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SOME APPLICATIONS OF UNIVERSAL HOLOMORPHIC MOTIONS
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Abstract

For a closed subset E of the Riemann sphere, its Teichmüller space TðEÞ is a

universal parameter space for holomorphic motions of E over a simply connected

complex Banach manifold. In this paper, we study some new applications of this

universal property.

1. Introduction

Definition 1.1. Let V be a connected complex manifold with a basepoint

x0 and let E be a subset of the Riemann sphere ĈC. A holomorphic motion of E
over V is a map f : V � E ! ĈC that has the following three properties:

(a) fðx0; zÞ ¼ z for all z in E,
(b) the map fðx; �Þ : E ! ĈC is injective for each x in V , and
(c) the map fð�; zÞ : V ! ĈC is holomorphic for each z in E.

We say that V is the parameter space of the holomorphic motion f.

Definition 1.2. Let V and W be connected complex manifolds with
basepoints, and f be a basepoint preserving holomorphic map of W into V . If f
is a holomorphic motion of E over V its pullback by f is the holomorphic motion

f �ðfÞðx; zÞ ¼ fð f ðxÞ; zÞ Eðx; zÞ A W � Eð1:1Þ
of E over W .

Unless otherwise stated, we will assume that E is a closed subset of ĈC and
that 0; 1;y A E. Associated to each such set E in ĈC, there is a contractible
complex Banach manifold which we call the Teichmüller space of the closed set
E, denoted by TðEÞ. This was first studied by G. Lieb in his doctoral dis-
sertation (see [15]). We can also define a holomorphic motion
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CE : TðEÞ � E ! ĈC

of the closed set E over the parameter space TðEÞ. In [18] it was shown that
TðEÞ is a universal parameter space for holomorphic motions of the closed set E
over a simply connected complex Banach manifold. This universal property has
found several interesting applications to the study of holomorphic motions; we
refer the reader to the papers [10], [18], [19], and [20]. For another application
of holomorphic motions to complex dynamical systems, see [14]. In this paper,
we study some more applications of the universal property.

An important topic in the study of holomorphic motions is the question of
extensions.

Definition 1.3. If E is a proper subset of ÊE and f : V � E ! ĈC,
f̂f : V � ÊE ! ĈC are two maps, we say that f̂f extends f if f̂fðx; zÞ ¼ fðx; zÞ for all
ðx; zÞ in V � E.

If f : V � E ! ĈC is a holomorphic motion, a natural question is whether

there exists a holomorphic motion f̂f : V � ĈC ! ĈC that extends f. For V ¼ D
(the open unit disk), important results were obtained in [2] and in [23]. Later,
in his fundamental paper [22], Slodkowski showed that any holomorphic motion
of E over D can be extended to the whole sphere. Slodkowski’s theorem can-
not be generalized to higher dimensional parameter spaces. This was shown by
Hubbard with a two-dimensional Teichmüller space as a parameter space; we
refer to [4] for the details. That example crucially depends on the main theorem
in Hubbard’s thesis (on the nonexistence of holomorphic sections of universal
Teichmüller curve; see [12], and [9]). A detailed discussion is also given in [13].
In his paper [4], Douady discusses maximal holomorphic motions. For some
other examples of maximal holomorphic motions, see [7].

Our first application (in §4) is to give an alternative proof of Hubbard’s
example. The distinctive feature of our example is that it is a simple application
of universal holomorphic motions and a theorem of Earle ([6]), and avoids the
deep theorem in Hubbard’s thesis.

Theorem 1. Let E be the finite set f0; 1;y; z1; . . . ; zng, where zi 0 zj for
i0 j, and nb 2. Then, the universal holomorphic motion CE : TðEÞ � E ! ĈC
cannot be extended to a holomorphic motion of ĈC.

Remark 1.4. Theorem 8.1 in [10] gives an example of a holomorphic
motion of a proper subset E of ĈC over a contractible domain B in C2 that cannot
be extended to a holomorphic motion of ÊE (over B) where E is a proper subset
of ÊE. However, the set E in that example is an infinite set. Our example gives
a new proof of the fact that even for a finite set, Slodkowski’s theorem cannot be
extended to higher-dimensional parameter spaces.

Let E0 be any subset of ĈC, not necessarily closed; as usual, we assume that
0; 1;y A E0. Let E be the closure of E0. In [16], it was shown that a holo-
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morphic motion of E0 over the open unit disk can always be extended to E.
Our second application (in §5) generalizes this fact for holomorphic motions over
any complex Banach manifold. We prove the following theorem.

