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BEHAVIORS OF CIRCULAR TRAJECTORIES ON HYPERSURFACES
OF TYPE (A1) IN A COMPLEX HYPERBOLIC SPACE

Tuvya Bao AND TOSHIAKI ADACHI

Abstract

We study circular trajectories for Sasakian magnetic fields on geodesic spheres,
horospheres and tubes around totally geodesic complex hypersurfaces in a complex
hyperbolic space. Investigating their extrinsic shapes in the ambient complex hyperbolic
space, we give conditions for them to be bounded and to be closed. By use of
information on lengths of circles in complex space forms, we give expressions of lengths
of circular trajectories on those real hypersurfaces and show that their length spectrum
is a discrete subset of a real line.

1. Introduction

As a generalization of static magnetic fields on a Euclidean 3-space, a closed
2-form B on a Riemannian manifold N is said to be a magnetic field. We
define a skew symmetric operator Qg : TN — TN on the tangent bundle TN by
{v,Qg(w)) =B(v,w) for all v,we T,N at an arbitrary point p € N with Rie-
mannian metric {,». A magnetic field is said to be uniform if Qg is parallel.
On a Kihler manifold, constant multiples of its Kéhler form are uniform magnetic
fields. In [1] and its sequels the second author has studied some of their
properties. Since Kédhler manifolds are real even dimensional, we are interested
in some objects corresponding to Kéhler magnetic fields on odd-dimensional
Riemannian manifolds. On a real hypersurface M in a Kihler manifold M
with complex structure J, we can consider a canonical closed 2-form F, given
by Fy(v,w) = v,¢w). Here, ¢: TM — T'M denotes the characteristic tensor
induced by J which is defined by ¢w = Jw + {w, JA > A" with a unit normal A"
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on M in M. We call constant multiples of this form Sasakian magnetic fields
(see [2, 7).

For a magnetic field B we call a smooth curve y parameterized by its
arclength trajectory if it satisfies the differential equation V;y = Qg(y). For a
Sasakian magnetic field F, = xF, (x € R), its trajectory is hence a curve y which
is parameterized by its arclength and satisfies V;p = x¢p. Unfortunately, being
different from Kihler magnetic fields, Sasakian magnetic fields are not uniform.
Therefore their trajectories are not ‘“‘elementary” as Frenet curves, in general.
Since every trajectory for a Kdhler magnetic field is a circle, we restrict ourselves
on circular trajectories, which are trajectories and are also circles of positive
geodesic curvatures, for Sasakian magnetic fields.

In this paper we study circular trajectories on geodesic spheres, on horo-
spheres and on tubes around complex hypersurfaces CH"! in a complex
hyperbolic space CH”". These submanifolds are typical ‘“‘nice”” examples of
homogeneous Riemannian manifolds, because their geodesics are homogeneous
curves, that is, each of them is an orbit of a one-parameter subgroup of
the isometry group of the base manifold. In [6] we studied geodesics on
these real hypersurfaces and showed conditions for them to be bounded
and to be closed. Since trajectories are considered as perturbed objects of
geodesics, we are interested in their properties. As was mentioned in [5],
trajectories for Sasakian magnetic fields on these real hypersurfaces are also
homogeneous. It is hence natural to consider that they have a resemblance to
geodesics.

In the preceding paper [7], we showed there exist infinitely many circular
trajectories which are not congruent to each other on geodesic spheres in a
complex projective space CP"” and horospheres, geodesic spheres and tubes
around complex hypersurfaces congruent to CH"™! in CH". As we studied
properties of circular trajectories on geodesic spheres in a complex projective
space in [8], we here treat circular trajectories on other hypersurfaces in
complex hyperbolic spaces. On horospheres and on tubes around complex
hypersurfaces, because they are noncompact, we first study whether circular
trajectories are bounded or not (Theorems 1 and 4). For trajectories on
geodesic spheres and for bounded trajectories on tubes around complex hyper-
surfaces, we also study conditions for them to be closed and give expressions
of lengths of them (Theorems 2 and 5). Just like geodesics on these real
hypersurfaces, we find there are infinitely many closed circular trajectories
and infinitely many bounded open circular trajectories. But being different
from geodesics, the expressions of lengths are a bit complicated. Giving
rough estimates of lengths of closed circular trajectories, we investigate how
they are distributed on a real line. We show that the set of lengths are
discrete and that the number of congruence classes of closed circular trajec-
tories which are shorter than a given arbitrary constant is finite (Theorems 3
and 6).

The authors are grateful to the referee who gives an important advice from
the viewpoint of submanifold-theory.
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2. Circular condition on trajectories

In a complex hyperbolic space CH"(—c) of constant holomorphic sec-
tional curvature —c¢ (< 0), we consider in this paper a horosphere HS, a
geodesic sphere G(r) of radius r and a tube 7'(r) of radius r around totally

geodesic CH""!. These real hypersurfaces have common properties on shape
operators:
1) The characteristic vector field & defined by & = —J.4" is a principal vector
field;

2) The number of principal curvatures are two, and they are constant on
each real hypersurface;
3) The shape operator 4 and the characteristic tensor field ¢ are simulta-
neously diagonalizable (i.e. A¢ = @A).
We here list their principal curvatures. We denote by v;, the principal curvature
of ¢ and 1), the principal curvature of vectors orthogonal to £.  As all tangent
vectors orthogonal to & are principal, these real hypersurfaces are said to be
totally #-umbilic.

