F. LIN KODAI MATH. J. 34 (2011), 505–518

LOCAL PROPERTIES ON THE REMAINDERS OF THE TOPOLOGICAL GROUPS

Fucai Lin

Abstract

When does a topological group G have a Hausdorff compactification bG with a remainder belonging to a given class of spaces? In this paper, we mainly improve some results of A. V. Arhangel'skiĭ and C. Liu's. Let G be a non-locally compact topological group and bG be a compactification of G. The following facts are established: (1) If $bG\backslash G$ has locally a k-space with a point-countable k-network and π -character of $bG\backslash G$ is countable, then G and bG are separable and metrizable; (2) If $bG\backslash G$ has locally a $\delta\theta$ -base, then G and bG are separable and metrizable; (3) If $bG\setminus G$ has locally a quasi- G_{δ} -diagonal, then G and bG are separable and metrizable. Finally, we give a partial answer for a question, which was posed by C. Liu in [16].

1. Introduction

By a remainder of a space X we understand the subspace $bX\setminus X$ of a Hausdorff compactification bX of X. In [3, 4, 5, 13, 16], many topologists studied the following question of a Hausdorff compactification: When does a Tychonoff space X have a Hausdorff compactification bX with a remainder belonging to a given class of spaces? A famous classical result in this study is the following theorem of M. Henriksen and J. Isbell [13]:

(M. Henriksen and J. Isbell) A space X is of countable type if and only if the remiander in any (in some) compactification of X is Lindelöf

Recall that a space X is of *countable type* [10] if every compact subspace F of X is contained in a compact subspace $K \subset X$ with a countable base of open neighborhoods in X . Suppose that X is a non-locally compact topological

²⁰⁰⁰ Mathematics Subject Classification. 54A25, 54B05

Key words and phrases. Topological group; Countably compact; G_{δ} -subset; Quasi- G_{δ} -diagonal; Countable type; Lindelöf p-space; Metrizability; Compactification; BCO; D-space.

Supported by the NSFC (No. 10971185, No. 10971186) and the Educational Department of Fujian Province (No. JA09166) of China.

Received October 21, 2010; revised January 4, 2011.

506 FUCAI LIN

group, and that bX is a compactification of X. In [4], A. V. Arhangel'skii showed that if the remainder $Y = bX \ X$ has a G_{δ} -diagonal or a point-countable base, then both X and Y are separable and metrizable. In [16], \overrightarrow{C} . Liu improved the results of A. V. Arhangel'skii, and proved that if Y satisfies one of the following conditions (i) and (ii), then X and bX are separable and metrizable.

- (i) $Y = bX\setminus X$ is a quotient s-image of a metrizable space, and π -character of Y is countable;
- (ii) $Y = bX \ X$ has locally a G_{δ} -diagonal.

In this paper, we mainly concerned with the following statement, and under what condition Φ it is true.

Statement Suppose that G is a non-locally compact topological group, and that $Y = bG\ G$ has locally a property- Φ . Then G and bG are separable and metrizable.

Recall that a space X has locally a property- Φ if for each point $x \in X$ there exists an open set U with $x \in U$ such that U has a property- Φ .

In Section 2 we mainly study some local properties on the remainders of the topological group G such that G and bG are separable and metrizable if the π -character of $bG\backslash G$ is countable. Therefore, we extend some results of A. V. Arhangel'skiĭ and C. Liu.

In Section 3 we prove that if the remainders of a topological group G has locally a quasi- G_{δ} -diagonal, then G and bG are separable and metrizable. Therefore, we improve a result of C. Liu in [16]. Also, we study the remainders that are the unions of G_{δ} -diagonals.

In Section 4 we mainly give a partial answer for a question, which was posed by C. Liu in [16]. Finally, we also study the remainders that are locally hereditarily D-spaces.

Recall that a family $\mathcal U$ of non-empty open sets of a space X is called a π -base if for each non-empty open set V of X, there exists an $U \in \mathcal{U}$ such that $V \subset U$. The *π*-character of x in X is defined by $\pi\chi(x, X) = \min\{\mathcal{U} | \colon \mathcal{U} \text{ is a local }$ π -base at x in X}. The π -character of X is defined by $\pi\chi(X) = \sup\{\pi\chi(x, X):$ $x \in X$.

The p-spaces are a class of generalized metric spaces [1]. It is well-known that every metrizable space is a p -space, and every p -space is of countable type.

Throughout this paper, all spaces are assumed to be Hausdorff. The positively natural numbers is denoted by N . We refer the readers to [10, 11] for notations and terminology not explicitly given here.

