of the dual of the special Lagrangian torus fibration.

So to understand mirror symmetry more deeply, examples of special
Lagrangian submanifolds are constructed using various techniques. In the
beginning of the study, examples are mainly constructed on C™. Joyce [8],
[9], [10] constructed special Lagrangian submanifolds in C” using the method of
ruled submanifolds, integrable systems and evolution of quadrics, and Haskins [5]
gave examples of special Lagrangian cones in C°, etc.

Recently, some examples have also been constructed in non-flat Calabi-Yau
manifolds. Anciaux [1] constructed SO(n)-invariant examples in the cotangent
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bundle of the n-dimensional sphere with the Ricci-flat Stenzel metric. Ionel and
Min-Oo [6] constructed 72-invariant and SO(3)-invariant special Lagrangian
submaniolds in the deformed conifold and the resolved conifold using moment
map techniques. The case of the deformed conifold was extended to the higher
dimensional case by Kanemitsu [11].

In this paper, using the Calabi ansatz and moment map techniques, we
construct special Lagrangian submanifolds in the canonical bundle Kj,; of the
toric positive Kdhler Einstein manifold M. The Calabi ansatz is the method
searching for Kéhler forms wg, of the form

wg,, = T oy + dd°F(1)

where 7 : K)y — M is the projection, the form wy, is the Kéahler form of the
positive Kéhler Einstein metric on M, the function ¢ is the logarithm of the norm
function and F is a function of one variable. Special Lagrangian submanifolds
are defined in Calabi-Yau manifolds and Calabi-Yau manifolds are defined to
have the Ricci-flat Kédhler form @ and the holomorphic volume form Q that
satisfy the equation (2.1).

First, we will see that K, is a Calabi-Yau manifold. We construct a Ricci-
flat metric on K, using the Calabi ansatz. This construction is inspired by
[3]. We also define the holomorphic volume form Q :=dx on K, for some
concrete form o on Kj,. Using those, we can see that K, is a Calabi-Yau
manifold.

Then we will construct torus invariant special Lagrangian submanifolds by
the moment map techniques developed in [6]. Namely, in general, in Hamil-
tionian G-space, connected G-invariant Lagrangian submanifolds must be in the
level set of the moment map. We search for the submanifolds in the level set of
the moment map with the additional condition for special Lagrangian that Im Q
vanishes on the submanifolds. At this point, the form « plays an important
role. In the case of Kj,, there exists a torus action preserving the Calabi-Yau
structure. For this torus action, we apply the above construction.

These are summarized in Theorem 3.2. (our main theorem) and the essentials
are proved in Propositon 3.1.

We now give a brief description of the contents of this paper. In section 2,
we review the basic definitions such as Calabi-Yau manifolds, and explain the
moment map techniques developed in [6]. In section 3, we prove that K,; is
a Calabi-Yau manifold and describe the moment map. Then we construct
special Lagrangian submaniolds on Kj, using moment map techniques. In
section 4, we give examples of special Lagrangian submanifolds by applying
our method.
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2. Preliminaries
2.1. Basic definitions

DErFINITION 2.1.  Let (M,J,w) be an m-dimensional Kédhler manifold where
M is a complex manifold, J is the complex structure on M, and w is the Kédhler
form on M.

A Kaihler manifold (M,J,w) is a positive Kéhler Einstein manifold if M is
the Kdihler Einstein manifold with the positive Einstein constant. A Kaéhler
manifold (M,J,w) is toric if m-dimensional torus 7" = (S')" acts on (M,J, )
effectively as holomorphic isometries.

DEFINITION 2.2. The pair (M,J,w,Q) is an m-dimensional Calabi-Yau
manifold if the following conditions are satisfied:

* (M,J,®) is a Kédhler manifold.

+ Q is a nonzero holomorphic section of the canonical bundle K, on M.