TaBLE 1. principal curvatures of totally x#-umbilic hypersurfaces

M | HS in CH"(—c¢) G(r) in CH"(—c) T(r) in CH"(—c)
I Ve (VE/2) coth(y/ar/2) | (ve/2) tanh(y/ar/2)
v Ve Ve coth(y/cr) /¢ coth(y/cr)

In these real hypersurfaces, trajectories for Sasakian magnetic fields are
classified into congruence classes by their structure torsions. We say two smooth
curves y;, 7, on a Riemannian manifold N parameterized by their arclengths
are congruent to each other if there exist an isometry ¢ of N and a constant 7
with p,(z+ t9) = @ oy,(¢) for all t. For a trajectory y for a Sasakian magnetic
field F, on a real hypersurface M in CH", we define its structure torsion p,
by p, =<p,¢,»>. It is known that the structure torsion of y is not necessarily
constant along y. But on our real hypersurfaces, as their shape operators and
their characteristic tensors are simultaneously diagonalizable, each trajectory for
a Sasakian magnetic field has constant structure torsion (see [7]). We find that
a trajectory y, for F,, and a trajectory y, for F,, are congruent to each other if
and only if one of the following conditions holds (see [2]):

) p, [ =lp,I=1,

i) p, =p,, =0 and |k| = |k2],

iii) 0 <|p, | =p, | <1 and xip, = r2p,,.

In [7] we studied features of trajectories for Sasakian magnetic fields. A
smooth curve ¢ parameterized by its arclength on a Riemannian manifold N is
said to be a helix of proper order d if it satisfies the following system of ordinary
differential equations V;Y; = —x; 1Y, 1 + ;Y11 (1 < j<d) with positive con-
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stants «i,...,k4-1 and an orthonormal system {Y, =79, Ys,..., Y;} of vector
fields along y. Here, we put k9 = x; = 0 and choose Yy, Y;.; to be null vector
fields along y. We call these constants «,...,x,—1 and the frame {Y,..., Y }

the geodesic curvatures and the Frenet frame of p, respectively. For trivial
(Sasakian) magnetic field Fy, its trajectories are geodesics. For non-trivial
Sasakian magnetic fields we have the following.

ProrosiTION 1 ([7]). Let M be a real hypersurface which is congruent to
one of a horosphere HS, a geodesic sphere G(r) of radius r and a tube T(r) of
radius r around totally geodesic CH"™' in CH"(—c). A trajectory y for a non-
trivial Sasakian magnetic field ¥, on M satisfies the following:

(1) If p, = +1, it is a geodesic on M.

(2) If it satisfies kp, = Ay, it is a circle of geodesic curvature |x|,/1 — p2

on M,
(3) Otherwise, it is a helix of proper order 3.

We call a trajectory for a Sasakian magnetic field circular if it is also a circle
of positive geodesic curvature. On a horosphere, a geodesic sphere and a tube
around totally geodesic complex hypersurface in CH”", a trajectory y for F, is
circular if and only if xp, = 4. We hence have that two circular trajectories y,
for Sasakian magnetic fields F,, (i = 1,2) are congruent to each other if and only
it 0<|p,[=lp,| <1

3. Extrinsic shapes of circular trajectories

In order to study curves on real hypersrufaces in a complex hyperbolic space,
it is one of basic idea to investigate their extrinsic shapes. For a smooth curve
y on a submanifold M in CH", we call the curve 710y with an immersion
1: M — CH" its extrinsic shape. We call a helix on CH" Killing if it is an
orbit of a one-parameter family of isometries of CH”. It is known that a helix
of proper order d on CH" is Killing if and only if all its complex torsions
t; (1<i<j<d) defined by 7; = (Y;,JY;> with its Frenet frame {¥;}¢ are
constant functions (see [11] and also [10]).

We here recall the influence of homothetical change of metrics. Let o be a
helix of proper order d with geodesic curvatures ki,...,k;; on a Riemannian
manifold N. If we change the metric {(,> on N homothetically to 22, with
some positive A, then the curve o;(f) = o(z/4) is a helix of proper order d with
geodesic curvatures ki /A,...,ks—1/A. When N is a real hypersurface in a Kéhler
manifold and ¢ is a trajectory for a Sasakian magnetic field F,, under such
a homothetic change of metric, we find o1 is a trajectory for F,,,. Since the
sectional curvatures change A~ >-times of the original sectional curvatures, we may
only treat the case CH"(—4).

We denote by V and V the connections of a real hypersurface which is
congruent to one of HS, G(r), T(r) and of CH"(—4), respectively. They are
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related with each other by the Gauss formula VyY =VyY +{A4X, Y).N and the
Weingarten formula Vy /"= —AX for vector fields X, Y tangent to M.

PrOPOSITION 2. The extrinsic shape of a circular F-trajectory on a real
hypersurface which is congruent to one of HS, G(r) and T(r) in CH"(—4) is a
Killing helix of proper order 4 which lies on some totally geodesic CH?. Its
geodesic curvatures are

2 /42 2
1 K +1A.M K2 —1
K| =— K6+(1+2K2)ﬂi/[7 Ky = ( ) M

2 )
K Kz\/K6—|— (14 2x2)23,

2 2
K™ — Ay,

Vot (142622,

K3 =

3

and its complex torsions satisfy

—sgn(x) - (K1 + K3 —sgn(x) - Kz
T2 =T34 = b9 - ), T3 =Ty = () , T3 =124=0.

K3+ (i1 +13)* K3+ (11 +K3)?

Proof.  As we have Aj = Ay + (var — 2ar)p,& = Aury +pyi;}f, by use of
the circular condition xp, = Ay, we obtain Vjp =gy + p,(x+x~')./". Hence
we have

K] = \/K2 +2p2 +pi? (>0), Ya=(xkJy +p7k*1t/t/)/k1.
By use of Weingarten formula we have
Vi(Tp+ pyc ' ) = = + pl)i — p,(1+ 6 72)E,
thus we see
iy =k (L+x72)p,[\/1=p2 (>0), Ys=sgn(p,)-(p,j—E)/\/1-p2.
Continuing calculations we have Vy-(pyj) —¢&) = K*I(pg —1)4". Hence we see

= (-2 (>0, Y=L () g tgs (),

Kiy/1—=p;

