ON PROPERTY OF COMPLEMENTS OF AN ALGEBRAIC CURVE WITH AT LEAST 4 IRREDUCIBLE COMPONENTS IN P²

Yukinobu Adachi

Abstract

For the manifold $M := \mathbf{P}^2 - A(l)$ $(l \ge 4)$ where A(l) is an algebraic curve with l irreducible components, the notion that M is of log general type, measure hyperbolic and Δ_M is a curve or empty set, where Δ_M is the degeneracy locus of the Kobayashi pseudodistance d_M on M, coincide with each other.

0. Introduction

In [7] and [10], the little Picard theorem, that is, the holomorphic map of \mathbb{C}^k $(k \ge 1)$ to above M is algebrically degenerate always, was proved as a special case.

In Theorems 2 and 3 in [4], the Montel theorem was generalized for M, that is, there are only two cases such as (a): M is tautly imbedded modulo some curve S in \mathbf{P}^2 (then M is hyperbolically imbedded modulo S in \mathbf{P}^2) or (b): there exists a holomorphic rational function f on M such that all irreducible components of every lebel curve of f are holomorphically isomorphic to either \mathbf{C} or \mathbf{C}^* .

In [5] and [3], for an arbitrary complex manifold N, Δ_N (for its definition, see Proposition 1.2) is a pseudoconcave set of order 1 and the same for $S_N(X)$ where $S_N(X)$ is the degeneracy locus of limiting d_N to \overline{N} , which is compact in the manifold X (precisely, see Definition 1.1 and 1.3).

manifold X (precisely, see Definition 1.1 and 1.3). So, in the case $M = \mathbf{P}^2 - A(l)$ ($l \ge 4$), if $S_M(\mathbf{P}^2)$ or Δ_M is contained in a curve, it is a curve or empty set because it is a pseudoconcave set (compliment of the set is a pseudoconvex set) in the two dimensional case. Then we can make clear the above case (a) to (a)', that is, M is hyperbolically imbedded modulo $S_M(\mathbf{P}^2)$ which is a curve or empty set.

In [2], the notion that M is tautly imbeded modulo $S_M(\mathbf{P}^2)$ in \mathbf{P}^2 and M is hyperbolically imbedded modulo $S_M(\mathbf{P}^2)$ in \mathbf{P}^2 coincide with each other when $S_M(\mathbf{P}^2)$ is a curve or empty set.

In this paper, we prove that the notion that M is of log general type, measure hyperbolic and hyperbolically imbedded modulo $S_M(\mathbf{P}^2)$ in \mathbf{P}^2 coincide with each other when $S_M(\mathbf{P}^2)$ is a curve or empty set.

²⁰⁰⁰ Mathmatics Subject Classification. 32Q45, 14R05.

Key words and phrases. hyperbolic, measure hyperbolic, general type.

Received July 30, 2007; revised March 3, 2008.

1. Preliminaries

Let X be a connected complex manifold and M a relatively compact domain in X. We denote by d_M the Kobayashi pseudodistance on M. For the precise definition of d_M , see [9, p. 50]. For $p, q \in \overline{M}$, we define

$$\overline{d}_M(p,q) = \liminf_{\substack{p' \to p, \, q' \to q}} d_M(p',q'), \quad p',q' \in M.$$

For properties of \bar{d}_M , see [2, p. 386].

Definition 1.1 in [2]). Let $S_M(X) = \{p \in \overline{M} \text{ such that there}\}$ exists some $q \in \overline{M} - \{p\}$ such as $\overline{d}_M(p,q) = 0\}$. We call $S_M(X)$ the degeneracy locus of \overline{d}_M in X.