2. Remainders with the countable π -characters

Let $\mathscr A$ be a collection of subsets of X. $\mathscr A$ is a p-network [7] for X if for distinct points $x, y \in X$, there exists an $A \in \mathcal{A}$ such that $x \in A \subset X - \{y\}$. The collection $\mathscr A$ is called a p-base (i.e., T_1 -point-separating open cover) [7] for X if $\mathscr A$

is a p-network and each element of $\mathscr A$ is an open subset of X. The collection $\mathscr A$ is a *p-metabase* [15] (in [7], *p*-metabase is denoted by the condition (1.5)) for X if for distinct points $x, y \in X$, there exists an $\mathscr{F} \in \mathscr{A}^{< \omega}$ such that $x \in (f \cup \mathscr{F})^{\circ} \subset$ $\left(\begin{array}{cc} \mathcal{F} \subset X - \{y\} \end{array} \right)$. The collection \mathcal{A} is a p-k-network [15] (in [12], p-k-network is denoted by the condition (1.4) _p) for X if, whenever $K \subset X \setminus \{y\}$ with K compact in X, then $K \subset \bigcup \mathcal{F} \subset X \setminus \{y\}$ for some $\mathcal{F} \in \mathcal{A}^{< \omega}$.

First, we give some technique lemmas.

LEMMA 2.1 [3]. If X is a Lindelöf p-space, then any remainder of X is a Lindelöf p-space.

Lemma 2.2 [16]. Let G be a non-locally compact topological group. Then G is locally separable and metrizable if for each point $y \in Y = bG \setminus G$, there is an open neighborhood $U(y)$ of y such that every countably compact subset of $U(y)$ is metrizable and π -character of Y is countable.

LEMMA 2.3. Suppose that X has a point-countable p-metabase. Then each countably compact subset of X is a compact, metrizable, G_{δ} -subset¹ of X.

Proof. Suppose that $\mathcal U$ is a point-countable p-metabase of X, and that K is a countably compact subset of X. Then K is compact by [7]. According to a generalized Miščenko's Lemma in [22, Lemma 6], there are only countably many minimal neighborhood-covers² of K by finite elements of \mathcal{U} , say $\{\mathcal{V}(n) : n \in \mathbb{N}\}.$ Let $V(n) = \bigcup \mathcal{V}(n)$. Then $K \subset \bigcap \{V(n) : n \in \mathbb{N}\}\$. Suppose that $x \in X \setminus K$. For each point $y \in K$, there is an $\mathscr{F}_y \in \mathscr{U}^{<\omega}$ with $y \in (\bigcup \mathscr{F}_y)^\circ \subset \bigcup \mathscr{F}_y \subset X - \{x\}.$ Then there is some sub-collection of $\bigcup \{\mathcal{F}_y : y \in K\}$ is a minimal finite neighborhood-covers of K since K is compact. Therefore, we obtain one of the collections $\mathcal{V}(n)$ with $K \subset V(n) = \bigcup \mathcal{V}(n) \subset X - \{x\}.$

LEMMA 2.4. Suppose that X is a Lindelöf space with locally a point-countable p -metabase. Then X has a point-countable p -metabase.

Proof. For each point $x \in X$, there is an open neighborhood $U(x)$ with $x \in U(x)$ such that $U(x)$ has a point-countable p-metabase \mathcal{F}_x . Let $\mathcal{U} =$ $\{U(x): x \in X\}$. Since X is Lindelöf, it follows that there exists a countable subfamily $\mathcal{U}' \subset \mathcal{U}$ such that $X = \bigcup \mathcal{U}'$. Denoted \mathcal{U}' by $\{U_{x_i} : i \in \mathbb{N}\}.$ Obviously, $\mathscr{F} = \bigcup_i \mathscr{F}_{X_i}$ is a point-countable *p*-metabase for X.

¹A subset K of X is called a G_{δ} -subset of X if K is the intersection of countably open subsets of X .

² Let $\mathscr P$ be a collection of subsets of X and $A\subset X$. The collection $\mathscr P$ is a neighborhood-cover of A if $A \subset (\bigcup \mathscr{P})^{\circ}$. A neighborhood-cover \mathscr{P} of A is a minimal neighborhood-cover if for each $P \in \mathscr{P}$, $\mathcal{P}\backslash\{P\}$ is not a neighborhood-cover of A.

508 fucai lin

THEOREM 2.5. Suppose that G is a non-locally compact topological group, and that $Y = bG\backslash G$ has locally a point-countable p-metabase. Then G and bG are separable and metrizable if π -character of Y is countable.

Proof. It is easy to see that G is locally separable and metrizable by Lemmas 2.2 and 2.3. Then G is a p-space. Hence Y is Lindelöf by Henriksen and Isbell's theorem. From Lemma 2.4 it follows that $Y = bG\backslash G$ has a pointcountable p-metabase.

Claim: The space Y has a G_{δ} -diagonal.

Put $G = \bigoplus_{\alpha \in \Lambda} G_{\alpha}$, where G_{α} is a separable and metrizable subset for each $\alpha \in \Lambda$. Let $\zeta = \{G_\alpha : \alpha \in \Lambda\}$, and let F be the set of all points of bG at which ζ is not locally finite. Since ζ is discrete in G, it follows that $F \subset bG \backslash G$. It is easy to see that F is compact. Therefore, it follows from Lemma 2.3 that F is separable and metrizable. Hence F has a countable network.