As we have %{py(lc—i-lc")qﬁj) — k(1 =p)) N} = —(1 = p2)(p,7 — &), we find the
extrinsic shape of y is a helix of proper order 4. If we compute its complex
torsions, then we get
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. . _ K2+ p2  —sen(k) - (k] + K
TIZZK_1<y7_Ky_pyK ey = - A | (") (x 3)=T347

kK1 K2 4 (11 +13)°

sgn(p,) . _ .
T3 = 7V<KJV + pyK l'/t/7py‘]y - /‘f>
K1y/1 = p?
2
Py /1= P; —sgn(x) - k2
T ke B T
! K% + (k1 + K3)
Thus we obtain our conclusion. O

Let @ : H"*!' — CH"(—4) be a canonical fibration of an anti-de Sitter space
Hf”“ (= C"“). This connects the geometry of complex hyperbolic space with
the geometry of complex Euclidean space. For a trajectory y on our real
hypersurface, we consider its extrinsic shape 107y and take its horizontal lift §
with respect to . We regard 7 as a curve on C"*'. The connections V on
C"'! associated with the Hermitian form ¢, ) and V on CH"(—4) are related as

VyY =Vy Y + <X, YOIN =X, JYDIN

for arbitrary vector fields X, ¥ on CH"(—4) with a normal 4" of H>"*! in C"*!

satisfying (", /"> = —1 and with the complex structure J on C"*!. We here
regard X, Y as horizontal vector fields on H>"'!.

Lemma 1. Let y be a circular trajectory for ¥, (k #0) on a real hyper-
surface M in CH"(—4) which is congruent to one of HS, G(r) and T(r). A
horizontal lift 9 of its extrinsic shape satisfies the following differential equation
if we regard it as a curve in C"*!:

(3.1) P =Vl + 1) = (2= p))7 +V=1(1 = p)eT§ = 0.
Proof. The extrinsic shape of p, which is also denoted by y, is a helix of

proper order 4 lying on some totally geodesic CH?. Therefore we find by
Proposition 2 that it is determined by the differential equations

Vij = kJj+ p N =K1 Yo,
Vi Yy =iy =2 + p2)j + p,(1 + 72 TN}
= =1y + {(1 + K3)p + sgn(r) /62 + (1 + K3)2T Y2}
(c.f. [3]). We hence have
ﬁyf) =K1Y+ ,/1},

sgn(x) - (k1 + x3) A

VY, = —re3p + sgn(i) /13 + (x1 +13) 2T Y2 + ;
K3 + (K1 + K3)
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Hence we obtain

= (1 — reyie3)7 + sgn()\/ k3 + (1 + K3)2JV§)5

sl 4 rsl 4 )

JN,
K‘% + (x) + K3)2

and get the conclusion. O

4. Circular trajectories on horospheres

We now study trajectories on our real hypersurfaces individually. A smooth
curve o parameterized by its arc-length on CH” is said to be unbounded in both
directions if both of the sets ¢([0, «0)),o((—o0,0]) are unbounded. Since CH"
is a typical example of Hadamard manifolds, which are simply connected com-
plete Riemannian manifolds of nonpositive curvature, we can consider its ideal
boundary 0CH" and its compactification CH” = CH"UJCH" with the cone
topology (see [9]). If we represent CH” as a ball model D" = {w = (wy,...,w,) €
C"||wi|* + -+ |wa|* < 1}, its ideal boundary coincides with its topological
boundary. When we study asymptotic behaviors of curves, the identifica-
tion of a point w(z) e CH" given by z = (zp,...,z,) € Hf”“ with a point
(z1/z0y--,2u/20) € D" is useful. For a smooth curve ¢ which is unbounded
in both directions, we set g(c0) = lim,_,,, o(¢), o(—c0) = lim,,_, o(t) € 0OCH" if
they exist and call them points at infinity. For curves on a real hypersurface in
CH", regarding them as curves on CH"” we employ these terminologies.

THEOREM 1. Every circular trajectory y for a Sasakian magnetic field on a
horosphere HS in CH" is unbounded in both directions. In particular, it has a
single point at infinity; y(o0) = y(—o0).

Proof. We are enough to consider a horosphere in CH"(—4). Since we
have xp, =1, the characteristic equation

A V=T + AT = 2=k A+ VT (kT =) =0

of (3.1) has a pure imaginary double solution v/—1/x and a pure imaginary
solution v—1(x—x~'). We therefore find that §(r)=e""/*(4+ Br)+
CeY=1=x")t with some A, B,C e C""'. We hence obtain that y is unbounded
in both directions and has a single point at infinity. O

If we make mention of trajectories on HS with structure torsion +1, as
they are geodesics on HS, each of them is unbounded in both directions and has
a single point at infinity.
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5. Lengths of circular trajectories on geodesic spheres

Next we study properties of circular trajectories on geodesic spheres. A
smooth curve y parameterized by its arclength is said to be closed if there is a
positive constant ¢, satisfying y(¢ + ¢.) = y(¢) for all #. The minimum positive 7,
with this property is called the length of y and is denoted by length(y). For a
smooth curve which is not closed we say it is open and set length(y) = oo.

On a geodesic sphere G(r) in CH"(—4), a circular trajectory y satisfies
Kkp, = coth r, hence a horizontal lift j of its extrinsic shape satisfies the equation

" — N1+ 1" — (2 =Kk coth? 1§’ + V—1(x~" — k73 coth? r)j = 0.
As G(r) is compact, it is clear that y is bounded, hence the characteristic equation
(5.1) A’ —vV=1(k+x HA* = (2 — K72 coth’ A + V—1(k' — k73 coth? r) =0
of this differential equation should have three distinct pure imaginary solutions
v—lae,vV—-1b.,v/—1d, (a. < b, < d,). Thus 9 is of the form

j}([) — Ae\/j(lﬂ +Be\/:—fb,(l +De\/:—fd,\~l

with some linearly independent A, B, D € C"*!. Thus we find that y is closed if
and only if (b, — a,)/(d. — a,) is rational and that in that case its length is given
as 21 x LCM.{(be — a,)"", (de — a,)"'}. Here, L.C.M.(a, ) for positive num-
bers «, f denotes the minimum of the set {jo|j=1,2,...}N{jf|j=1,2,...}.
We hence study the cubic equation (5.1). If we put @ = —{3v—1A + (k + x 1)}/
\/2{K2 — 4+ (3 coth? r+ 1)x2}, it turns to

(5.2) 0> — (3/2)0 + 16(x;1) V2 = 0,

where

(k2 = 2)(2k* — 8% + 9 coth? r — 1)
2(k* — 4ic? + 3 coth? r + 1)3/2

16(rc;r) = —sgn(x)

This cubic equation coincides with the characteristic equation for circles on
CP"(4) of geodesic curvature 1//2 and complex torsion 715 = 76(x;7) (see (5.1)
in [8]). By use of Proposition 4 in [8] (see also [4]) we get the following.

