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NOTE ON CHOW RINGS OF NONTRIVIAL
G-TORSORS OVER A FIELD

NOBUAKI YAGITA

Abstract

Let Gy be a split reductive group over a field k& corresponding to a compact Lie
group G. Let Gy be a nontrivial Gi-torsor over a field k. In this paper we study
the Chow ring of Gx. For example when (G, p) = (G»,2), we have the isomorphism
CH*(Gk)(z) = Z(Z)-

1. Introduction

Let k be a subfield of C which contains primitive p-th root of the
unity. Let G be a compact connected Lie group. Let us denote by Gy the
split reductive group over k which corresponds G. By definition, a Gy-torsor Gy
over k is a variety over k with a free Gj-action such that the quotient variety
is Spec(k). A Gy-torsor over k is called trivial, if it is isomorphic to Gy or
equivalently it has a k-rational point. Let p be a prime number. In this paper,
we always assume that Gy is nontrivial over any finite extension K/k of degree
coprime to p. (We simply say that Gy is a montrivial torsor over k at p.)

Let H be a subgroup of G. Given a torsor G; over k, we can form the
twisted form of G/H by

(Gk X Gk/Hk)/Gk = Gk/Hk.

We mainly study the cases that G are exceptional Lie groups and the
(p component) torsion index /(G), = p. Let T be a maximal torus and B be
the Borel subgroup 7 < B. In particular, when (G, p) = (G,,2), we compute
CH*(Gi/Ty) = CH*(Gi/Bx) explicitly. Moreover we show CH*(Gy)p) = Z3).
We also study the case (G, p) = (SOp1_1,2), n>3. This case CH*(Gy)p) =
CH*(Gy) 5 but it is not isomorphic to Zg) nor CH*(Gk),). We also have a
partial result for the case (G, p)= (F4,3). These are the first examples that
Chow rings are computed for nontrivial torsors.

For these groups, Petrov, Semenov and Zainoulline [Pe-Se-Za] showed that
the Chow motive of G /By is isomorphic to a direct sum of the generalized Rost
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motives ([Vo4], [Ro2], [Su-Jo], [Vi-Za]). The algebraic cobordism MGL?**(—)
of the Rost motives are given in [Vi-Ya], [Ya4]. From this, we show the
multiplicative structure of CH*(Gy/T)). The algebraic cobordism MGL>*(G)
is studied in [Yal]. By using arguments in [Yal], we can compute CH"(Gx),).

The author thanks Burt Totaro, Michishige Tezuka, Masaki Kameko and
Kirill Zainoulline who teach him theories of torsors and algebraic groups. He
also thanks the referee who corrected errors in the first version of this paper.

2. Rost motive

Let k be a field of ch(k) =0 and X a smooth variety over k. We consider
the Chow ring CH*(X) generated by cycles modulo rational equivalence. For
a non zero symbol a = {ay,...,a,} in the mod 2 Milnor K-theory K™, (k)/2, let
¢, = {Kao,...,a,)) be the (n+ 1)-fold Pfister form. Let X, be the projective
quadric of dimension 2"*! —2 defined by ¢,. The Rost motive M,(= M, ) is
a direct summand of the motive M(Xy ) representing X so that M(X, )=
M,® MP*1).

Moreover for an odd prime p and nonzero symbol 0 # a e KM, (k)/p, we
can define ([Ro], [Vo], [Su-Jo], [Vi-Za]) the generalized Rost motive M,, which is
irreducible and is split over K/k if and only if a|y =0 (as the case p =2).

The Chow ring of the Rost motive is well known. Let k be an algebraic
closure of k, X|; = X ®;k, and i; : CH*(X) — CH*(X|;) the restriction map.

LemMa 2.1 (Rost [Rol,2], [Vo4], [Vi-Ya], [Ya3,4]). The Chow ring CH*(M,)
is only dependent on n. There are isomorphisms

CH*(M,) = Z{1} & (Z{co} ® Z/p{c1,...,cam1 )/ (ciy"™")
and  CH™(M,|;) = Z[y]/(y")

where |y| =2(p" ' +---+ p+1) and |c;| = |y| +2 —2p'.  Moreover the restric-
tion map is given by ir(coy’™") = py’/ and i(c;y’"') =0 for i,j> 0.

Remark. The element y does not exist in CH*(M,) while ¢;y exists.
Usually CH*(M,) is defined only additively, however when CH*(M,) has the
natural ring structure (e.g., p = 2), the multiplications are given by ¢; - ¢; = 0 for
all 0<i,j<n-—1.

Remark. In this paper the degree |x| of an element x € CH*(X) means the
2 — times of the usual degree of the Chow ring so that it is compatible with the
degree of the (topological) cohomology H*(X(C)).

Let us use notation Q**(X) for the motivic cobordism MGL>***(X) ) defined
by Voevodsky. (Hence it is the algebraic cobordism defined by Levine and
Morel [Le-Mol,2], [Le].) It is known that

Q% = Qz*([)l‘.) = MUZ*(pl.)(m = Z(p)[x17x27.. ]
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where MU?*(pt.) is the complex cobordism ring and |x;/ = —2i. It is known
that there is a relation ([Le-Mol,2], [Le], [Ya2])

We can take for x,i_; the cobordism class of a 2(p’— 1)-dimensional
manifold whose characteristic numbers are divisible by p but the additive

characteristic number s,/_; is not divisible by p>. Let us denote Xpi_1 as ;.
Let I, be the ideal in Q" generated by vy,...,v, 1, i.€.,

(2.2) L =(p=vo,01,...,00-1) € Q"

Then it is well known that [, and I, are the only prime ideals stable under the
Landweber-Novikov cohomology operations ([Ra]) in Q.