Let $M = Y \backslash F$. For each point $y \in M$, there is an open neighborhood O_y in bG such that $\overline{O_y} \cap F = \emptyset$. Since ζ is discrete, $\overline{O_y}$ meets at most finitely many G_{α} . Let $L = \bigcup \{ G_{\alpha} : G_{\alpha} \cap \overline{O_{\nu}} \neq \emptyset \}$. Then L is separable and metrizable. By Lemma 2.1, $\overline{L}\backslash L$ is a Lindelöf p-space. Obviously, $\overline{L}\backslash L\subset Y$. Therefore, $\overline{L}\backslash L$ has a point-countable p-metabase. Hence $\overline{L}\backslash L$ is separable and metrizable by [12], which implies that \overline{L} has a countable network. It follows that \overline{L} is separable and metrizable. Clearly, $O_v \subset \overline{L}$ and $O_v \cap M$ is separable and metrizable. Therefore, M is locally separable and metrizable. From Lemma 2.3 it follows that each compact subset of Y is a G_{δ} -subset of Y. Since F is compact and Y is Lindelöf, it follows that M is Lindelöf. Therefore, M is separable. Then M has a countable network. So Y has a countable network, which implies that Y has a G_{δ} -diagonal. Thus, Claim is verified.

Therefore, G and bG are separable and metrizable by [4, Theorem 5]. \Box

COROLLARY 2.6. Suppose that G is a non-locally compact topological group, and that $Y = bG\ G$ has locally a point-countable p-base. Then G and bG are separable and metrizable if π -character of Y is countable.

COROLLARY 2.7. Suppose that G is a non-locally compact topological group, and that $Y = bG\ G$ is locally a k-space with a point-countable p-k-network. Then G and bG are separable and metrizable if π -character of Y is countable.

Proof. Note that if $\mathcal P$ is a point-countable p-k-network for a k-space X, then $\mathscr P$ is a point-countable p-metabase for X by [12].

A collection $\mathcal P$ of subsets of a space X is a k-network [11] for X if, whenever $K \subset U$ with K compact and U open in X, then $K \subset \bigcup \mathcal{F} \subset U$ for some $\mathscr{F} \in \mathscr{P}^{<\omega}$.

Obviously, if a space X has a point-countable k-network, then X has a point-countable $p-k$ -network. So we have the following Theorem 2.8, which improves the result [16, Theorem 4] of C. Liu.

Theorem 2.8. Suppose that G is a non-locally compact topological group, and that $Y = bG\backslash G$ is locally a k-space with a point-countable k-network. Then G and bG are separable and metrizable if π -character of Y is countable.

COROLLARY 2.9 $[4]$. Suppose that G is a non-locally compact topological group. If $Y = bG\ G$ has a point-countable base, then G and bG are separable and metrizable.

Next, we consider the remainders with locally a $\delta\theta$ -base³ of the topological groups.

LEMMA 2.10. Let X be a Lindelöf space with locally a $\delta\theta$ -base. Then X has a $\delta\theta$ -base.

Proof. For each point $x \in X$, there is an open neighborhood $U(x)$ with $x \in U(x)$ such that $U(x)$ has a $\delta\theta$ -base $\mathscr{B}_x = \bigcup_n \mathscr{B}_{n,x}$. Let $\mathscr{U} = \{U(x) : x \in X\}$. Since X is Lindelöf, it follows that there exists a countable subfamily $\mathscr{U}' \subset \mathscr{U}$ such that $X = \bigcup \mathcal{U}'$. Denoted \mathcal{U}' by $\{U_{x_i} : i \in \mathbb{N}\}\$. Obviously, $\mathcal{B} = \bigcup_{i,n} \mathcal{B}_{n,x_i}$ is a $\delta\theta$ -base for X.

THEOREM 2.11. Let G be a non-locally compact topological group. If $Y = bG\ G$ has locally a $\delta\theta$ -base. Then G and bG are separable and metrizable.

Proof. Obviously, Y is first countable. By [8, Proposition 2.1], each countably compact subset of Y is a compact, metrizable, G_{δ} -subset of Y. From Lemma 2.2 it follows that G is locally separable and metrizable. Then G is a p -space. Hence Y is Lindelöf by Henriksen and Isbell's theorem. From Lemma 2.10 it follows that $Y = bG \ G$ has a $\delta\theta$ -base.

By the same notations in Theorem 2.5, it is easy to see from [8, Propostion 2.1] that $F \subset bG \backslash G$ is compact and metrizable in view of the proof of Theorem 2.5. By [11, Corollary 8.3] and Lemma 2.1, $\overline{L}\backslash L$ is separable and metrizable. In view of the proof of Theorem 2.5, G and bG are separable and metrizable by [8, Propostion 2.1].

COROLLARY 2.12 [16]. Let G be a non-locally compact topological group. If $Y = bG\ G$ is locally a quasi-developable⁴. Then G and bG are separable and metrizable.

³Recall that a collection $\mathscr{B} = \bigcup_n \mathscr{B}_n$ of open subsets of a space X is a $\delta\theta$ -base [11] if whenever $x \in U$ with U open, there exist an $n \in \mathbb{N}$ and a $B \in \mathscr{B}$ such that

⁽i) $1 \leq \text{ord}(x, \mathcal{B}_n) \leq \omega;$

⁽ii) $x \in B \subset U$.