It is easy to see the following:

Proposition 1.2. $S_M(X) \cap M = \Delta_M := \{ p \in M \text{ such that there exists some } q \in M - \{ p \} \text{ such as } d_M(p,q) = 0 \}.$

Definition 1.3 (cf. [13] and [6]). A closed set E of X is called a pseudoconcave set of order 1, if for any coordinate neighborhood

$$U: |z_1| < 1, \ldots, |z_n| < 1$$

of X and psitive numbers r, s with 0 < r < 1, 0 < s < 1 such that $U^* \cap E = \emptyset$, one obtains $U \cap E = \emptyset$, where

$$U^* = \{ p \in U; |z_1(p)| \le r \} \cup \left\{ p \in U; s \le \max_{2 \le i \le n} |z_i(p)| \right\}.$$

THEOREM 1.4 (Theorem 2 in [5] and Theorem 1.12 in [3]). The sets $S_M(X)$ is a pseudoconcave set of order 1 in X, and Δ_M is the same in M.

THEOREM 1.5 (Theorem 8.1 in [1]). For $M = \mathbf{P}^2 - A(l)$ ($l \ge 4$), there are only two cases.

- (a) $S_M(\mathbf{P}^2)$ is a curve of \mathbf{P}^2 or empty set. (b) $S_M(\mathbf{P}^2) = \mathbf{P}^2$.

Definition 1.6 (Definition 6.1 in [1]). We call f a rational holomorphic function of C-type (resp. C*-type) on ${\bf P}^2-A$ if f is a rational function on ${\bf P}^2$ and normalization of every irreducible component of all level curves of f except finite number of them is holomorphically isomorphic to C (resp. C^*) on $P^2 - (A \cup I_f)$, where A is a curve of P^2 or empty set and I_f is the set of indeterminacy points of f.

Further, we call f a primitive rational function on $\mathbf{P}^2 - A$ if almost all level curves are irreducible except finite ones.

PROPOSITION 1.7 (see Propositions 6.3, 6.4, 6.5 and 8.2 in [1]). In the case (b) of Theorem 1.5, there exists a primitive rational holomorphic function f of \mathbb{C} or \mathbb{C}^* -type on $\mathbb{P}^2 - A(l)$ ($l \ge 4$) with lacunary three points. Namely, A(l) is the sum of several irreducible components of level curves of f which is a rational function of \mathbb{C} or \mathbb{C}^* -type on \mathbb{P}^2 and of \mathbb{C} or \mathbb{C}^* -type on $\mathbb{P}^2 - (A(l) \cup I_f)$, or A(l) is the sum of several irreducible components of the level curves of f which is a rational function of \mathbb{C} -type on \mathbb{P}^2 and an irreducible curve of genus 0 of \mathbb{P}^2 such that f is of \mathbb{C}^* -type on $\mathbb{P}^2 - (A(l) \cup I_f)$.

We shall consider a complex manifold X of dimension n which has a compactification. According to Hironaka, there is a smooth compactification \overline{X} of X. Namely, \overline{X} is a compact complex manifold of dimension n and $D = \overline{X} - X$ is a divisor which has at most normal crossings. According to F. Sakai [11, p. 245] we can define logarithmic Kodaira dimension $\overline{\kappa}(X)$ of X.

DEFINITION 1.8. If $\bar{\kappa}(X) = n$, X is called a manifold of log general type.

PROPOSITION 1.9 (Proposition 2.4 in [11]). Let X be a complex manifold with a smooth compactification \overline{X} . Let $f: \overline{X} \to \overline{Y}$ be a surjective holomorphic map, where \overline{Y} is a compact complex manifold. Then for a general point y in f(X), we have

$$\overline{\kappa}(X) \le \overline{\kappa}(X \cap f^{-1}(y)) + \dim \overline{Y}.$$

PROPOSITION 1.10 (Proposition 1.1 in [11]). Let X, Y be complex manifolds of dimension n such that $X \subset Y$. Then $\overline{\kappa}(X) \geq \overline{\kappa}(Y)$.