THEOREM 2. Let y be a circular ¥ -trajectory on a geodesic sphere G(r) of
radius r in CH"(—4).
(1) When r>log(vV2+1) and x =+V2, it is closed and its length is
2v/27 sinh r.
(2) Otherwise, it is closed if and only if
k2 —2|(2x* — 8k* + 9 coth? r — 1) q(9* — ¢%)

2(k* — 4K + 3 coth? r+ 1)*2 (3p2 +¢2)Y?

holds with some relatively prime positive integers p, q satisfying
p>q In this case its length is given as 7o(p,q)lk|-
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\/(3p2 +¢2)/ (k% — 4x2 + 3 coth? r + 1), where d(p,q) =1 when pq is
odd and 6(p,q) =2 when pq is even.

For the sake of readers’ convenience, we rewrite the above theorem to the
case of geodesic spheres in a complex hyperbolic space of constant holomorphic
sectional curvature —c. As we pointed out in section 3, we make use of
homothetical changes of metrics.

PROPOSITION 3. Let y be a circular Fi-trajectory on a geodesic sphere G(r)
of radius r in CH"(—c).
(1) When r> (2/y/c) log(v2 + 1) and x = ++/c/2, it is closed and its length
is 44/2/cm sinhr.
(2) Otherwise, it is closed if and only if
1262 — ¢|{32k* — 32ex + (9 coth®(Ver/2) — 1)} q(9p* — ¢?)

{1614 — 16¢x2 + ¢2(3 coth?(y/er/2) + 1)}*/? (3p2 + ¢2)*?

holds with some relatively prime positive integers p, q satisfying p > q. In
this case its length is given as

470 (p, @)l (3p + ¢2) {165 — 160K + ¢2(3 coth(Var/2) + 1)},
where 6(p,q) =1 when pq is odd and 6(p,q) =2 when pq is even.

The above result shows when a circular trajectory is closed. But as the
expression of its length is a bit complicated, we are interested in how lengths of
closed circular trajectories are distributed. We denote by 7,(M) the set of all
congruence classes of circular trajectories on M. Set theoretically it is bijective
to the set {x|x > Ay} when M is one of HS, G(r) and T'(r) in CH". We define
the length spectrum £ :74(M)— RU{0} of circular trajectories on M by
Z([y]) = length(y). Here [y] denotes the congruence class containing y. We put
LSpec,(M) = Z(74(M))NR and call it also the length spectrum of circular
trajectories on M. We denote by Z9(M) the infimum of the set LSpec,(M)
and call it the bottom of the length spectrum. For 4 e LSpec,(M) we call the
cardinality of the set #~'(1) the multiplicity of & at .

THEOREM 3. The length spectrum LSpec,(G(r)) of circular trajectories on a
geodesic sphere G(r) in CH"(—c) has the following properties.
(1) It is an unbounded discrete set.
(2) For every positive T, the set {[y] € T4(G(r))| ZL([y]) < T} is a finite set.
In particular, the multiplicity of & is finite at each point.

We are enough to consider the case ¢ =4. In order to show this theorem,
we define two functions f,g: (coth2 r,o0) — R by
(s —2)(25> — 85+ 9 coth? r — 1) s

fS = y 9g§) = .
) 2(s2 — 45+ 3 coth? r + 1)/ g 52 —4s+ 3 coth? r 4 1
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Theorem 2 shows that if f(x2) = +¢(9p* — ¢*)(3p* + ¢*)~*/* with some relatively
prime positive integer p, ¢ satisfying p > ¢ then a circular trajectory for F, is
closed and is of length 7d(p.q)\/(3p* + ¢?)g(x?). These functions satisfy the
following properties:
i) The function f is monotone increasing, hence satisfies 1> f(s) >
f(coth? r) > —1;
ii) When coth2 r= (\/_ + 3)/2, the function g is monotone decreasing and
g(s) < coth? r/(cot* r — cot® r + 1);
iii) When coth? r < (v/13 4 3)/2, the function g is monotone increasing in
the interval (coth’?r,v/3 coth’ r+ 1) and is monotone decreasing in
other part of its domain, hence g(s) < 1/(2v/3 coth? r+ 1 — 4).
For a pair (p,q) of relatively prime posmve integers p, g with p > ¢, we put
u(p,q) = q(9p> —qz)(3p2+q2)73/2. The above properties on g show the fol-
lowing rough estimate.

LEMMA 2. The length of a circular trajectory y for ¥, on a geodesic sphere

G(r) in CH"(—4) satisfying either f(x*) = u(p,q) or f(k?) = —u(p,q) is roughly
estimated from above as

length(y) < nd(p.q) coth r\/(3p2 + ¢2)/(cot* r — cot® r + 1),
if coth? r> — (\/‘+3)

length(y) < né(p.q)\/ (3p2+4%)/(2V3 coth? r+1— 4),
1
if coth? r < 5(\/ﬁ+ 3).

Next we give estimates of lengths of closed circular trajectories from below.
For a number 7 with 0 < |7] < 1 we denote by s, the solution of the equation
f(s) =z if it exists. Since f(s) > f (coth? r), for negative 7 the solution s, exists
if and only if coth? r < 2, which is equivalent to r > log(v/2 + 1).