⁴A space X is quasi-developable if there exists a sequence $\{\mathscr{G}_n\}_n$ of families of open subsets of X such that for each point $x \in X$, $\{st(x, \mathcal{G}_n) : n \in \mathbb{N}, st(x, \mathcal{G}_n) \neq \emptyset\}$ is a base at x.

510 **fucal line**

Finally, we consider the remainders with locally a c-semistratifiable space of the topological group.

Let X be a topological space. X is called a c-semistratifiable space(CSS) [17] if for each compact subset K of X and each $n \in \mathbb{N}$ there is an open set $G(n, K)$ in X such that:

- (i) $\bigcap \{G(n,K) : n \in \mathbb{N}\} = K;$
- (ii) $G(n+1, K) \subset G(n, K)$ for each $n \in \mathbb{N}$; and
- (iii) if for any compact subsets K, L of X with $K \subset L$, then $G(n, K) \subset$ $G(n, L)$ for each $n \in \mathbb{N}$.

Theorem 2.13. Suppose that G is a non-locally compact topological group, and that $Y = bG \ G$ is locally a CSS-space. Then G and bG are separable and metrizable if π -character of Y is countable.

Proof. By [8, Proposition 3.8(c)] and the definition of CSS-spaces, it is easy to see that each countably compact subset of Y is a compact, metrizable, G_{δ} -subset of Y. From Lemma 2.2 it follows that G is locally separable and metrizable. Then G is a p -space. Hence Y is Lindelöf by Henriksen and Isbell's theorem. From Lemma 2.10 it follows that $Y = bG\setminus G$ is a CSS-space by [8, Proposition 3.5].

By the same notations in Theorem 2.5, it is easy to see from [8, Proposition 3.8] that $F \subset bG \backslash G$ is compact and metrizable in view of the proof of Theorem 2.5. By [8, Proposition 3.8], $\overline{L} \backslash L$ is separable and metrizable. In view of the proof of Theorem 2.5, it is easy to see that G and bG are separable and metrizable. \Box

COROLLARY 2.14. Suppose that G is a non-locally compact topological group, and that $Y = bG \ G$ is locally a σ^* -space⁵. Then G and bG are separable and metrizable if π -character of Y is countable.

Proof. By [8, Lemma 3.1], it follows that every σ^* -space is a CSS-space. Hence G and bG are separable and metrizable by Theorem 2.13.

QUESTION 2.15. Let G be a non-locally compact topological group. If $Y =$ $bG\ G$ satisfies the following conditions (1) and (2), are G and bG separable and metrizable?

- (1) For each point $y \in Y$, there exists an open neighborhood $U(y)$ of y such that every countably compact subset of $U(y)$ is metirzable and G_{δ} -subset of $U(v)$;
- (2) π -character of Y is countable.

⁵A space X is called a σ^* -space [17] if X has a σ -closure-preserving closed p-network.

3. Remainders that are locally quasi- G_{δ} -diagonals, and that are unions

First, we study the remainders with locally a quasi- G_{δ} -diagonal⁶ and improve a result of C. Liu.

We call a space X is *Ohio complete* [3] if in each compactification bX of X there is a G_{δ} -subset Z such that $X \subset Z$ and each point $y \in Z\backslash X$ is separated from X by a G_{δ} -subset of Z.

LEMMA 3.1. Let X be a p-space and every compact subset of $bX\$ X be metrizalbe. Then there exists a G_{δ} -subset Y of bX such that $X \subset Y$ and satisfies the following conditions:

(1) bX is first countable at every point $y \in Y \backslash X$;

(2) If X is a topological group and $\overline{Y \setminus X} \cap X \neq \emptyset$, then X is metrizable.

Proof. Since X is a p-space, X is Ohio complete [3, Corollary 3.7]. It follows that there is a G_0 -subset Y of bX such that $X \subset Y$ and every point $y \in Y \backslash X$ can be separated from X by a G_{δ} -subset. We now prove that Y satisfies the conditions (1) and (2).

(1) From the choice of Y, it is easy to see that for every point $y \in Y \backslash X$ there exists a compact G_{δ} -subset C of bX such that $y \in C \subset Y \setminus X \subset bX \setminus X$. Since C is compact, the compact subset C is metrizable. Therefore, y is a G_{δ} point in bX and hence, bX is first countable at y.

(2) We choose a point $a \in \overline{Y \setminus X} \cap X$. Since X is a p-space, there exists a compact subset F of X such that $a \in F$ and F has a countable base of neighborhoods in X. Since X is dense in bX , the set F has a countable base of open neighborhoods $\phi = \{U_n : n \in \omega\}$ in bX. Since $a \in \overline{Y \setminus X}$, we can fix a $b_n \in U_n \cap (Y \setminus X)$ for each $n \in \omega$. Obviously, there is a point $c \in F$ which is a limit point for the sequence $\{b_n\}$. By (1), we know that bX is first countable at b_n for every $n \in \omega$. We can fix a countable base η_n of bX at b_n . Then $\bigcup \{\eta_n : n \in \omega\}$ is a countable π -base of bX at c. Then the space X also has a countable π -base at c, since $c \in X$ and X is dense in bX. Since X is a topological group, the space X is metrizable.