L7 _ gy (”)QQ @

m! 2

Remark 2.3. 1If a Kidhler form w and a holomorphic m-form Q satisfies
(2.1), the corresponding Riemannian metric g of @ is Ricci-flat and Q is parallel
with respect to the Levi-Civita connection of g.

DEerINITION 2.4.  Let (M,J,w,Q) be a Calabi-Yau m-fold and L = M a real
oriented m-dimensional submanifold of M. Then L is called a special Lagran-
gian submanifold of M if w|, =0, ImQ|, =0.

Remark 2.5. The condition w|, =0 says that L is a Lagrangian subma-
nifold. Therefore, special Lagrangian submanifolds are Lagrangian with the
extra condition Im Q|, = 0.

2.2. Moment map techniques

To construct special Lagrangian submanifolds, we use the moment map
techniques developed in [6].

In the moment map techniques, we search for G-invariant special Lagrangian
submanifolds for some Lie group G. Though only concrete examples are dis-
cussed in [6], they are essentially stated as follows.

Let G be a Lie group, g the Lie algebra of G, g* the dual of g, and Ad# the
coadjoint action of G on g*. We define the center Z(g*) of g* as

Z(g") ={¢eg"[4d?(g)¢ = ¢ (Vge G)}.

Fact 2.6. Let (M,w,G,u) be a Hamiltonian G-space. Namely, (M, ) is a
symplectic manifold and a connected Lie group G acts on M preserving w with the
moment map u: M — g*.
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Let O = M be any G-orbit. Then the G-orbit O is isotropic (i.e. w|, =0) if
and only if O < u~'(c) for some ce Z(g*).

We also see that if L < M is the connected G-invariant Lagrangian sub-
manifold,

Leu'(c)

for some ce Z(g*).

Using this fact, we will construct G-invariant special Lagrangian submani-
folds for some Lie group G as follows.

PROPOSITION 2.7. Assume the following four conditions:

1. Let (M,J,w,Q) be a Calabi-Yau manifold of complex dimension m.

2. A compact connected Lie group G of real dimension m —1 acts on M
preserving Calabi-Yau structure. Namely, G-action preserves J, w, Q. Its
generic orbits in M are of real dimension m — 1.

3. There exists a moment map u: M — g* for G-action.

4. There exists a G-invariant (m — 1)-form o such that for any vy, ...,vy_1 € G,

Im Q(:, Ulseeey Upg) = d(“(ﬁ? S U;—l))
on M where v} is the real vector field on M generated by v;.
Then for any ce€ Z(g*), ¢’ e R and any basis {Xi,...,Xn_1} =g, the set

L = ,uil(c) N (Of(Xl*’ - .’1\/’271))—1(6,/)

is a G-invariant special Lagrangian submanifold of M. The set L. . is singular
where the isotropy group is not discrete.

We sketch the proof of this proposition.

If there exists a G-invariant special Lagrangian submanifold L, we see from
Fact 2.6. that L = u~'(c) for some ce Z(g*).

Next, since L is G-invariant, for any X e g, X € 7T,L at any point p € L.
So if we take the any basis {Xj,...,Xnu-1} =g, Xi,...,X»_1 must satisfy
Im Q(-, X,..., X} )], =0 for ImQ|, =0. From the assumption 4, this con-
dition can be described as a(X},..., X, )|, =c’ for some ¢’ eR.

So we see L < ' (c)N(a(Xf,..., X ) (c)).

But the right hand is G-invariant and already satisfies the special Lagrangian
condition. Its real dimension is generically m because of the assumption 2. So
we can construct special Lagrangian submanifolds as Proposition 2.7.