LemMA 3. Let y be a circular trajectory for ¥, on a geodesic sphere G(r) with
r>log(V2+1) in CH"(—4) satisfying f(x*) = —u(p,q). Its length is roughly
estimated from below as

length(y) > nd(p, q) coth r\/(3p2 + ¢2)/(coth* r — coth? r + 1).

Proof. Since f(s) >0 for s > 2, we see s, <2 for 1 = —u(p,q) if it exists.
As we have coth? r < 2, the function g is monotone increasing in the interval
(coth? r,2). Therefore we have g(s;) > g(coth? r), and get the conclusion. []
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For a pair (p, q) of relatively prime positive integers p, ¢ with p > ¢, we put
e1(p,q) = Bp* + ) {1 — w(p.0)*}/27 = P’ (P> = )’ 3p” + ),
&2(p,q) = Bp” + ¢ )u(p, @)\ 1 = u(p,9)°

=3V3pq(p® — ¢*) (9% — *)(3p* + ¢*) .

LemMA 4. Let y be a circular trajectory for B, on a geodesic sphere G(r) in
CH"(—4) satisfying f(x*) = u(p,q). Its length is roughly estimated from below
in the following manner: If coth? r > (3 + V13)/2,

length(y) > 75(p, 4)\/ 1821 (p, q) sinh® r + &2(p,q) sinh r,
and if coth? r < (34 +/13)/2,
length(y)

> 71d(p,q) min{\/1861 (p,q) sinh? r 4 &(p, q) sinh r, \/2(3192 +¢?%)/3 sinh r}.
In particular, it is estimated from below as

length(y) > 3v27 sinh 5(p,q)p(p* — ¢*)(3p* + qz)fl.

Proof. For t=p(p,q) we have s >2. In the domain {s|s>
max (2, coth? )}, we see

f(s) > (s—2)(s> —4s+ 3 coth? r+ 1)"1/2,

Hence, if we set u, = 2—%31\/(coth2 —1)/(1 —z2), which is the solution of the

equation (s — 2)(s> — 4s+ 3 coth? r+1)""* = ¢ with u, > 2, we find s; < u,.
In the case coth” r > (34 /13)/2, as g is monotone decreasing, we have

2(1 — %) + 37/ (coth? r — 1)(1 - 72)
3(coth? r — 1)

g(s:) > gu) =

(1 — %) sinh? r + tV1 — 72 sinh r

1 .2 .
= m{l&sl(p,q) sinh” r + &(p, g) sinh r}.

In the case coth? r < (3 ++/13)/2, we have g(s;) > min{g(i;),g(2)}. As g(2) =
2 sinh? r/3, we obtain the conclusion. O

Proof of Theorem 3. We find that lim,_. &(g¢+2,9)=0c0 and

lim;.. u(q+2,q) =1. Thus Lemma 4 guarantees that LSpec,(G(r)) is un-
bounded.
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For a pair (p,q) of relatively prime positive integers p, g with p > ¢, the
number of the solutions of x for the equation f(x?) = u(p.q) is at most 6, so
is the number of the solutions for the equation f(x?) = —u(p.q). In order to
show the second assertion, we use Lemmas 3 and 4. For arbitrary positive 77,
it is clear that the number of pairs (p,q) of positive integers with 3p? +¢*> < T}
is finite. Next we consider the situation that &(p,q) < 7> for a given T>.
Given a positive integer ¢, we can easily check that &(p,q) is monotone
increasing with respect to p (> ¢). Thus, under the condition that &(p,q) < T»
we have &(g+1,9) <T,. Since we can see &(g+1,¢9) is monotone in-
creasing, the number of ¢ satisfying &(¢+1,¢9) < T, is finite. As we have
&(q + [T2] + 1,q) > T, where [T»] denotes the integer part of 7>, we obtain that
the number of pairs (p, ¢) of positive integers satisfying &(p,q) < T and p > ¢ is
finite. By use of Lemmas 3 and 4, we get the set {[y] € 7,(G(r)) | L([y]) < T} is
finite for each positive 7. This shows that LSpec,(G(r)) is discrete. O

We here give estimates on the bottom of the length spectrum of circular
trajectories.

PropPOSITION 4. The bottom 2o(G(r)) of the length spectrum of circular
trajectories on a geodesic sphere G(r) in CH"(—4) is roughly estimated from below
as follows:

Jo(G(r) > $my/2 sinh (9 sinh r + 5/3), if coth? = (3 +v13)/2,
J0(G(r)) > 21/14/3n sinh r, if 2<coth’r< (3+13)/2,
J0(G(r)) = 2y/2n sinh , if ¢. < coth? r < 2,

20(G(r)) > 2z coth r\/7/(coth4 r—coth? r+1), if coth’r<c,

where ¢, is the solution of the cubic equation 7x3 —15x>+8x—1=0 with
88 7
3 <G < 5.

Proof. One can easily check that for i=1,2

i) &(p+1,q9) > e(p,q) for arbitrary (p,q),

i) &(g+1,¢) is monotone increasing,

iil) 4e1(2,1) = 144/169 > 36/49 = (3, 1),

iv) 4ey(2,1) = 25201/3/169 > 3601/3/49 = &5(3, 1).
When coth? r > (3 +1/13)/2, we find by Lemma 4 that

Ao(G(r)) > 7[\/1881(3, 1) sinh? r + &(3, 1) sinh r.

Here we note that y(3,1) might be smaller than f(coth® r), hence that there are
no circular trajectories with f(x?) = u(3,1). But this estimate can work. When
2 < coth? r < (3++/13)/2, by Lemma 4 we need to compare

71'\/1881(3, 1) sinh? r + &(3,1) sinh r and 2y/14/37 sinh r.
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Under the condition on the radius r, we have (V13 —1)/6 < sinh? r < 1, hence
we find the latter is smaller. When coth? r < 2, by Lemmas 3, 4 and Theorem 2,
we need to compare

7
cosh* r —cosh? r+1°

7[\/1881(3, 1) sinh? r + &(3,1) sinh r, 2v/27 sinh 1,2 cosh r\/

Clearly the first is larger than the second. Comparing the second and the third,
we can get the conclusion. O

For about trajectories for Sasakian magnetic fields with structure torsion +1,
they are geodesics and are closed of length 7z sinh2r. Thus we find closed
circular trajectories are longer than these geodesics when coth? r > 2.