THEOREM 3.2. Let G be a non-locally compact topological group. If $Y =$ $bG\backslash G$ has a quasi- G_{δ} -diagonal. Then G and bG are separable and metrizable.

Proof. Obviously, Y has a countable pseudocharacter. By [5, Theorem 5.1], G is a paracompact p -space or Y is first countable.

Case 1: The space Y is first countable.

From [8, Proposition 2.3] it follows that each countably compact subset of Y is a compact, metrizable, G_{δ} -subset of Y. Note that a Lindelosf p-space with a

⁶A space X has a quasi-G_o-diagonal [14] if there exists a sequence $\{\mathscr{G}_n\}_n$ of families of open subsets of X such that for each point $x \in X$, $\{st(x, \mathcal{G}_n) : n \in \mathbb{N}, st(x, \mathcal{G}_n) \neq \emptyset\}$ is a p-network at point x.

512 fucai lin

quasi- G_{δ} -diagonal is metrizable by [14, Corollary 3.6]. In view of the proof of Theorem 2.5, it is easy to see that G and bG are separable and metrizable.

Case 2: The space G is a paracompact p -space.

By $[3, Corollary 3.7], G$ is Ohio complete. Therefore, there exists a G_{δ} -subset X of bG such that $G \subset X$ and every point $x \in X \backslash G$ can be separated from G by a G_{δ} -set of X. Let $M = X \backslash G$. Then bG is first countable at every point $y \in M$ by Lemma 3.1.

Subcase 1: $\overline{M} \cap G = \emptyset$. Then $X \setminus \overline{M} = G$. Hence G is a G_{δ} -subset of bG. It follows that Y is σ -compact. Since Y has a quasi- G_{δ} -diagonal, every compact subspace of Y is separable and metrizable by $[8,$ Proposition 2.3]. Hence Y is separable. Since both Y and G are dense in bG , it follows that the souslin number of G is countable. The space G is Lindelöf, since G is paracompact. Therefore, G is a Lindelöf p-space. Then Y is a Lindelöf p-space by Lemma 2.1. Since Y has a quasi- G_{δ} -diagonal, the space Y is metrizable by [14, Corollary 3.6]. It follows that Y has a G_{δ} -diagonal. Therefore, G and bG are separable and metrizable by [4, Theorem 5].

Subcase 2: $\overline{M} \cap G \neq \emptyset$. Then G is metrizable by Lemma 3.1.

Subcase $2(a)$: G is locally separable. By [8, Proposition 2.3], it is easy to see that G and bG are separable and metrizable by the proof of Theorem 2.5.

Subcase 2(b): G is nowhere locally separable. Fix a base $\mathscr{B} = \bigcup \{ \mathscr{U}_n : n \in \mathbb{N} \}$ of G such that each \mathcal{U}_n is discrete in G. Let F_n be the set of all accumulation points for \mathcal{U}_n in bG for each $n \in \mathbb{N}$. Put $Z = \bigcup \{F_n : n \in \mathbb{N}\}\$. Then Z is dense in Y and σ -compact by [4, Proposition 4]. Since every compact space with a quasi- G_{δ} -diagonal is separable and metrizable by [8, Proposition 2.3], the space Z has a countable network. Because G is nowhere locally compact, the space Y is dense in bG. It follows that Z is dense in bG. Hence bG is separable, which implies that the Souslin number of G is countable. Since G is metrizable, the space G is separable. Then Y is a Lindelöf p-space by Lemma 2.1. Hence Y is metrizable by $[14, Corollary 3.6]$. It follows that Y is separable and metrizable, which implies that G and bG are separable and metrizable.

LEMMA 3.3. Let X be a Lindelöf space with locally a quasi- G_{δ} -diagonal. Then X has a quasi- G_{δ} -diagonal.

Proof. For each point $x \in X$, there exists an open neighborhood $U(x)$ such that $x \in U(x)$ and $U(x)$ has a quasi-G_o-diagonal. Then $\mathscr{U} = \{U(x) : x \in X\}$ is an open cover of X. Since X is a Lindelöf space, there exists a countable subfamily $\mathscr{V} \subset \mathscr{U}$ such that $X = \bigcup \mathscr{V}$. Denoted \mathscr{V} by $\{U_n : n \in \mathbb{N}\}\$. For each $n \in \mathbb{N}$, let $\{\mathcal{U}_{nk}\}_{k \in \mathbb{N}}$ be a quasi- G_{δ} -diagonal sequence of U_n . Let $\mathcal{F} =$ $\{\mathscr{U}_{nk}\}_{n,k \in \mathbb{N}}$. Then \mathscr{F} is a quasi- G_{δ} -diagonal sequence of X.