The category of cobordism motives is defined and studied in [Vi-Ya]. In
particular, we can define the algebraic cobordism of motives. The following fact
is the main result in [Vi-Ya] (in [Ya4] for odd primes).

Lemma 2.2 ([Vi-Ya), [Yad]). The restriction map

i QN (M) — Q" (M) = Q7[y]/(»")
is injective and there is an Q*-module isomorphism
Q' (M) = Q {1} @ L{y,.... " '} Q" [y]/(»")

such that vy = c; in Q"(Ma) ®q- Zp) = CH* (M), in (2.1).

Remark. Let BP{n)" = Z,)[v1,...,v,). Recall ([Ya2]) that
ABP{(nY**(X) = Q¥ (X) ®q- BP{(n)*
for smooth X. Then we also see that
iz : ABP{n — 15**(M,) — ABP{n — 1>**(M,|;)
is injective. In particular, when n = 1, ABP{0)***(—) = CH 2*(—)< ) and hence

CH*(Ma) ) = Zip) {1} @ Zip) D)/ (5" ) py} = Z,) 1)/ (37) = CH* (M) -

3. Compact Lie group G

Let G be a compact connected Lie group. By the Borel theorem, we have
the ring isomorphism for p odd

k N
(3.1) H(GZ/p)=P(»)/(p) ® Alxi,...,x1) with P(y) = QZ[y)/(»")

i=1

where |y;| = even and |x;| =odd. When p =2, for each y;, there is x; with
x; = yi. Hence we have gr H*(G;Z/2) = P()/(2) ® A(xi,. .., x1).
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Let T be the maximal torus of G and BT the classifying space of 7. We
consider the fibering
(3.2) G5 G/TS BT
and the induced spectral sequence
Ey" = H*(BT;H*(G;Z/p)) = H*(G/T;Z/p).
The cohomology of the classifying space of the torus is given by
H*(BT)x=Z[t,...,t;] with |;] =2.

where / is also the number of the odd degree generators x; in H*(G;Z/p). It is
known that y; are permanent cycles and that there is a regular sequence ([Tod],
[Mi-Ni]) (by,...,bs) in H*(BT)/(p) such that d|,,i(x;) = b;. Thus we get

ESY = P(y)®Z/plty, ..., 1]/ (b1, ..., by).

Moreover we know that G/T is a manifold (flag manifold) with torsion free
cohomology, and we get

(33) H*(G/T)<p) = Z(P>[y17 v Vi, Tty e l/]/(f], e 7fk7b17 . ,b/)
where b; = b; mod(p) and f; = y" mod(ty,...,1;). We also know

(3.4) MU*(G/T),y = Q" [y1,. s yis b1y 10/ (frs s fo b, by)

where b; = b; mod(MU<") and f; = f; mod(MU<").
Let Gj be the split reductive algebraic group corresponding G and T} the
split maximal torus. Since Gj/Bj is cellular, we have

CH*(Gk/Tk) = CH*(Gc/TC) = H*(G/T),
and Q" (Gy/Ty) = Q*(Ge/Tc) =~ MU*(G/T).

Next we consider the relation between CH*(Gy) and CH*(Gy/Ty) (or
Q"(Gr) and Q(Gy/Ty)).

THEOREM 3.1 (Grothendieck [Gr], [Yal]). Let Gi be a Gy-torsor over k.
(Here we do not assume the nontriviality of Gi). Let h*(X) = CH*(X) or Q*(X).
Then

h*(Gy) = h*(Ge/Te)/(i*h* (BTi)) = h*(Gye/Ti) (11, . .. 17).

Proof. Let L; — Gy/Ty be the line bundle corresponding the element
tie CH*(Gy/Ty). Then we can embed the Tj-bundle G, — Gy/T) into the
associated vector bundle @i L; — Gy /Ty such that G; is an open subscheme
of @i L;. Consider the localization exact sequence

@h* <@L/> e h*(@;)L,») — " (Gr) — 0

J#I
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where s;: Gx /Ty — L; is a zero section. Since L; are vector bundles
i£j i

By the definition of the first Chern class, we know #; = ¢|(L;) = s;s:(1). Thus
we get the desired result ©*(Gy) = h*(Gi/Tk)/(t1, ..., 1) O

Note that CH*(Gy) = CH*(G¢) from CH*(Gy/Ty) = CH*(Gc/Tc).
CoroLLARY 3.2 ([Yal], [Ka]). CH*(Gk),) = P(»),)/(pyi|l <i<k).

The following theorem for Q*(G¢) is one of the main result in [Yal]. Let
Q; be the Milnor primitive operation in H*(X;Z/p) inductively defined by
0: =[0;_1,P'"'] and Qy = 8 where f8 is the Bockstein operation and P?""' is the
pP~'-th reduced power operation. It is known that we can take generators such
that Q;(x;) € P(y)/(p) for all i >0, 1< j </ ([Mi-Ni]).

TueoreM 3.3 ([Yall]). Take generators so that Qi(x;) € P(y)/(p) for all
i>0,1<j</{ Then there is an Q*-module isomorphism

Q' (Gy/I3 =@ ®P(y)/ <Ii,zviQi(>€_1) [1<j< />-

Let P be a parabolic subgroup. Then the inclusion 7' < P induces the
fibering
(3.5) P/T — G/T % G/P
and the spectral sequence (see [Tod])

E(G/T)}y" =~ H*(G/P)®@ H* (P/T) = H*(G/T).