6. Behavior of circular trajectories on tubes

In this section we study asymptotic behaviors of unbounded circular
trajectories and lengths of closed circular trajectories on tubes around totally
geodesic complex hypersurfaces in a complex hyperbolic space. Again we con-
sider the characteristic equation of the differential equation for a horizontal lift of
the extrinsic shape § of a circular trajectory y on T(r) in CH"(—4):

(6.1) A? — V—1(x +x HA? = (2 — k72 tanh? r)A
+V—=1(' = k73 tanh? r) = 0.

If we put Q= —v—1A — (k+x1)/3, we find this cubic equation turns to
1
(62) Q-3 {’—4+(1+3 tanh’ i }Q
1
- ﬁ{2’<3 — 12K+ 3(5 + 3 tanh? 1) ' 4+ 2(1 — 9 tanh? r)x 3} = 0.

We set {(i;r) = k> —4 + (14 3 tanh? r)x~2. If {(x;r) <0, as the cubic equation
(6.2) is not Q° =0 even when {(x;r) =0, we find the cubic equation (6.2) has
only one real solution. When ((x;r) > 0, by putting 6 = 3Q//2{(x;r) we see
(6.2) turns to

(6.3) 0> — (3/2)0 + tr(i;r) /V2 = 0,
where

(kK2 = 2)(2* — 8x% + 9 tanh? r — 1)
2(k* — 4K2 + 3 tanh? r + 1)%/?

715 r) = —sgn(x)

We first study conditions for circular trajectories to be bounded.
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THEOREM 4.  On a tube T(r) of radius r around CH" ' (—4) in CH"(—4) the
behavior of a circular trajectory y for F, is as follows;

(1) If x satisfies 2{1 — (cosh r) '} < k2 < 2{1 + (cosh r)"'}, it is unbounded
in both directions and has two distinct points at infinity.

(2) When 12 = 2{1 + (cosh r)™"}, it is also unbounded in both directions but
has a single point at infinity.

() If « satisfies either tanh®r < k? <2{1 —(coshr)™'} or x>
2{1 + (cosh r)™'}, then it is bounded.

Proof.  We first consider the case {(x,r) <0 for x with |x| > tanh r. Such
case occurs when 2 — v/3(cosh r)™' <2 <2+ +/3(coshr)™'. In this case, the
left hand side of (6.2) is monotone increasing with respect to Q. We hence find
that (6.1) has one pure imaginary solution and two distinct solutions which are
not pure imaginary. Thus we obtain that y is unbounded in both directions.
More precisely, the solutions of (6.2) are of the form —2a,, o, + v/—1f,_ with real
numbers o, f, satisfying 3(302 — B2) = {(i;r), % #0 and B, #0. We hence
find that a horizontal lift § of the extrinsic shape of y is of the form

j?(l) — Ae*\/f_l{Za,\f(KJrK*l)B}t + (Beﬂ"t + Cefﬂ,\t)e\/f_l{ocﬂt(wrrl)/3}[

with C-linearly independent 4, B, C € C"*'. Hence, rewriting this expression on
the ball model D" of a complex hyperbolic space, we obtain y has two distinct
points at infinity.

We next study the case {(x,r) > 0 for x with |x| > tanh r. In view of (6.3)
we find it has three distinct real solutions if and only if |t7(x;r)| < 1. This
means that the original characteristic equation (6.1) has 3 distinct pure imaginary
solutions if and only if |t7r(k;r)| < 1. Thus if |t7(x;r)| = 1, which occurs when
both 2{1 — (cosh r)™'} < x2 < 2{1 + (cosh r)"'} and (x;r) > 0 hold, our circular
trajectory y is unbounded in both directions. We also find that if |z7(x;7)| < 1 it
is bounded.

When |7 (x;7)| > 1, the solutions of (6.3) are of the form —2ax,, o, + vV—18,
with real numbers o, f, satisfying 2(302 — 2) = 3 and 220, (62 + B2) = t7(x; 7).
In particular, we have S, #0. Thus we find that a horizontal lift  of the
extrinsic shape of y is of the form

(1) = Ao VT2V 200 )= (cr 1) /3
+ (Be\/l(Tr)ﬁ,(t/S + Ce*\/ZZ(T;r)ﬂ,(t/S)e\/f_l{\/mxﬁ(wr')}m

with C-linearly independent 4, B, C € C""!.  We obtain y has two distinct points
at infinity in this case. When 77(x;r) = +1, we find that a horizontal lift § of
the extrinsic shape of y is of the form

5(1) = AoV HF2V/Llen)+letre }y3 (B+ Cl)e\/:—l{i\/C(/(;r)+(K+K’1)}I/3

with 4, B,C e C"™'. Thus we find 7 has a single point at infinity in this case.
We hence get the conclusion. ]
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Since trajectories are defined by their initial velocity vectors, it is clear that
unbounded trajectories are open. We hence study whether bounded circular
trajectories are closed or not on tubes around totally geodesic CH"~! in CH".

THEOREM 5. Let y be a bounded circular trajectory for ¥, on a tube T(r) of
radius v around CH"'(—4) in CH"(—4).
(1) When r <log(v2+ 1) and k* = {4+ 3v2(cosh r)"'}/2, it is closed of

length 2n\/cosh r(4 cosh r + 3v/2).
(2) When r>log(v2+1) and x> = {4 + 3v/2(cosh r)"'}/2, it is closed of

length Zn\/cosh r(4 cosh r + 3\/5), where double signs take the same
signatures.