DEFINITION 1.11 (cf. [8, p. 117]). Let X be a complex manifold. Given a Borel subset Ξ in X, choose holomorphic maps $f_i: \Delta^n \to X$ where Δ^n is the unit polydisk and Borel subsets Ξ_i in Δ^n , such that $\Xi \subset \bigcup_i f_i(\Xi_i)$. Define

$$\mu_X(\Xi) = \inf \sum_i \int_{\Xi_i} V,$$

where the infimum is taken over all possible choices of f_i , Ξ_i , and V is the Poincaré volume form on Δ^n . We say X is measure hyperbolic if $\mu_X(\Xi) > 0$ for all non empty open subsets Ξ in X.

PROPOSITION 1.12 (Theorem (7.1.4) in [9]). If there exists a nondegenerate holomorphic map $f: \Delta^{n-1} \times \mathbb{C} \to X$, then X is not measure hyperbolic.

2. Main results

Throughout this section, the manifold $M = \mathbf{P}^2 - A(l)$, where A(l) is an algebraic curve with l $(l \ge 4)$ irreducible components.

PROPOSITION 2.1 (cf. Conjecture 4 in [9, p. 80]). If $\bar{\kappa}(M) = 2$, then M is in the case (a) of Theorem 1.5.

Proof. We shall prove that if M is in the case (b) of Theorem 1.5, then $\overline{\kappa}(M) \leq 1$. By blowing up in finite times, there is a smooth compactification of \overline{M} and f of Theorem 1.5 is extended to $\overline{f}:\overline{M}\to \mathbf{P}^1$ which is a surjective holomorphic map. For a general point y in \mathbf{P}^1 , $X\cap \overline{f}^{-1}(y)$ is an irreducible curve which is holomorphically isomorphic to \mathbf{C} or \mathbf{C}^* . By Proposition 1.9, $\overline{\kappa}(M) \leq 1$.

PROPOSITION 2.2. If M is in the case (a) of Theorem 1.5, then $\bar{\kappa}(M) = 2$.

Proof. By blowing up in finite times, there is a smooth compactification \overline{M} and $\overline{M}-M=C$ is a semi-stable curve. For the definition of semi-stable curve, see [12, p. 90]. By checking the tables 1 and 2 in [12, p. 90] and more pricisely, Theorem (2.7) and (3.15) in [12], in the case where \overline{M} is a rational surface, we see $\overline{\kappa}(M) \leq 1$ only when M is in the case (b) of Theorem 1.5. Therefore, the above proposition is proved.

By Corollary (7.2.12) in [9], we have the following proposition.

Proposition 2.3. If M is in the case (a) of Theorem 1.5, M is measure hyperbolic.

Proposition 2.4. If M is measure hyperbolic, M is in the case (a) of Theorem 1.5.

Proof. We shall prove that if M is in the case (b) of Theorem 1.5, then M is not mesaure hyperbolic. By blowing up in finite times, there is a smooth compactification \overline{M} and there is a primitive rational holomorphic function f of \mathbb{C} or \mathbb{C}^* -type on M. If f is of \mathbb{C} -type, we can take a neighborhood δ in f(M) such that $f^{-1}(y)$ is holomorphically isomorphic to \mathbb{C} , where $y \in \delta$. By well known Nishino's theorem, $f^{-1}(\delta)$ is biholomorphic to $\delta \times \mathbb{C}$. So there exists a nondegenerate holomorphic map $g: \Delta \times \mathbb{C} \to M$. By Proposition 1.12, M is not measure hyperbolic.

If f is of \mathbb{C}^* -type, there are two cases. The one is that f is a rational function of \mathbb{C}^* -type on \mathbb{P}^2 and A is the sum of level curves of f. The other is that f is a rational function of \mathbb{C} -type on \mathbb{P}^2 and except A_1 such as one of the irreducible components of A, A is level curves of f and A_1 is a curve of genus 0 of \mathbb{P}^2 such that f is of \mathbb{C}^* -type on $\mathbb{P}^2 - A$.