Since these cohomology have no torsion and are even dimensionally generated,
this spectral sequence collapses,
(3.6) gr H*(G/T) ~ H*(G/P) ® H*(P/T).

Hence H*(G/P) can be computed from H*(G/T) (while some cases H*(G/P)
are more easy). The cohomology H*(P/T) can be computed by the fibering
P/T — BT - BP. Indeed, if i* | H*(BP) is injective, then H*(P/T) =~ H*(BT)/
(i*H*(BP)). Note here when P = B the Borel subgroup, we know H*(G/T) =~
H*(G/B) (similar isomorphisms hold for CH*(—) and Q*(—)).

4. Exceptional groups of type (I)

Let G be a simply connected compact Lie group with the flag manifold G/T
of dimension 2d. The torsion index is defined by

((G) = |H*(G/T;Z)/i*H*(BT;Z)).
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By Grothendieck, it is known that any Gy-torsor Gy splits over some fields L;
over k with ged[L; : k] dividing #(G). By Totaro all #(G) are recently known
[To2,3]. Let us write by 7(G), the p-component of /(G). In this section, we
restrict the cases 7(G),) = p (for ease of arguments) and G are simply connected
exceptional Lie groups. We call such (G, p) is of type (I), that is

(G2a2)v (F472)a (E672)
(F4a3)a (E6a3)7 (E773)7 and (ESaS)

Throughout this section, we assume (G, p) are type of (I). For these cases,
the ordinary mod(p) cohomology is well known

gr H'(G;Z/p) = Z/p[y]/(y") ® A(x1, ..., x/)
where / = rank(G) =2, |y|=2p+2, |xi| =3, |x2| =2p+ 1. Moreover
Oi1(x1) =y, Qo(x2) =y.
From Corollary 3.2, we see

COROLLARY 4.1. CH*(Gy) ) = Z(»)[¥]/ (3", py)-

From Theorem 3.3 and the Q;-actions, we see

Q (Go)/13, = Q) (py, vy, ¥, I2),

while we have more strong result (Theorem 5.1 in [Yal]).
COROLLARY 4.2. Q*(Gy) = Q*[y]/(py,v1y, ¥7).

Remark. In the Atiyah-Hirzebruch spectral sequence ([Ya2])
E; Y = HYY (G MUY) = MGL* (Gy)
we know that
drp—1(x1) = v1 ® Q1(x1) = v1).
Thus we get also E2%**" =~ MU*[y]/(py,v1y, y*).
For general G, recall that the polynomial parts P(y) of H*(G;Z/p) is
written as @lk Z/p(yi)/(»F ™). In [Pe-Se-Za], Petrov, Semenov and Zainoulline

defined the J-invariant J,(Gg) = (i1,...,i) of Gi (roughly speaking) as the
smallest number i; such that

»" e Im(CH*(Gy/ i) - CH* (G Ti)) = CH* (Gy))

with some changes for generators. (More accurate definition, see 4.6 in
[Pe-Se-Za)].) In particular, J,(Gx) = (0,...,0) if and only if Gy splits by a finite
extension K /k of degree coprime to p (4.7, Corollary 6.7 in [Pa-Se-Za]). Hence
if G is a group of type (/) and Gy is nontrivial at p, then J(Gy) = (1).
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THEOREM 4.3 (Theorem 5.13 in [Pe-Se-Za|). Let J,(Gx) = (1). Then there
is a mod(p) indecomposable motive R,(G) such that

(1) CH™(R,(G)[p))/p = Z/p[y]/(¥")
(2)  M(Gi/TisZ/p) = D Ry(G) ® T = R,(G) ® H*(G/T;Z/p)/ ()

where we identify H*(G/T;Z)/(y) as the sum of mod p Tate motives P T®.

We say that L is splitting field of a variety X if the motive M (X|;) of X|,
is isomorphic to a direct sum of twisted Tate motives T®/. A smooth scheme X
is said to be generically split over k if its function field L = k(X)) is a splitting
field. The complete flag variety Gi/By is always generically split.

THEOREM 4.4 (Theorem 3.7 in [Pe-Se-Za|). Let Qr = Py be parabolic sub-
groups of Gy which are generically split over k. There is a decomposition of
motive M(Gy/Qk),) = M(Gr/Pr), ® H*(P/Q).

For p=2,3, from Proposition 5.21 (for m = p) and §7 in [Pe-Se-Za], we
have the integral motivic decomposition which deduces the mod(p) decompo-
sition in Theorem 4.3. Moreover when (G, p) = (G,2) or (Fy,3) from Bonnet,
Semenov and Zainoulline (see Corollary 6 in [Vi-Za], and also [Se], [Bo],
[Ni-Se-Za]), we know that the integral motive corresponding R,(G) is really
generalized Rost motive Mj.

CorOLLARY 4.5. Let (G,p)=(G2,2) or (Fs,3), and assume that Gy is
nontrivial at p. Then for each parabolic subgroup Py, Gy /Py is generically split
and

CH*(Gk/Pk)(p)%Z[y]/(yp)®A and M(G/C/Pk)(p)§M2®A

where A is a sum of twisted Tate motives and M, = M, is the generalized Rost
motive for some 0 # a e KM (k)/p.