Concerning the sigularities, it is clear that if the isotropy group at
peL.. is not discrete, the set L. = {{pt, X;> — (¢, X;i)=0 (1 <i<m—1),
a(X],..., X ) — ¢ =0} is singular at p. We can also show that if the isotropy
group at p € L, is discrete, namely the tangent vectors {(X[),,...,(X,,_;),} are
linearly independent, the set L. . is smooth at p. Calculate the Jacobian matrix



TORUS INVARIANT SPECIAL LAGRANGIAN SUBMANIFOLDS 523

about the linearly independent set {(X{" /), -, (X, 1 40r), v} Here, X%, is
the holomorphic vector field generated by X;e g such that X = X7, , —&-Xl hol
and veT,M —ker(Im Q(-, (Xy),,...,(X,_1),)). Since d{u,Xi)=—w(X; )

and the assumption 4, the Jacoblan matrix about this set is as follows:

(_w(XiThol’ ‘ijﬂhol))lgi,jSM—l *
0 Y

where y = Im Q(v, X",..., X,;_,). This shows that the set L. is smooth at p.

Remark 2.8. From the construction, these are ‘“maximal” G-invariant
special Lagrangian submanifolds. Namely, for any connected G-invariant special
Lagrangian submanifold L, there exists ¢ € Z(g*) and ¢’ € R such that L < L, ..

3. Constructing special Lagrangian submanifolds in the canonical bundle

Let M be an m-dimensional toric positive Kidhler Einstein manifold. For
simplicity, we suppose that M is connected. It is easy to extend to the non-
connected case.

We lift the T"-action on M and consider 7" acts on the canonical bundle
K);. Since T™ acts effectively, the generic orbit of 7™ is of real dimension m.

Using moment map techniques developed in [6], we construct T"™-invariant
special Lagrangian submanifolds in the canonical bundle K, of M.

ProrosITION 3.1.  Consider the condition above. Multiplying some constant
to the Kdhler form, we may assume the Kdihler form wys and its Ricci form py,

satisfy
Py =20p.

Then we have

1. The canonical bundle Ky, admits the Calabi-Yau structure. Its complex
structure Jg,, is the canonical one, the holomorphic volume form Q is da
for a concrete T"-invariant m-form o« on Ky, and the Kdihler form wg,, is
given by

wg,, = oy + dd°F(1)
where 7w : Kyy — M is the canonical projection and F € C*(R) with
F'(1) = (m+ De + VD _ g,

Here, t =1logre C*(Ky — {0-section}), and r is the distance function
form the 0-section measured by the induced fiber metric from wy. The
Kihler form wg,, extends to the 0-section smoothly.

2. The T™-action preserves the Calabi-Yau structure.

3. There exists a moment map ® : Kyy — (t")" for the T™-action.
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m
4. For any vy,...,v, €t”,

Im Q(-, 27, ...,0,) =dIm a3}, ...,0,,))

’m

where 0 is the real vector field on Ky generated by v;.

From this proposition, we can apply Proposition 2.7. to K, to construct 7"-
invariant special Lagrangian submanifolds in K,,. Remark Z((t")") = (t")".

THEOREM 3.2. Let M be a connected m-dimensional toric positive Kdhler
Einstein manifold.  Multiplying some constant to the Kdhler form, we may assume
the Kdihler form wy and its Ricci form p,, satisfy

Py =20

From Proposition 3.1., the canonical bundle Ky, is a Calabi-Yau manifold with
the canonical complex structure Jg,,, the Kdihler form wg,,, and the holomorphic
volume form Q = do for some concrete m-form o on Ky The m-dimensional
torus T™ acts on Ky preserving the Calabi-Yau structure, and there exists a
moment map ® : Ky — (t")" for the T™-action.

For any X et™, let X* and X* be the real vector field on Ky and M
generated by X, respectively. Denote VM the Levi-Civita connection of
and Jy; the complex structure on M.

Then T™-invariant special Lagrangian submanifolds in (Ky,Jk,,, ©k,,,Q) are
given by the equations:

{(CD,Xi>:A,~ (1<i<m)
Im((X7,..., X)) = Apsi
{((m + 12+ DY (VI (X)) = 4r (1 <i<m)
Im(a(X7, ..., X)) = Ams
where {X\,..., Xy} is the any basis of t" and Ay, ..., Am1 are any real constants.