Indeed, for distinct points $x, y \in X$, there exists an $n \in \mathbb{N}$ such that $x \in U_n$. If $y \notin U_n$, then $x \in U_n \subset X - \{y\}$. Since $\{\mathscr{U}_{nk}\}_{k \in \mathbb{N}}$ is a quasi-G_o-diagonal sequence of U_n , there exists a $k \in \mathbb{N}$ such that $x \in \bigcup \mathcal{U}_{nk}$. Hence $x \in \text{st}(x, \mathcal{U}_{nk})$ $\bigcup \mathscr{U}_{nk} \subset U_n \subset X - \{y\}.$

If $y \in U_n$, then $x \in U_n - \{y\} \subset X - \{y\}$. Since $\{\mathscr{U}_{nk}\}_{k \in \mathbb{N}}$ is a quasi- G_{δ} -diagonal sequence of U_n , there exists a $k \in \mathbb{N}$ such that $x \in st(x, \mathcal{U}_{nk}) \subset$ $U_n - \{y\} \subset X - \{y\}.$

Therefore, $\mathscr F$ is a quasi- G_δ -diagonal sequence of X.

THEOREM 3.4. Let G be a non-locally compact topological group. If $Y =$ $bG\backslash G$ has locally a quasi- G_{δ} -diagonal, then G and bG are separable and metrizable.

Proof. By [8, Proposition 2.1 and 2.5] and Lemma 2.2, it is easy to see that G is locally a separable and metrizable space. Then Y is a Lindelost space by Henriksen and Isbell's theorem. From Lemma 3.3 it follows that Y has a quasi- G_0 -diagonal. Then G and bG are separable and metrizable by Theorem 3.2. \Box

QUESTION 3.5. Is there a topological group G such that the $Y = bG\ G$ has a W_{δ} -diagonal⁷, G is not reparable and metrizable?

COROLLARY 3.6 [16]. Let G be a non-locally compact topological group. If $Y = bG\backslash G$ has locally a G_{δ} -diagonal, then G and bG are separable and metrizable.

Next, we study the remainder that are the unions of the G_{δ} -diagonals.

Lemma 3.7. Let G be a non-locally compact topological group. If there exists a point $a \in Y = bG \backslash G$ such that $\{a\}$ is a G_{δ} -set in Y, then at least one of the following conditions holds:

- (1) G is a paracompact p-space;
- (2) Y is first-countable at some point.

Proof. Suppose that Y is not first-countable at point a. Since a is a G_{δ} point in Y, there exists a compact subset $F \subset bG$ with a countable base at F in bG such that $\{a\} = F \cap (bG \backslash G)$. We have $F \backslash \{a\} \neq \emptyset$, since Y is not firstcountable at point a. Therefore, there exists a non-empty compact subset $B \subset F$ with a countable base at B in bG. Obviously, $B \subset G$. It follows that G is a topological group of countable type $[18]$. Therefore, G is a paracompact p-space $[18]$.

Lemma 3.8. Let G be a non-locally compact topological group, and $Y = bG\ G = Y_1 \cup Y_2$, where both Y_1 and Y_2 have a countable pseudocharacter. If at most one of the Y_1 and Y_2 is dense in bG, then at least one of the following conditions holds:

(2) Y is first-countable at some point.

 (1) G is a paracompact p-space;

⁷A space X is said to have a W_{δ} -diagonal if there is a sequence (\mathscr{B}_n) of bases for X such that whenever $x \in B_n \in \mathcal{B}_n$, and (B_n) is decreasing (by set inclusion), then $\{x\} = \bigcap \{B_n : n \in \omega\}.$

514 FUCAI LIN

Proof. Without loss of generality, we can assume that $\overline{Y_1} \neq bG$. Let $U = bG\sqrt{Y_1}$. Then $V = U \cap Y = U \cap Y_2 \neq \emptyset$. It follows that V is an open subset of Y and each point of V is a G_{δ} -point. By Lemma 3.7, we complete the \Box

THEOREM 3.9. Let G be a non-locally compact topological group, and $Y = bG \ G = Y_1 \cup Y_2$, where both Y_1 and Y_2 have a countable pseudocharacter. If both Y_1 and Y_2 are Ohio complete, then at least one of the following conditions holds:

(1) G is a paracompact p-space;

(2) Y is first-countable at some point.

Proof. Case 1: $\overline{Y_1} \neq bG$ or $\overline{Y_2} \neq bG$.

It is easy to see by Lemma 3.8.

Case 2: $\overline{Y_1} = bG$ and $\overline{Y_2} = bG$.

Then bG is the Hausdorff compactification of Y_1 and Y_2 . Since Y_1 and Y_2 are Ohio complete, there exist G_{δ} -subsets X_1 and X_2 satisfy the definition of Ohio complete, respectively.

Case 2(a): $Y_1 = X_1$ and $Y_2 = X_2$.

Then Y has countable pseudocharacter. By [5, Theorem 5.1], we complete the proof.

Case 2(b): $Y_1 \neq X_1$ or $Y_2 \neq X_2$.

Without loss of generality, we can assume that $Y_1 \neq X_1$. If $(X_1 \ Y_1) \cap$ $Y_2 \neq \emptyset$, then for each $y \in (X_1 \backslash Y_1) \cap Y_2$ there exists a compact subset C such that $y \in C$ and $C \cap Y_1 = \emptyset$. Obviously, y is a G_{δ} -point of Y. By Lemma 3.7, we also complete the proof. If $(X_1 \ Y_1) \cap Y_2 = \emptyset$, then there exists a compact subset $C \subset G$ with a countable base at C in bG. It follows that G is a topological group of countable type $[18]$. Therefore, G is a paracompact p-space $[18]$.