The following theorem implies CH*(Gy) ) = Z) when (G, p) = (G2, 2).
THEOREM 4.6. Let G be type (I), and assume that

M(Gie/Bi) ) = My ® H*(G/T)(,)/()-

Then the Chow ring CH*(Gk/Tk)<p) is multiplicatively generated by ty,...,t,
when p =2 (for x <2p+6 when p=odd). Hence CH"(Gy), = Z(, when
p=2 (for * <2p+6 when p = odd).

Proof. We consider the restriction map

ir 1 Q°(Gi/T) — Q*(Gi/Tilp) = MU*(G/T),,,.
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Since i; | Q" (M) is injective, so is i; above. Let us write
Im(i,;) = i,;(Q*(Gk/Tk)) < QY (G /Ty) = MU*(G/T)<p>.

Of course py',v1y' €Im(iy) for i>0 since so in Q"(M|;). Note that
t1,..,t, € Im(i;) because they exist in CH*(Gy/T}) since so in CH*(BTy).
Recall that each element x € Q"(Gy/Ti|;) = Q" (Gi/Tk) is represented as

p—1
(%) Xx=3 > ols, )ils i)y, v(s,i) Q" (s, i) € Ziyln, ..., 1/]
i=0 s

while if x € Im(i;), then v(s,i) € Ideal(p,v;) for i > 0.
From Corollary 4.2, we see py = vy =0 in Q*(Gy). From Theorem 3.1,
this means

() py,vy € (t,... t7)Q (G /Ty).

(But note that this does not mean py,v1y € (1,...,1,) Im(it) while we will see it.)
Let us write v;y = > v(s,{)7(s,i)y" as (x). The above fact (xx) implies |#(s, )| > 0
for i >0, and hence |v(s,i)| <O.

Now we consider Q{1)*(—)-theory. Let us write

QY (X) = Q°(X) ®q+ Zp)[v1] = ABP{1Y**(X).
In Q)" (Gy/Tk), the fact |v(s,i)] < 0 means
v(s,i) € (01) = Zp o]~ = Q1Y
Hence v1y € (11,...,t) Im(i;) in Q{1)"(—) theory.
Thus we can write
r-l )
oy =Y uls,i)t(s, i) viy'+ > 0(s,0)1(5,0)" in QAN (Gr/Tk).

i>0 s s

If v(s, i)’ # 0 for i > 0, then apply the same equation to the right hand side vy in
the above equation. Since #(s,7) =0 when |¢(s,i)| > dim(G/T), we can write

vy = Z v(s,0)"t(s,0)".
N

We have the similar result for py. Hence ir(Q<1>"(Gx/Ty)) is generated as an
Q(1y*-algebra by #{,...,t, when p =2 (for * < |v1y?| = 2p + 6 when p = odd).
Since we know the isomorphisms

CH*(Gk/Tk)(p) ~ Q*(Gk/Tk) Rq* Z(p) ~ Q<1>*(Gk/Tk) ®Q<1>* Z(p),

we get the desired results. Ul
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5. Exceptional Lie group G,

In this section we study CH*(Gy/Ty) for the case (G,p) = (G»,2). We
recall the cohomology from Toda-Watanabe [To-Wa]

H*(G/T;Z) = Z[t;, 12,y (6} + t1ta + 3,65 — 2y, ¥?)

with |7;] =2 and |y| = 6. Let P(= P;) be the maximal parabolic such that G/P
is isomorphic to a quadric. Then from (3.6) and H*(P/T) = Z{1,1,}, we have

H'(G/P;Z) = L, y]/ (53 — 2y, »*) = Z{1, y} ® {1, 12,53}
By Bonnet, we have the decomposition

THEOREM 5.1 ([Bo], §7 in [Pe-Se-Za)).
M(Gy/Pr) = My @ My(1) @ Ma(2).

THEOREM 5.2. There is a ring isomorphism
CH™(Gk/Pr)p) = L2, u)/ (65, 2u, 3u, u?)

= 2 [0]/ () © Z/2012) /() (1)
with || =2, |u| =4.

Proof. From Lemma 2.2, we know
Q' (M) = Q{1,2y,v1y} = Q{1, y}.
From the preceding theorem, we have the Q*-module isomorphism
Q*(Gr/Pr) = Q" {1,019,2y} ® {1, 10,5} = Q*(Gy/Py).
Since CH*(X)(,) = Q"(X) ®q- Z(y), we have the isomorphism
CH*(Gi/Pr) ) = Zi{1,29H{1, 12,55} @ Z/2{viy}{1, 12,53 }.

(Note 2v1y = v1(2y) € Q°Q*(Gy/Py).)
Here the multiplications are given as follows. Since 2y =13 mod(Q=") in
Q*(Gy/Ty), we can take 2y =13 € CH*(G/Py) ) so that

Zoy {1,291, 02,3} = Zy)[02] /(15) = CH*(G/Py) .-

Let us write u=uv;y in CH*(Gi/Ty) . Then Bu=2yny=0 and u®>=
viy? =0 in Q(Gi/Tk) ®q- Z). Hence we have the isomorphism in the
theorem. O

Remark. The space Gy/Py is isomorphic to the quadric defined by the
maximal neighbor of the 3-Pfister form. Hence its Chow ring is computed in
[Ya3]. (See also Lemma 7.2 and 7.4 below.)

Next consider CH*(Gi/Tk) -
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THEOREM 5.3. There is a ring isomorphism
CH*(Gr/Ti) ) = Z[11, 2]/ (85, 2u, Gu, u?)
where u = tl2 + 11t + t%.