In the former case, we can take a neighborhood δ in f(M) such that $f^{-1}(y)$ is holomorphically isomorphic to \mathbb{C}^* for every $y \in \delta$. By Theorem 3 in [14], $f^{-1}(\delta)$ is biholomorphic to $\delta \times \mathbb{C}^*$. Since there exists a nondegenerate holomorphic map of $\delta \times \mathbb{C}$ to $\delta \times \mathbb{C}^*$, there exists a nondegenerate holomorphic map $h: \Delta \times \mathbb{C} \to M$. By Proposition 1.12, M is not measure hyperbolic.

In the latter case, it is easy to see that there is a neighborhood δ in A_1 such that every $f^{-1}(y)$ is holomorphically isomorphic mutually to \mathbb{C}^* for every $y \in \delta$. By the same reason of the former case, M is not measure hyperbolic.

From Propositions 2.1 through 2.4 and Remark on Theorem 4.4 in [2], we conclude the following

Theorem 2.5. For $M = \mathbf{P}^2 - A(l)$ $(l \ge 4)$ such that $S_M(\mathbf{P}^2)$ is a curve or empty set, the following notions coincide with each other:

- (1) M is hyperbolically imbedded modulo $S_M(\mathbf{P}^2)$ in \mathbf{P}^2 .
- (2) M is tautly imbedded modulo $S_M(\mathbf{P}^2)$ in \mathbf{P}^2 .
- (3) M is of log general type.
- (4) M is measure hyperbolic.

REFERENCES

- [1] Y. ADACHI, A generalization of the big Picard theorem, Kodai Math. J. 18 (1995), 408-424.
- [2] Y. ADACHI, On the relation between tautly imbedded space modulo an analytic subset S and hyperbolically imbedded space modulo S, Publ. RIMS, Kyoto Univ. 33 (1997), 385–392.
- [3] Y. Adachi, On a Kobayashi hyperbolic manifold N modulo a closed subset Δ_N and its applications, Kodai Math. J. **30** (2007), 131–139.
- [4] Y. ADACHI AND M. SUZUKI, On the family of holomorphic mappings into projective space with lacunary hypersurfaces, J. Math. Kyoto Univ. 30 (1990), 451–458.
- [5] Y. ADACHI AND M. SUZUKI, Degeneracy points of the Kobayashi pseudodistances on complex manifolds, Proc. sympos. pure math. 52, Amer. Math. Soc., Providence, RI, 1991, 41–51.
- [6] O. Fujita, Sur les familles d'ensemble analytiques, J. Math. Soc. Japan 16 (1964), 379-405.
- [7] M. GREEN, Some Picard theorems for holomorphic maps to algebraic varieties, Amer. J. Math. 97 (1975), 43-75.
- [8] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, 2nd ed., World Scientific, 2005.
- [9] S. Kobayashi, Hyperbolic complex spaces, Grundlehren der mathematishen Wissenschaften 318, Springer-Velag, Berlin, Heidelberg, 1998.
- [10] T. NISHINO, Le théoréme de Borel et le théoréme de Picard, C.R. 299 (1984), 667-668.
- [11] F. Sakai, Kodaira dimensions of complements of divisors, Complex analysis and algebraic geometry, Iwanami and Cambridge Univ. Press, 1977, 239–257.
- [12] F. Sakai, Semi-stable curves on algebraic surfaces and logarithmic pluricanonical maps, Math. Annalen, 254 (1980), 89–120.
- [13] M. Тароково, Sur les ensembles pseudoconcaves généraux, J. Math. Soc. Japan 17 (1965), 281–290
- [14] H. YAMAGUCHI, Famille holomorphe de surfaces de Riemann ouverts, qui est une variété de Stein, J. Math. Kyoto Univ. 16 (1976), 497–530.

Yukinobu Adachi 12-29 Kurakuen 2ban-cho Nishinomiya, Hyogo 662-0082 Japan

E-mail: fwjh5864@nifty.com