Proof of Proposition 3.1.:

Proof of 1:

* Let the complex structure Jk, be the canonical one on Ky.

* We construct the holomorphic volume form Q on Kj, as follows.

Let n: Ky — M be the projection. For any (x,&) e Ky, where xe M,
& e (Ku),, we can define the pull back map

(dn)(’; o TUM — T Ky

where T"*M, T'* K, is a holomorphic cotangent bundle of M, Kj,, respectively.
We also use the same notation for the extension:

(dn)e s /N T M — N T(; o Ku



TORUS INVARIANT SPECIAL LAGRANGIAN SUBMANIFOLDS 525

Then we define a holomorphic m-form o on K, and Q as

Uy = (dr)( (&)

Q :=do.
Using local coordinates, « and Q can be described as follows.
Let (z!,...,z™) be the local coordinate of M, and z is a fiber coordinate
of Ky with respect to dz! A---Adz™. We also denote (z!,...,z™) for the pull-

backed local coordinates on Ky;. When ¢ =zdz! A+ AdZ",

o=zdz:' A AdZ"

Q=dzrdz' A - ~dZ".

* Next, we construct the Ricci-flat Kdhler form wg, on K.
We search for wg,, of the form

Wk, = T oy + dd°F(1)

where F € C*(R), t=1logr, and r is the distance function form the O-section
measured by the induced fiber metric from wy,.
For the construction, it is enough to show the following lemma.

LemmA 3.3.  Under the condition above, there exists a function F € C*(R)
satisfying the following conditions:

+ 1A.
m m+1
wK/jl—l _ (71)m(m+l)/2 Vv _1 Q/\Q
(m+1)! 2

* 1B. The form wg,, extends to the 0-section.
* 1C. The form wg,, determines the metric on Ky.

First, we consider the condition 1A. It is enough to consider locally.

Let (z,z',...,z™) be the local coordinate of Kj; where (z!,...,z") is the
pull back of the local coordinate of M and z is the fiber coordinate with respect
to dz' A--- AdZ".

Then the Kéhler form wy, on M and the distance function r can be
described as follows:

Wy = %ZgMyi].—dz" N
i,j

P = det(gl))|=|

where Zg%,ngk]r = ;.
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Then
dd°F(t) = d(F'(1)d“1)
=F"(t)dtndt+ F'(1) dd‘t
=F"(t)dindt+ F'(O)n*py,
=F"(t)dind‘t + F'(t)n*om
20t = d(log r?)
i dz
= 0 log(det(g)y)) +—
dtndt =\/—10t A Ot
(o tr+n)
7o = 0 log(det(g3))) A @ log(det(g3))
7 = 2log(det(gl))) n C+ % A2 log(det(g}))
dzndz
Nn=—m -
|2]
Therefore,

wk,, = oy + dd°F(1)
(1+ F'(0))n* oy + F"(t) dt nd‘t

m+1 % m
(mﬁb u+Fw»Wﬂm9%%Q—AmAWz

2r2

U F WD) e (E)g AQ
E .

To satisfy the Calabi-Yau condition, it is enough to solve the following
equation:
(14 F'(1))"F"(1)

et =1

We can solve this equation easily,
4
dt

For simplicity, we choose the following solution:

F'(1) = ((m+ 1) + 1)1/ _

(L4 F'(0)™*) = 2(m + 1)e*
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Next, we consider the condition 1B. From the construction of wg,,, to
show wg,, extends to the O-section, it is enough to prove the following:

F”([)
et

lim
t——0o0

< o0

Differentiating F’(¢) obtained above,
F”(l) _ 262[((117 + 1)62z + 1)1/(m+l)—1.

From this, we can also see that wg, extends to the 0-sexton smoothly.

Next, we consider the condition 1C. It is enough to prove the positive
definiteness of wg,, on Kjy.