Proof. The Chow ring is isomorphic to
() CH*(G/Te)) = CH*(Gi/Pi){1,11}
= (Zoy{1, 20} @ Z/2{viy}){1, 12,53}{1, 11}
Here 2y = tg. Since vy € (t1,%,) and vy =0€ CH*(Gy/Ty), we see
vy =M+ nu6+12) mod((t;, n)Q"Q*(Gy/Ty))

for 4 e€Zp). We can take A =1 mod(2). Otherwise vy =0eQ"(Gi/Tx)/2,
which is Q*/2-free, and this is a contradiction. Hence we can take 2 + 111, + 13
as v;y. (This is also proved by Lemma 4.3 in [Yal], since Q;(x;) =y and
dy(x1) =} + tip +13.) Hence in CH*(Gy/Ty) we have the relation

()2 =0, (Bu=0, u>=0, 2u=0.

We consider the mod 2 Poincare polynomial

ZrankZ/Z(CHZi(Gk/Tk)/z)z" =(1+2+)1+t+2)(1+1)

(1 =91 -4
(1= -1

which is the (mod(2)) Poincare series of the right hand side ring of the theorem.
(Note (#8,u?) is a regular sequence in Z/2[t1, 5] but (£5,u?, ($3)u) is not.) [J

= 1 4+20432 448 448 430 +1° = — (1 +1)?

The author learned the following remarks by Kirill Zainoulline.

Remark. Tt is well known that there is a bijection between H'!(k;G,) and
the class of Cayley algebras C from the fact G, = Aut(C|;). Hence each
torsor Gy over k corresponds a Cayley algebra. Moreover Gy/B; and Gy/Py
correspond the following varieties [Ca-Pe-Se-Za]. By an i-space (i=1,2), we
mean i-dimensional subspace V; of C such that u-v =0 for every u,ve V;. The
flag variety corresponding Gy /By is the full flag variety

X(1,2) ={Vi < V| Vi;i — subspaces = C}
and the flag variety corresponding Gi /Py is
X (2) = { V5| V5;2 — subspaces = C}.
Let g be the map
g:H' (k;Gy) — H*(k;Z)2) = KM (k) /2
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induced from the Rost cohomological invariant. The symbol of the Rost motive
in Theorem 5.1 is g(Gy) i.e., My = Myq,).

Remark.  Similar facts hold for (G, p) = (F4,3). This case, the correspond-
ing algebras are exceptional Jordan algebras of dimension 27 over k, and the
symbol for the generalized motive is the image of also the Rost cohomological
invariant.

6. Exceptional group F; for p =3

Let (G, p) = (F4,3) throughout this section. Let G; be a nontrivial G-
torsor at 3. Let P be a maximal parabolic subgroup of G given by the the first
three vertexes of the Dynkin diagram.

1 2 3 4

0 —— 0=>=0 —— oO.
We also note G/P =~ Fy/B;-S'.

THEOREM 6.1 (Corollary 6 in [Vi-Za], [Se]). Let Mz be the generalized Rost
motive. Then there is an isomorphism M (Gy/Py) = @l o Ma(i)

We first recall the ordinary cohomology of G/P ([Is-To], Theorem 2 in
[Du-Zal).
H*(G/P) = Z[t1, y]/(rs,r12), 1| =2, |y| =8
where rg = 3y> — 18 and rj, = 26y3 — 5¢'2. Hence we can rewrite
H*(G/P)G) = Z(3){1atv" ',[7} ® {lvyv yZ}
Recall the Chow rings of the Rost motive
CH* (M) = Z[y]/(»),
CH* (M) = Z{1} ® Z{3y, 3y} ® Z/3{vi1y,01y*}.

Of course, the above ye CH*(M,) can be identified with the same named
clement in H*(Gi/Py)s by the restricion map CH*(M,) — CH"(M,|f) =
CH*(Gy/Px) 3)- From tile above theorem, we have the decomposition

(*)  CH*(Gr/Pi)py = Zn{l,t,..., 1"} ® (Z3{1,3y,39%} @ Z/3{v1y,v1y°}).
The ring structure is given as follows.
THEOREM 6.2.
CH*(Gk/Pk)< =Zxt,b Lay,ar) /(1% b, b* = 368 ba;, 3a;, Pa;, a1ay)
~Za{lt,...,0"} @ (Z3{1,b= /3", Y ®Z/3{a1,ar})
where |b| =8 and |a| =4, |ay| = 12.
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Proof.  From the relation rg in CH*(G/P), we have
32 = +ox e Q*(G/P) for ve Q.
Hence we can take 7% instead of 3y? in (). Of course
(3y)* = 3% + 3ux € Q*(G/P).

Hence we write by b= ./3t* the element 3y. Write by a;, a, the elements
vy, v1y* respectively. Elements in 1,00 < Q(Gy/Py) reduces to zero in
CH*(Gy/Ty). Therefore we have the desired multiplicative results. O

The cohomology H*(G/T) is given by Toda-Watanabe [To-Wa)]

H*(G/T) 5y = Z)|t, 12,13, 14, ]/ (P2, Pas Pes P3s P12)-

Here relations p; are written by the elementary symmetric functions c¢; =
o-i(tl7t27t37t4); that iS)

pr=ca— (1/2)c},  py=cy—cze1 + (1/2)3cf —3y, pe= —caci+c3,
ps = 3cact — (1/2)4cf +3y(2% 4+ 23¢c3cr), ppp =

By the arguments similar to the proof of Theorem 5.3 (or Lemma 4.3 in [Yal]),
we can prove

THEOREM 6.3. Let n: Gy/Ty — Gi/Pr. Then
() =c1, n(ar)=p, (D) =cs—czc1—(2) et
Hence there is an epimorphism

Z(3) [[1 02, 13, 14]/(C116a C??’C*(b), n*(b)z - 3C187 n*(b)p_p 3p_/‘7 C?p_j7p2p6)

— CH™(Gy/Ti)3)/(n"(a2) = pe),
where j=2,6.
Proof. We consider the composition of maps
CH*(G/Py) 5 CH*(Gy/Ty) - CH* (Gy/Ty).