() If « satisfies either tanh®r < k? <2{1 —(coshr)™'} or x>
2{1 + (cosh r) ™'} and is not in the cases of (1) and (2), it is closed if
and only if

2 —2||2x* — 8«2 + 9 tanh® r — 1| ¢(9? — ¢°)

2(k* — 4x? + 3 tanh? r + 1)*2 (3p2 +¢2)V?
holds with some relatively prime positive integers p, q satisfying

p>q. In this case its length is given as 7wo(p,q)lk|-

\/(3])2 +¢%)/(k* — 42 + 3 tanh® r+ 1), where d(p,q) =1 when pq is
odd and o(p,q) =2 when pq is even.

Proof. We need to consider the case that three conditions ((x;r) > 0,
|tr(i;r)] <1 and |k| > tanh r hold. We compare (6.3) with the characteristic
equation for circles on CP"(4) of geodesic curvature 1/v/2 and complex torsion
712 = tr(K;r) (see (5.1) in [8]). If we consider the case 77(x;r) =0 we obtain
the first and the second assertions. If we consider the case 0 < |t (x;r)| < 1, we
obtain the third, and complete the proof.

Summarizing Theorems 4 and 5 up we obtain the following result on our
tubes in a complex hyperbolic space of constant holomorphic sectional curva-
ture —c.

PROPOSITION 5. Let y be a circular trajectory for ¥, on a tube T(r) of radius
r around CH"'(—c) in CH"(—c).

() 1f K satisfies (¢/2){1 — (cosh(y/er/2)) ™"} < k2 <
(¢/2){1 + (cosh(y/cr/2))""Y, it is unbounded in both directions and has
two distinct points at infinity.

(2) When 12 = (¢/2){1 + (cosh(y/cr/2))™"Y, it is also unbounded in both
directions but has a single point at infinity.

(3) If k satisfies either (¢/4) tanh?(y/er/2) < k2 < (¢/2){1 — (cosh(y/er/2))"'}
or k2> (¢/2){1 + (cosh(v/cr/2))™"}, then it is bounded and satisfies the
Jfollowing:
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1) Whenr < (2/+/¢) log(v/2 + 1) and k* = ¢{4 + 3v/2(cosh(y/cr/2)) ' 1/8,
it is closed of length 4n\/cosh r(4 cosh r + 3v/2)/c.

2) When r> (2/\/¢) log(v2+ 1) and 12 = ¢{4 + 3v/2(cosh r)"'}/8, it is
closed of length 471\/ cosh r(4 cosh r + 3v/2) /¢, where double signs take
the same signatures.

3 If K satisfies either (¢/4) tanh?(\/cr/2) < k* <
(¢/2){1 — (cosh(y/cr/2))™"} or k2> (¢/2){1 + (cosh(y/cr/2))"'} and

is not in the cases of 3—1) and 3-2), it is closed if and only if
262 — ¢] [326* — 32¢x + ¢2(9 tanh?(/er/2) — )| q(9p2 — ¢?)

{1614 — 16¢K? + ¢2(3 tanh?(y/2r/2) + 1)} /2 (3p2 + ¢2)*?

holds with some relatively prime positive integers p, q satisfying p > q.
In this case its length is given as

470(p, )il (302 + ¢2) /{1654 — 1602 + (3 tanh’(v/cr/2) + 1)},
where d(p,q) =1 when pq is odd and o(p,q) =2 when pq is even.

Next we study length spectrums of circular trajectories on tubes around
complex hypersurfaces in CH”. We only consider the case ¢ =4. We define
functions f,g: ;UL — R on the union of two intervals by

(s —2)(25> — 85+ 9 tanh? r — 1) o(s) = s
2(s2 — 4s + 3 tanh® r + 1)¥/?

s) = = ,
/) s2 —4s+ 3 tanh? r+ 1

where I} = (tanh? r,2 —2v/1 — tanh? r) and L = (24 2Vl —tanh® r,0). We
then find these functions satisfy the following properties:
i) The function f is monotone increasing on each interval I;, />, hence

satisfies
(tanh? r + 1)(2 — tanh? r)(1 — 2 tanh? r)
2(tanh* r — tanh? r + 1)3/2

and —1 < f(s) <1 on I, and f({4+ 3v2(cosh r)~'}/2) =0;
il) g is monotone increasing on I;, hence satisfies

-1< < f(s)<1l on I

sinh? r cosh? r/(sinh* r + sinh? r + 1) < g(s) < 2 cosh r(cosh r — 1);
iii) g is monotone decreasing on I, hence satisfies
2 cosh r(cosh r+ 1) > g(s) > 0.

Therefore we obtain the following:

LeMMA 5. The length of a circular trajectory vy for ¥, on a tube T(r) around
totally geodesic CH"™' in CH"(—4) satisfying either f(x>) = u(p,q) or f(x?) =
—u(p,q) is roughly estimated from above as

length(y) < 7d(p, q) \/2(3172 + ¢2) cosh r(cosh r + 1).
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LemMA 6.  The length of a circular trajectory y for ¥, on a tube T(r) around
totally geodesic CH"™' in CH"(—4) satisfying f(x*) = —u(p,q) is roughly
estimated from below as

length(y) > nd(p, q) \/(3;72 + ¢2) cosh r(4 cosh r +3v2)/3, if r<log(vV2+1),

length(y) > #d(p, q) sinh 2r\/(3p2 + ¢2)/{4(sinh* r + sinh? r + 1)},
if r>log(vV2+1).