A space with a G_{δ} -diagonal is Ohio complete [2]. Therefore, by Theorem 3.9, we have the following result.

Theorem 3.10. Let G be a non-locally compact topological group, and $Y = bG \ G = Y_1 \cup Y_2$, where both Y_1 and Y_2 have a G_{δ} -diagonal. Then at least one of the following conditions holds:

(1) G is a paracompact p-space;

(2) Y is first-countable at some point.

Question 3.11. Let G be a non-locally compact topological group, and $Y = \overline{bG} \setminus G = \bigcup_{i=1}^{i=n} Y_i$, where Y_i has a G_{δ} -diagonal for every $1 \le i \le n$. Is G a paracompact p-space or is Y first-countable at some point?

Question 3.12. Let G be a non-locally compact topological group, and $Y = bG \ G = Y_1 \cup Y_2$, where both Y_1 and Y_2 have quasi- G_{δ} -diagonal. Is G a paracompact p -space or is Y first-countable at some point?

4. Remainders of locally BCO and locally hereditarily D-spaces

First, we study the following question, which was posed by C. Liu in [16].

Question 4.1. Let G be a non-locally compact topological group, and $Y = \overline{b}G\backslash G$ have a BCO⁸. Are G and bG separable and metrizable?

Now we give a partial answer for Question 4.1.

Theorem 4.2. Let G be a non-locally compact topological group, and $Y = bG\ G$ has a BCO. If Y is Ohio complete, then G and bG are separable and metrizable.

Proof. Since Y is Ohio complete, G is a paracompact p-space or σ -compact space by [3, Theorem 4.3].

Case 1: The space G is a paracompact p -space.

Since G is a p -space, the space Y is Lindelöf by Henriksen and Isbell's theorem. Hence Y is developable by [11, Theorem 6.6]. Then G and bG are separable and metrizable by Theorem 3.4.

Case 2: The space G is a σ -compact space.

We claim that G is metrizable. Suppose that G is not metrizable. Then Y is ω -bounded⁹ by [5, Theorem 3.12]. Since G is a σ -compact topological group, the Souslin number $c(G)$ of G is countable by a theorem of Tkachenko [21, Corollary 2]. Therefore, $c(bG) \leq \omega$. Y is dense in bG, since G is non-locally compact. It follows that $c(Y) \leq \omega$ as well. Since Y is Cech-complete, there exists a dense subspace $Z \subset Y$ such that Z is a paracompact and C^{\check{C}}ech-complete subspace of Y by [19]. Then Z is a paracompact space with a BCO. Therefore, Z is metrizable by [11, Theorem 1.2 and 6.6]. Since $c(Y) \leq \omega$ and Z is dense for Y, $c(Z) \leq \omega$ as well. It follows that Z is separable. Since Y is ω -bounded, it is compact. Therefore, G is locally compact, which is a contradiction. It follows that G is metrizable. Therefore, G and bG are separable and metrizable by Case 1.

Theorem 4.3. Let G be a non-locally compact topological group, and $Y = bG \ G$ have a BCO. If G is an Σ -space, then G and bG are separable and metrizable.

Proof. From [6, Theorem 2.8] it follows that every compact subspace of Y has countable character in Y. Since G is non-locally compact, Y is also a dense subset of bG . Hence G is Lindelöf space by Henriksen and Isbell's theorem. If

⁸A space X is said to have a *base of countable order*(BCO) [11] if there is a sequence $\{\mathscr{B}_n\}$ of base for X such that whenever $x \in b_n \in \mathcal{B}_n$ and (b_n) is decreasing (by set inclusion), then $\{b_n : n \in \mathbb{N}\}\$ is a base at x.

⁹A space X is said to be ω -bounded if the clourse of every countable subset of X is compact.

516 FUCAL LIN

G is a σ -compact space, then G and bG are separable and metrizable by Case 2 in Theorem 4.2. Hence we assume that G is non- σ -compact. Since G is a Lindelöf Σ -space, it is easy to see that G is a Lindelöf p-space by the proof of [5, Theorem 4.2]. It follows that G and bG are separable and metrizable by \Box Theorem 4.2.

Finally, we study the remainders of topological groups with locally a hereditarily D-space.

THEOREM 4.4. Let G be a topological group. If for each $y \in Y = bG \ G$ there exists an open neighborhood $\overline{U}(y)$ of y such that every ω -bounded subset of $U(y)$ is compact, then at least one of the following conditions holds:

(1) G is metrizable;

(2) bG can be continuously mapped onto the Tychonoff cube I^{ω_1} .

Proof. Case 1: The space G is locally compact.

If G is not metrizable, then G contains a topological copy of D^{ω_1} . Since the space G is normal, the space G can be continuously mapped onto the Tychonoff cube I^{ω_1}

Case 2: The space G is not locally compact.