It is known m.(f) =c; in CH*(Gi/Ty). By dimensional reason, so is in
CH*(Gy/Ty). Note irm.(a;) = izn.(v1y') = 0e CH*(Gi/Ty) and hence 7. (a;) €

Ideal(p,,...,p;,). By dimensional reason, we see n.(a;) = p, and 7, (az) — pg €
Ker(ii). The element b is defined from 3y € Q*(Gy/Tx). So we have the result for
7. (b) from the relation p,. O

If we can take a» with 7*(az) = pg, then we get CH*(Gk)s) = Zg).
Otherwise we see CH'*(Gy) ) # 0.
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7. The orthogonal group SO(m) and p =2

We consider the orthogonal groups G = SO(m) and p =2. The mod 2-
cohomology is written as (see for example [Ni])

gr H(SO(m); Z/2) = A(x1,X2, ..., Xm—1)

where the multiplications are given by xf = x35.  We Wwrite 130aa) = X2(0dd) =
x2,;. Hence we can write

H*(SO(m); Z/2) = Z./2[yai2 |2 < 4i+2 <m — 1]/ (yi,) ® Alx1, %3, . . xi)

where s(i) is the smallest number such that 2°¢)(4i +2) > m and m = m — 1 (resp.
m=m—2) if m is even (resp. odd).
The Q;-operations are given by Nishimoto [Ni]

anodd = Xodd+|0,|> aneven = Qnyeven = 0.
Relations in Q*(SO(m)) are given by
Z 0nOn(Xodd) = Z UnXodd+|o, =0 mod(I2).
n n

For example, the relation in Q*(SO(m))/I2 starting with 2y¢ are written as
200(x5) + v101(x5) + 1202(x5) + v303(x5) + - - -
= 2X6 + v1Xsg + v2X12 + V2X20 + - - -

=2y6 + v1y§ + Uzyé + U3y120 +---=0 mod(]fo).

Tueorem 7.1 ([Yal]). There is an Q) -algebra isomorphism

Q*(SO(m)) /12 = Q* [yai2|2 <4i+2<m—1]/(RI2)

7700

where R = {relations starting with yf;\1)2,2y4,-+2,vly4,-f+2,i’ # 0}

For ease of arguments, we only consider the case G = SO(odd). Let G =
SO(2m’ +1) and P = SO(2m’ —1) x SO(2). Then it is well known [To-Wa]

Lemma 7.2. H*(G/P) = Z[t, ]/ (" — 2y, %) |y| = 2m".
By Toda-Watanabe [To-Wa], we also know

THEOREM 7.3 ([To-Wal).
H*(G/T) = Z{ti, yais twr> ¥/ (¢i = 2p21, Jois 1y — 23, 17)

where 1 <i<m’'—1, ¢;=0(t1,...,ty) and

2i
Jr=1/4 (Z(l)jcjcmj) =yai— > (1) yypaiy.

Jj=0 0<j<2i
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Hence we can write
gr H*(G/T) ~H* (G/P)® A, A=1Zt;,yi]/(c;—2yi,Ja|l1 <i<m'—1)
where ¢ =o(t),...,t,—1). More precisely, we can write
gr A= P(»)' ® P(1)’

where P(p) = ), p01_y Zlyaisa]/(¥*") so that P(y) = P(y)' ® Z[y]/(y*) and
where

P(t) = H*(BT,y_1)/(H*(BU(m' — 1)) = Z[t1,.. ., tw1]/(c], - Ch )
Indeed, it is also known that
gr H*(G/(U(m’ — 1) x S0(2))) = P(y) ® H*(G/P).

Now we recall arguments for quadrics. Let m =2m’ + 1. and let us write
the quadratic form ¢(x) defined by

2
(X150 Xm) = X1X2 + - X2 X1 + X,

and the projective quadric X, defined by the quadratic form g. Then it is well
known that (in fact SO(m) acts on the affine quadric in A” — 0)

X, = SO(m)/(SO(m —2) x SO(2)).

Hereafter we assume that G = SO(m) and P = SO(m —2) x SO(2) and Gy
is nontrivial (at p =2). Moreover we consider the case m = 2"! — 1.

The quadric ¢ is always split over k and we know CH*(Gy/Pr) =~ CH*(X,).
Define the quadratic form ¢’ by

¢ (X1, X)) = XF 4+ X2
Then this ¢’ is a subform of
K=1,...,—1>> = ¢[,n+1

the (n+ 1)-th Pfister form associated to p"t!, where p=(—1)e KM (k) =
k*/(k*)*. (That is, ¢’ is the maximal neighbor of the (n+ 1)-th Pfister form.)
Of course ¢|; = ¢'|; and we can identify G;/P; = X,;. From Lemma 7.2 (or
Rost’s result), we know

CH*(Xy|p) = Z[t, y]/ (1" = 2p, 7).