From 1A, the determinant of wg, =1 > 0 on Ky, eigenvalues of wg,, vary
continuously, and Kj; is connected since M is connected, it is enough to prove
the positive definiteness of wg,, on Ky at one point of K.

If we choose any one point on the O-section of Kj;, using the local
coordinate above,

ok, =1 oy + T_l det(g]’:(;) dz ndz.

Since this is clearly positive definite, we see wg,, is the Ricci-flat Kéhler form
on K.

Proof of 2:

We will see the lifted 7"™-action preserves the Calabi-Yau structure. Since
T'™-action is the holomorphic isometry, wg, and Jg, is preserved under the
T™-action. We will see that 7"-action preserves Q. For that, we will see
that 7"-action preserves o.

For ge T™, let i, be the action of g on M and ¢, := (l//g_l)* be the lifted
action of g on K.

2
Ky —— Ky

|,

M —>% M

Take the local coordinate (z,z!,...,z") as above. From the theory of the

Lie group, all the elements of 7" can be described as the finite products of the
elements in the neighborhood of the identity element. So it is enough to prove
in the case that the image of ¢, is also in the same local coordinate.

If we put
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Then, from ¢, = (lpg“)*

(og(z,zl,...,zm) ( det(lp ) %,%,...,xp;”).

From this, we can see

* 6l//l 1 m
g o=z - det T oY, dy A ndYy

o, oy,
z - det Vo oy, - det W dz' Ao ndz™
0z 9 0z

= .

Therefore,
9,2 =Q.

Proof of 3:

We construct the moment map @ : Ky — (t")".

« First, we construct the moment map ® : K, — {0-section} — (t")".

We will see @ extends to the O-section later. From the continuity, the
extended ® is also the moment map.

To begin with, wg, was the following form:

wg,, = ol +dd°F(1)
— d(d(t+ F(1))

Since T"™-action preserves r and J, T™-action also preserves d“(¢ + F(¢)). So for
any X et”,

Ly.d(t+F(1))=0
namely,
i(X ok, = —d(i(X*)d (t + F(1)))

where i(-) is the inner product.
So we can define the moment map @ : Kj; — {0-section} — (t")" as follows:

(D, X =i(X")d(t+ F(t))
= (1 4+ F'(t))dt(X™)
= ((m+ )2+ DY geq X

* Next, we see @ extends to the 0-section.

For this, we will compute X* explicitly in the local coordinate. Let
(z,2', z™) be the same local coordinate as in the Proof of 2. For X et™,
we put X* e X(M) as follows:
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X" =X+ Xy
hol — ( ) @
i
dlpexp(tX)

(X*)i - dt

t=0

Then from the description of ¢, in local coordinate in the Proof of 2, we

sec
d 6lpcixp(—tX)
o det (a— © Vet

dt

=0 B ozl
So

X' o
ozl Z@z

X' =Xy + Xy

vk *
Xhol - X/w[ -

Then

C.f V* dr2 vk
d1( X)) = _T(JXho/)

V=ldr? [ _, ax*)" o
== K =2

VAT [ X (det(gl)) a(X*)’}
: { iy 2 o

_ Akl i
vt {Z(x*)’ P B }

ikl
V_1 ; i
= Z dz'(Voo-i Xpor) }

v—1
= tr(VM)(};)I)

(D, Xy = ((m+ 1)r* + DD a(v M Xy ) — (VX))

—_
A‘ﬁ S
Lol

=—((m+ 1) + )YV g (v M (g X))

B~

where VM is the Levi-Civita connection of @y, and Jy, is the complex structure
on M. From this description, we can see @ extends to the 0-section.
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Proof of 4:
Recall Q = do. We will show that o (up to the sign) satisfies the condition.
It is shown that « is 7"-invariant in the Proof of 2. So for X et”,

Ly.oo=0
I(X*)Q = —d(i(X")a).