(0 < |t] < 1) we denote by sVer, s? el the solu-

s) =7 if they exist. For negative 7, it is clear that

Proof. For given 1
tions for the equation f(
sP <2y (3v2)/(2coshr). It is also clear that stV does not exist when
tanh® r < 1/2 and that st > tanh® r when tanh? r > 1/2 and if it exists. Thus
we have

(s sinh? r cosh? r (@) > cosh r(4 cosh r 4 3v/2)

S ) s‘[ )

g% sinh* r + sinh® r + 1 g 3

hence get the conclusion. O

For a pair of relatively prime positive integers p, ¢ satisfying p > ¢, we set
&3(p,q) = (3p* + ¢*){1 — u(p-q)}-

LemMa 7. The length of a circular trajectory y for F. on a tube T(r) in
CH"(—4) satisfying f(x*) = u(p,q) is roughly estimated from below as follows:
When r <log(v/2+ 1), we have

length(y) > #d(p, q)

X min{

and when r > log(v/2 + 1), we have

. 3p2 2
sinh 2ry [ —— P —_qu ,
sinh” r +sinh” r + 1

N —

1
\/§ cosh r(4 cosh r 4 2v/3)e3 (p, C])}7

length(y) > 7d(p, q)

1
X min{\/§ (3p2 + ¢2) cosh r(4 cosh r — 3v2),

\/; cosh r(4 cosh r + 2v/3)e3(p, ) }
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Proof We use the notations in the proof of Lemma 6. We have sgl) >

tanh? r when tanh”? r < 1/2 and if it exists, and s > {4 — 3v/2(cosh r)~ 1}/2
when tanh? 7 > 1/2.  On the other hand, we have s > > {4+ 3v2(cosh r)"'}/2.

We put u, =2+ \/3 3 —27)(1 — tanh? r)/{2(1 — 7)}, which is the solution of the
equation

(25 — 85+ 9 tanh? r — 1)/{2(s* — 4s + 3 tanh? r + 1)} =
with u;, > 2. As we have
f(s) > (25> — 8549 tanh? r — 1)/{2(s* — 45 + 3 tanh? r + 1)}
when s> 2+ 34/(1 — tanh? r)/2, we obtain s <u,. Since we have
g({4 — 3v2(cosh r) "'} /2) = cosh r(4 cosh r — 3v/2)/3,
g(u;) = cosh r{4(1 — 7) cosh r + 1/6(3 — 27)(1 — 7)}/3
> cosh r(4 cosh r +2v/3)(1 — 1) /3,

we obtain the conclusion. O

THEOREM 6. The length spectrum LSpec,(T(r)) of circular trajectories on
a tube T(r) around totally geodesic CH"'(—c) in CH"(—c) has the following
properties.

(1) It is an unbounded set.
(2) For every positive T, the set {[y] € T4(T(r))| ZL([y]) < T} is a finite set.

Proof. The first assertion is clear by Lemma 6. In order to show the
second assertion we are enough to show that the number of pairs (p, q) satistying
&3(p,q) < T is finite for an arbitrary positive 7). As we can easily check that

e3(p,q) > \/3p? + ¢2, we get the conclusion. ]

PROPOSITION 6. The bottom (T (r)) of the length spectrum LSpec, (T (r)) of
circular trajectories on a tube T(r) around totally geodesic CH"™' in CH"(—4) is

roughly estimated from below as 2o(G(r)) > n sinh 2r\/7/ sinh* r + sinh? r + 1)}
It is roughly estimated from above as

20(G(r) < Zn\/cosh (4 cosh r+3v2), if r<log(v2+1),
20(G(r)) < Zn\/cosh r(4 cosh r —3v/2), if r>log(v2+1).

Proof. By calculating differentials of corresponding functions, we can easily
find that

1) e(p+1

i) e3(q+1

iii) 463( 1)

,q) > &3(p,q) for arbltrary pair (p,q) of integers with p > ¢ > 0,
,q) is monotone increasing with respect to ¢,

=4(13 - 35/V/13) > 28 — 40//7 = &(3, 1).
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We first consider to estimate /o(7'(r)) from above. Since the function f takes all
the value in the interval (—1,1), we compare lengths of circular trajectories with
f(x?) =u(3,1) and those with x2 = {4 + 3v/2(cosh r)"'}/2. We get our esti-
mate by Lemma 5.

To get an estimate from below we need to use Lemmas 6 and 7. When
r < log(v/2+ 1), we have to compare

7 sinh® 2r 28+/7 — 40
sinh r +sinh® r+ 1" 37
Clearly the first is larger than the third. Since sinh? r = cosh? r — 1, we find the
second is the smallest. When r > log(v/2 + 1), we have to compare

7 sinh? 2r 28v/7 — 40
sinh® r +sinh> r+1° 37

4 cosh r(4 cosh r + 3V2), cosh r(4 cosh r 4 2V/3).

4 cosh (4 cosh r — 3v/2), cosh r(4 cosh r + 2V/3).

As cosh r > v/2, we find the second is the smallest. We hence get the conclusion.
O

If we make mention of trajectories with structure torsion +1 on T(r), they
are geodesics which are unbounded in both directions and have two points at
infinity.

Addendum: Circular trajectories on geodesic spheres in CP"

We here add a property on length spectrum of circular trajectories on
geodesic spheres in a complex projective space CP" to Theorem 2 in [7].

THEOREM 7. The length spectrum LSpec(G(r)) of circular trajectories on a
geodesic sphere G(r) in CP" is a discrete set. At each point 1 € LSpec(G(r)), the
multiplicity of length spectrum & is finite.

Proof. We use Lemmas 3 and 4 in [7]. For arbitrary positive T, it is
clear that the number of pairs (p,q) of relatively prime positive integers
satisfying p > ¢ > 0 and 3p? 4+ ¢> < T is finite. In order to show our theorem,
we are enough to see that the number of pairs (p,q) of relatively prime
positive integers satisfying p > ¢ > 0 and e4(p,q) < T with e4(p,q) = 3p* + ¢*> —
q(9p — ¢*)(3p* + ¢*)~"/* is finite for arbitrary positive 7. We can easily check
the following properties on &4(p, q):

1) a(p+1,9) > e(p,q) for arbitrary pair (p,q) of integers with p > g > 0,

ii) es(¢+ 1,9) is monotone increasing with respect to g.

As e4(p,q) > /3p% + ¢, we get our conclusion. O
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