(Here note that from the existence of nontrivial G, we know 0 #p"le
KM, (k)/2.) As stated in §2, there is a decomposition of motives

M(X,) = M, ® Z/2/(*"),
Hence we have the additive isomorphism

CH*(X,) = Z[]/(*" ) @ (Z{1, o0} ®Z/2{Cn 1, Con1})-
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With identification #2"~! =2y = ¢, o, and u; = ¢, ; for i > 0, we also get the ring
isomorphism

LemmA 7.4 (§6 or Lemma 2.2 in [Ya3]). There is a ring isomorphism
CH*(Gi/P) = Z[1)) (") @ )21/ (7" Vs, .. . 1}
where u; = v;y € Q" (G /Py) Qq+ Z2) so uju; = 0.

By the projection Gi/T; — Gyi/Py, Petrov, Semenov and Zainoulline also
show that the J-invariant J>(Gy) = (0,...,0,1) (7.5 in [Pe-Se-Za]). So we have

TueoreM  7.5. The restriction map i : Q" (Gy/Bx) — Q" (Gy/Bi|;) =
Q*(Gy/By) is injective and

gr CH*(Gy/By) = gr CH*(Gr/Pr) ® A,
gr Q*(Gk/Bk) = gr Q*(Gk/Pk) ® A4
where A = Z[t;, y2l/(c; — 2yi, i |1 <i<m’ —1).

As a corollary, we see that f;, yy; are all in CH*(Gy/Ty) (but y is not).
Hence CH*(Gy/Ty) is multiplicatively generated by #;, y;, ¢ and uy,... U, .

THEOREM 7.6. We have an isomorphism
CH*(Gi)p) = P(»)'/(2) = P(y) ® Z/2[y]/(¥*) = CH"(Gi) y)-
Proof. The proof is quite similar to that of Theorem 4.6. Let us write
Qn—1)"(X) = Q*(X) ®q Zy[v1, ..., va—1] = ABP{n — 1527 (X).
By Theorem 3.1, we want to prove
(1) Uiy .oyt € (t1,. .. 1y ) CH (Gr/ T).
This means
sty € (1 twr) + Q) — 1)7(Gye/ T).
Let us write
Im(ip) = ip (Qn = 15(Gi/ Tk)) = Qn — 157 (Gi/ Tk),
16,97 = ((tr, ... ) + Q%)) Im(i7).
(Note 12 < Q<° Im(ir).) Thus it is sufficient for (1) to prove
(2) 29, vy € 1(1, Q7).

At first we will show v, 1y € I(£,Q<"). Recall y = yyu1_» = Xpu1_,. From
Theorem 7.1 and Nishimoto’s result, we see
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(3) x=200(x2:-1) +v101(x201) + -+ + V2 20n2(X20-1) + Up1Qn1(x20-1)
= 2Xon + U1 X2n42 + - F Up2Xon 019 + Up—1Xpu+1 o
=0 in Qn—1>"(Gy)/(I2).
So x € ((t1, ., tw) +12)Qn — 1)*(Gy/Tx) from Theorem 3.1.
Each element z € Q<{n — 1)*(Gy/Tk) is written (not uniquely) by

4) 2= vty + Y vrtsysy

with vy, v € Qln — 1%, 1,15 € Zy)[t1,..., 1] and yg, yx € P(y)'. Note that
if ze(t1,...,t,)Qn—1>"(Gx/Ty), then we can take |f;] > 0 and |z;/| > 0.
Consider the case z= x in (3). Since yg € Im(i;), we see

vrtjyYk € (1‘1, e l‘m/) Im(zlg)
Since |y| < |t;yk:y|, we know |vp| <0, ie., vpry € Im(i;) because vy € Qln — 1)~
=Zp)v1,...,0,-1). Thus we know vptyygy € (t1,...,ty) Im(i;). Therefore
we see
(5) xel(t, Q).
In (3), X202 = Yaug2,..., Xonppn1_5 are in Im(ig). So we get

U1 Xony2 + -+ Up—2Xgnypn-1_p € Q<0 Im(llz)
Hence we obtain
(6) 2x20 4 v, 1y € I(1,Q°0).

Similarly, we have 2xyu1_si1 + 0,y € I(,Q<%), for 0 <i<n—1.
Next we will see

(7) 293, 2y € 1(1,Q°0).
Then in particular, 2xy: = 2(x2)2"71 =202 " e I(1,Q<%) implies v, 1y €
1(£,Q<% from (6). Similarly we can prove v,_y,...,2y € I(t,Q<") by using
the arguments (3)—(7). Thus we see (2) and so (1).

We prove (7) for 2y, and the other cases are similar. By also using
Nishimoto’s result and Theorem 3.3, we have the relation

X =2x+vixg+ U1 X0 =0 Qn — 1>*(Gk)/1020.

By using arguments similar to (3)—(5), we have x'elI(:,Q"). Of course
viXg + v € Q0 Im(iz).  Thus we see 2y, € 1(2,Q7). O

REFERENCES

[Bo] J. BonnNeT, Un isomorphisme motivique entre deux variétés homogénes projective sous I’action
d’un groupe de type G,, Doc. Math. 8 (2003), 247-277.



462 NOBUAKI YAGITA

[Ca-Pe-Se-Za] B. CALMES, V. PETROV, N. SEMENOV AND K. ZAINOULLINE, Chow motives of twisted
flag varieties, Compositio Math. 142 (2006), 1063-1080.

[Du-Za] H. DuAN AND X. ZHAO, The Chow ring of generalized Grassmanianns, Found. Comput.
Math. 10 (2010), 245-274.