Moreover, for Y €t™, since t” is commutative Lie algebra,

Ly (i(X*)a) = 0.
Therefore,

I(Y*)i(X*)Q =d(i(Y")i(X")a).
Iterating this, we have for any vy,...,v, €t™,
Im Q(-, 0y, ...,0,) = +d(Im(a(dy, ..., 0m))).

This completes the proof.

4. Examples

Applying the method of section 4, we construct special Lagrangian sub-
manifolds in the case of M = CP™.

+ First, we will see that Kcpn is a Calabi-Yau manifold.

Let Uj:={z"':...:z2"eM|z;#0} cCP" (1<i<m+1) and 7: Ky
— M be the projection. Let the complex structure Jg,,, Jir on Ky, M be the
canonical one, respectively. We define the Kéhler form w,, as

1 3 m+1
oy =" V=103 log (Z

=1

J

2
Z
i

on U;. This metric is the Fubini-Study metric (multiplied some constant). We
can easily see p,; = 2.
We also define the action of torus 7" on M as follows:

G1yeesgm) - 2" 2™ =gz g
where (g1,...,9m) € T", [z':...: 2" e M. We consider g, S' = C.
From this, (M,wy) is toric and from Theorem 3.2 we have the Ricci-flat
metric on Ky

m. Zm+1]

Wk, = T oy + dd°F(t)
F'(t) = ((m+ 1)e* + 1)) —q,

This metric is the same (up to constant factors) as the one in [7] (Calabi’s metric
on CP™ in [2]). For more details, see Appendix.
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If we take Q = do as the former section, (Ky, Jk,,, @k, , ) becomes Calabi-
Yau manifold.
* Next, we apply the construction in the former section.

We want to describe the moment map ® : Ky — (t”)" and (X, .., Xn)
explicitly. For that, we will describe r and X* € X(K,,) generated by X et”.
We discuss on 7 !'(U,11). We take the local coordinate (w,w! ... w™)

1

on 7Y (U,y1) as wi= w is a fiber coordinate of Kj; with respect to

Zm+1?
dw' A Adw™. If we put

v-1 S
ouly,., = TZQM,U"dWI Adw/.
i

Then
r? = det(g]))w|’
1 m+1 5 . 5
i +
= (m——Fl) (1 +Zw/ )" w|”.
The action of T™ is:

1

(gla s 7gm> ' (W, Wl; . .’Wm) = (gr o 'gyzlwvglwlv s 7gmwm)-

Therefore, the real vector field X* € ¥(K,,) generated by X = (X!,.... X") e
(V=IR)" = t" is

X" =X + Xy

- moo ) 0
X =) Xw—— X'+ -+ X"w—.
hol ; W (X +-+ )Waw
So
V-1 ‘ det(g]))
- — e M
dot(A,h*Ol) _ 771 T X! ow - —_YXx!
4 det(g})
i12
:—\/_121\”‘ (m—|—l)\m‘/2| .U
4 1+ Z|w/|

So we can describe describe the moment map @ as

m i12
<<D,X>=—g((nwr1)r2+1)1/(”’“>ZX"{7(m+1)|Z _1}.

.52
pam > 1

Next, we describe will oc()f' 1,...,X'm) explicitly.
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If we put X;:=(0,...,vV—1,...,0) e (V—1R)" =" (/-1 is the i-th entry),
% i J J
L7,10,v1<w fw—>.

ow! ow
Since a =w dw! A--- Adw™,
Xy, Xn) = (V=1)"(ww!...w™).

On other coordinates 7~ !(U;) (1 <i < m), we can also describe a(Xj, ..., X,) in
the same way.

THEOREM 4.1. Let Kcpn be the canonical bundle of CP™ and 7 : Kcpm —
CP™ the projection. We consider Kcpn = {([z':...: 2", &) |[z':...: 2" e
CP™ & e (Kepm)p. om} and 1 is the dlslance functzon between & and the

0-section measured by the fiber metric of Kcpm induced by the Fubini-Study metric
on CP™ of Einstein constant 2.