Obviously, both G and Y are dense in $b\tilde{G}$. Suppose that the condition (2) doesn't hold. Then, by a theorem of Šapirovskiĭ in [20], the set A of all points $x \in bG$ such that the *π*-character of bG at x is countable is dense in bG. Since G is dense in bG , it can follow that the π -character of G is countable at each point of $A \cap G$.

Subcase 2(a): $A \cap G \neq \emptyset$.

Since G is a topological group, it follows that G is first countable, which implies that G is metrizable.

Subcase 2(b): $A \cap G = \emptyset$.

Obviously, $A \subset Y$. For each $y \in Y$, there exists an open neighborhood $U(y)$ in Y such that $y \in U(y)$ and every ω -bounded subset of $U(y)$ is compact. Obviously, $A \cap U(y)$ is dense of $U(y)$. Also, it is easy to see that $A \cap U(y)$ is ω -bounded subset for $U(y)$. Therefore, $A \cap U(y)$ is compact. Then $A \cap U(y) =$ $U(y)$, since $A \cap U(y)$ is dense of $U(y)$. Hence Y is locally compact, a contra- \Box

A neighborhood assignment for a space X is a function φ from X to the topology of X such that $x \in \varphi(x)$ for each point $x \in X$. A space X is a D-space [9], if for any neighborhood assignment φ for X there is a closed discrete subset D of X such that $X = \bigcup_{d \in D} \varphi(d)$.

It is easy to see that every countably compact D-space is compact. Hence we have the following result by Theroem 4.4.

THEOREM 4.5. Let G be a topological group. If $Y = bG \ G$ is locally a hereditarily D-space, then at least one of the following conditions holds:

- (1) G is metrizable;
- (2) bG can be continuously mapped onto the Tychonoff cube I^{ω_1} .

Acknowledgements. We wish to thank the reviewers for the detailed list of corrections, suggestions to the paper, and all her/his efforts in order to improve the paper. In particular, Question 3.5 is due to the reviewers.

REFERENCES

- [1] A. ARHANGEL'SKIĬ, Mappings and spaces, Russian Math. Surveys. 21 (1966), 115-162.
- [2] A. ARHANGEL'SKIĬ, D-space and covering properties, Topology Appl. 146–147 (2005), 437– 449.
- [3] A. ARHANGEL'SKIĬ, Remainders in compactification and generalized metrizability properties, Topology Appl. 150 (2005), 79–90.
- [4] A. ARHANGEL'SKII^{*}, More on remainders close to metrizable spaces, Topology Appl. 154 (2007), 1084–1088.
- [5] A. ARHANGEL'SKII, First countability, tightness and other cardinal invariants in remainders of topological groups, Topology Appl. 154 (2007), 2950–2961.
- [6] B. ALLECHE, A. ARHANGEL'SKII AND J. CALBRIX. Weak developments and metrization. Topology Appl. 100 (2000), 23–38.
- [7] D. BURKE AND E. A. MICHAEL, On certain point-countable covers, Pacific J. Math. 64 (1976), 79–92.
- [8] H. BENNETT, R. BYERLY AND D. LUTZER, Compact G_{δ} sets, Topology Appl. 153 (2006), 2169–2181.
- [9] E. K. Douwen and W. F. Pfeffer, Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81 (1979), 371–377.
- [10] R. Engelking, General topology (revised and completed edition), Heldermann Verlag, Berlin, 1989.
- [11] G. Gruenhage, Generalized metric spaces, Handbook of set-theoretic topology (K. Kunen and J. E. Vaughan, eds.), Elsevier Science Publishers B.V., Amsterdam, 1984, 423–501.
- [12] G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable covvers, Pacific J. Math. 113 (1984), 303–332.
- [13] M. Henriksen and J. Isbell, Some properties of compactifications, Duke Math. J. 25 (1958), 83–106.
- [14] R. E. Hodel, Metrizability of topological spaces, Pacific J. Math. 55 (1974), 441-459.
- [15] S. Lin, Generalized metrizable spaces and mappings (in Chinese), 2nd ed., China Science Press, Beijing, 2007.
- [16] C. LIU, Remainders in compactification of topological groups, Topology Appl. 156 (2009), 849–854.
- [17] H. Martin, Metrizability of M-space, Canad. J. Math. 4 (1973), 840–841.
- [18] W. ROELKE AND S. DIEROLF. Uniform structures on topological group and their quotients, McGraw-Hill, New York, 1981.
- [19] B. SAPIROVSKIII, On separability and metirzability of spaces with Souslin's condition, Soviet Math. Doke. 13 (1972), 1633–1638.
- [20] B. SAPIROVSKII^{*}, On π -character and π -weight of compact Hausdorff spaces, Soviet Math. Doke. 16 (1975), 999–1003.
- [21] M. G. TKACHENKO, On the Souslin property in free topological groups over compact Hausdorff spaces, Mat. Notes 34 (1983), 790–793.

518 FUCAI LIN

[22] P. F. YAN AND S. LIN, Point-countable k-network and α_4 -space, Topology Proc. 24 (1999), 345–354.

> Fucai Lin Department of Mathematics and Information Science Zhangzhou Normal University ZHANGZHOU 363000 P. R. China E-mail: linfucai2008@yahoo.com.cn