[Gr] A. GROTHENDIECK, Torsion homologique et sections rationnelles, Sem. C. Chevalley, ENS
1958, expose 5, Secreatariat Math., THP, Paris, 1958.

[Is-To] K. Ismitoya aNnp H. Topa, On the cohomology of irreducible symmetric spaces of
exceptional type, J. Math. Kyoto Univ. 17 (1977), 225-243.

[Ka] V. G. Kac, Torsion in cohomology of compact Lie groups and Chow rings of reductive
algebraic groups, Invent. Math. 80 (1985), 69-79.

[Le] M. LeviNg, Comparison of cobordism theories, J. Algebra 322 (2009), 3291-3317.

[L-M 1] M. LevINE AND F. MoreL, Cobordisme algébrique I, C. R. Acad. Sci. Paris 332 (2001),
723-728.

[L-M 2] M. LeviNE AND F. MoreL, Cobordisme algébrique II, C. R. Acad. Sci. Paris 332 (2001),
815-820.

[Mi-Ni] M. MmMura AND T. NisHiMmoTo, Hopf algebra structure of Morava K-theory of exceptional
Lie groups, Contemp. Math. 293 (2002), 195-231.

[Ni-Se-Za] S. NIKOLENKO, N. SEMENOV AND K. ZAINOULLINE, Motivic decomposition of anisotropic
varieties of type Fj into generalized Rost motives, J. K-theory 3 (2009), 85-102.

[Ni] T. Nismimoto, Higher torsion in Morava K-theory of SO(m) and Spin(m), J. Math. Soc.
Japan. 52 (2001), 383-394.

[Pe-Se-Za] V. PeTROV, N. SEMENOV AND K. ZAINOULLINE, J-invariant of linear algebraic groups,
Ann. Sci. Ec. Norm Super. 41 (2008), 1023-1053.

[Ra] D. RaveneL, Complex cobordism and stable homotopy groups of spheres, Pure and applied
mathematics 121, Academic Press, 1986.

[Rol] M. Rost, Some new results on Chowgroups of quadrics, preprint, 1990.

[Ro2] M. Rost, On the basic correspondence of a splitting variety, preprint, 2006.

[Se] N. SEmENOv, Motivic decomposition of a compactification of a Merkurjev-Suslin variety, J.
Reine Angew. Math. 617 (2008), 153-167.

[Su-Jo] A. SusLIN AND S. JoukHovITsKI, Norm variety, J. Pure and Appl. Algebra 206 (2006),
245-276.

[Tod] H. Topa, On the cohomology ring of some homogeneous spaces, J. Math. Kyoto Univ.
15 (1975), 185-199.

[To-Wa] H. Topa AND T. WATANABE, The integral cohomology ring of F4/T and Es/T, J. Math.
Kyoto Univ. 14 (1974), 257-286.

[Tol] B. Totaro, The Chow ring of classifying spaces, Algebraic K-theory, University of Wash-
ington, Seattle, 1997, Proc. of Symposia in Pure Math. 67 (1999), 248-281.

[To2] B. Totaro, The torsion index of Eg and other groups, Duke Math. J. 129 (2005), 219-248.

[To3] B. Toraro, The torsion index of the spin groups, Duke Math. J. 129 (2005), 249-290.

[Vi] A. VisHik, Motives of quadrics with applications to the theory of quadratic forms, Geometric
methods in algebraic theory of quadratic forms, Lecture note in math. 1835 (2004), 25-101.

[Vi-Ya] A. VisHik AND N. YAGITA, Algebraic cobordisms of a Pfister quadric, J. London Math.
Soc. 76 (2007), 586—604.

[Vi-Za] A. VisHIK AND K. ZAINOULLINE, Motivic splitting lemma, Doc. Math. 13 (2008), 81-96.

[Vol] V. Voevopsky, Motivic cohomology with Z/2 coefficient, Publ. Math. ITHES 98 (2003),
59-104.

[Vo2] V. Voevopsky, Voevodsky’s Seattle lectures: K-theory and motivic cohomology, Noted by
C. Weibel, Algebraic K-theory, University of Washington, Seattle, 1997, Proc. of Symposia
in Pure Math. 67 (1999), 283-303.



[Vo3]
[Vod]
[Yal]
[Ya2]

[Ya3]
[Yad]

CHOW RINGS OF NONTRIVIAL G-TORSORS OVER A FIELD 463

V. Voevopsky, Reduced power operations in motivic cohomology, Publ. Math. IHES 98

(2003), 1-57.

V. Voevopsky, On motivic cohomology with Z//-coefficients, Ann. of Math. 174 (2011),

401-438.

N. YaaiTa, Algebraic cobordism of simply connected Lie groups, Math. Proc. Camb. Phil.

Soc. 139 (2005), 243-260.

N. Yaaita, Applications of Atiyah-Hirzebruch spectral sequence for motivic cobordism,

Proc. London Math. Soc. 90 (2005), 783-816.

N. Yacita, Chow rings of excellent quadrics, J. Pure Appl. Algebra 212 (2008), 2440-2449.

N. Yaaita, Algebraic BP-theory and norm varieties,
generate?/Yagita/abp, 2006.

Nobuaki Yagita

DEPARTMENT OF MATHEMATICS
FacuLty oF EDUCATION
IBARAKI UNIVERSITY

Mito, IBARAKI

JAPAN

E-mail: yagita@mx.ibaraki.ac.jp

http://hopf.math.purdue.edu/cgi-bin/