Then T"-invariant special Lagrangian submanifolds in Kcpn are given by the
equations:

((m+ 1) + 1)1/<"’“>{ﬂ - 1} =4, (1<i<m)

Stz
Im(oc()?l, ... ,X'm)) = A,

where Ay, ..., A, are any real constants and fx(X’l, .. ,X’m) is a complex valued
function on K.

On o' (U) (Up={[z":...:.z2"eCP"|z; 20} (1<i<m+1))

-1

if we
take the local coordinate (W), w (), ..., wiy', wégl wé”)“) on n~

j (V) a

— and wg) is a fiber coordinate of Ky with respect to dw([)/\~~/\
z

dwglf)l A dwégl A A dw”’“, then

J o
Wiy =

WXy, X)) = (\/—l)m(—l)"’_’“(w(i)wg,-> e w(’;lw%l e wz’i’)“).

Appendix: The Metric on Kcpn

On [7] (Example 8.2.5), the metric on Kcpr is given as follows.
Let C™*! have complex coordlnates (', ... , ZH), et ¢ = o¥V=1/(m+1) | and
let { act on C™' by (:(z',..., 2 ({2',...,z"*"). Then the group

generated by ( is isomorphic to Zm+1 because C"’H =1, and Z, acts freely
on C"*!' —{0}. Thus the quotient C"*!'/Z,., has an isolated singular point
at 0. Let (X w) be the blow-up of C""/Z,.., at 0. X is biholomorphic to
Kepn. Let 7= (2[z/|*)"* be the radius function on C"*'/Z,,.,.
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Define f:C"™'/Z,,., — {0} — R by
1 m o )
f= e O S og (P 4+ )Y - 1),
j=0

Then, w := dd‘w*(f) defines the Kéhler form on X — w!(0) and extends to all
of X. This metric is given by Calabi [2] and in the case m = 1, this is Eguchi-
Hanson metric.

We will show that this metric is the same (up to constant factors) as the one
in Examples of M = CP™.

+ First, we will describe the metric in Examples of M = CP™ more explicitly.
The Kdhler form wg,, is given by

wk,, = T oy + ddF(1)
where F e C*(R) with
F'() = (m+ 1) + 1)/

We will integrate F’'(¢). For that, we will change a variable from 7 to
r=e'.
If we describe G(r) := F(logr), then

dG ((m+ )2+ )Y/ g

&= ;
We can easily see that
1
G(r) ="+ 17 1)

& ,
- J 2 1/(m+1) o o
+m+ 1 ;C log(((m + 1)r” + 1) ¢} — log r + const.

Remark for k! # 1,

f: 1 m+1
= kéﬁ/_l Jem+l 1

* Next, we define ¥ : C""'/Z,,., — {0} — Kcpn — {O-section} as

(2 i-1
P2 = (=D )™ d(—.)/\---/\d( )
ZI

Zi
i+1 m+1
zit z
Ad — | A~ Ad -
z! z!
1 m+1y __ 1. . om+1
noW(z',....2"" )=z :...: 2"

on {z/ #0} =« C""/Z,.., —{0}.
¥ is well-defined and biholomorphic.
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Then
| m+1 - Zj 2 m+1
2 1 m+1 i|2m+
Pow(z,.. .z +):<m—+l> Edh 1+Z;
Jj#i
) ()
- 2/
m+1 5
1
— # " f2m+2.
m+1
Therefore,

Yok, =V (7 oy + dd°G(r))

P2 (m+1)/2
)m+1 z/ 1 N
— dd¢ 1 1 - - m+1
5 log + ; - +G (m n 1) F
' 1 1 \0m+D/2
— dd° % log(#) + G <m> el

From the description of G, we see that metrics are the same up to constant
factors.
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