Theorem 2. Let f : V � E0 ! ĈC be a holomorphic motion where V is any
complex Banach manifold with a basepoint. There exists a holomorphic motion
f̂f : V � E ! ĈC such that f̂f extends f.

In an earlier version of this paper we proved Theorem 2 when V is simply
connected. We thank Cli¤ord J. Earle for suggesting that we should extend this
theorem to the non-simply connected case.

Our third application (in §7) is to study a holomorphic family of hyperbolic
dynamical systems (see §6 for the definition). We show that the corresponding
family of Julia sets moves holomorphically over the same simply connected
complex Banach manifold. Moreover, if we consider a basepoint in the simply
connected complex Banach manifold, the Kobayashi pseudometric between any
point and the basepoint controls the quasiconformal distance between the Julia
sets corresponding to this point and the basepoint.

Let V be a simply connected complex Banach manifold with a basepoint x0.
Let rV denote the Kobayashi pseudometric on V .

Theorem 3. Suppose Rðx; zÞ is a hyperbolic family of holomorphic dynami-
cal systems over V. Then for any x A V , the Julia set Jx is quasiconformally
equivalent to Jx0 by a quasiconformal map of ĈC whose dilatation does not exceed
expð2rV ðx; x0ÞÞ. Moreover, Jx depends holomorphically on x over V.

Remark 1.5. This theorem has its root in [16] and has also been studied
by others (see, for example, [4]). The purpose of Theorem 3 in this paper is to
consider a family defined over an infinite dimensional parameter space and to
show a direct application of universal holomorphic motions. In addition, by
using universal holomorphic motions, we give an estimate of the quasiconformal
distance in terms of the Kobayashi pseudometric rV on the parameter space.

Acknowledgement. We thank the referee for several valuable suggestions
that helped us to improve the paper. We also thank Cli¤ord J. Earle for his
helpful comments.

2. The Teichmüller space of E

2.1. Definition of TðEÞ. Recall that a homeomorphism of ĈC is called
normalized if it fixes the points 0, 1, and y.

The normalized quasiconformal self-mappings f and g of ĈC are said to be
E-equivalent if and only if f �1 � g is isotopic to the identity rel E. The
Teichmüller space TðEÞ is the set of all E-equivalence classes of normalized
quasiconformal self-mappings of ĈC.
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The basepoint of TðEÞ is the E-equivalence class of the identity map.
Let MðCÞ denote the open unit ball of the complex Banach space LyðCÞ.

Each m in MðCÞ is the Beltrami coe‰cient of a unique normalized quasi-
conformal homeomorphism wm of ĈC onto itself. The basepoint of MðCÞ is the
zero function.

We define the quotient map

PE : MðCÞ ! TðEÞ

by setting PEðmÞ equal to the E-equivalence class of wm, written as ½wm�E .
Clearly, PE maps the basepoint of MðCÞ to the basepoint of TðEÞ.

In his doctoral dissertation ([15]), G. Lieb proved that TðEÞ is a complex
Banach manifold such that the projection map PE from MðCÞ to TðEÞ is a
holomorphic split submersion. (This result is also proved in [10].)

The space TðEÞ is simply connected; for other properties of TðEÞ see [10]
and [18].

2.2. When E is finite. Let E be a finite set. Its complement Ec ¼ W is the
Riemann sphere with punctures at the points of E. There is a natural identifi-
cation of TðEÞ with the classical Teichmüller space TeichðWÞ which will be very
useful in our paper.

Recall that two quasiconformal mappings f and g with domain W belong to
the same Teichmüller class if and only if there is a conformal map h of f ðWÞ
onto gðWÞ such that the self-mapping g�1 � h � f of W is isotopic to the iden-
tity rel the boundary of W. (The isotopy condition means that g�1 � h � f ex-
tends to a homeomorphism of the closure of W onto itself that is isotopic to the
identity by an isotopy that fixes the boundary pointwise.) The Teichmüller space
TeichðWÞ is the set of Teichmüller classes of quasiconformal mappings with
domain W.

The Teichmüller class of f depends only on its Beltrami coe‰cient, which is
a function m in the open unit ball MðWÞ of the complex Banach space LyðWÞ.
The standard projection F of MðWÞ onto TeichðWÞ maps m to the Teichmüller
class of any quasiconformal map whose domain is W and whose Beltrami co-
e‰cient is m. The basepoints of MðWÞ and TeichðWÞ are 0 and Fð0Þ respectively.
It is well-known that TeichðWÞ is a complex manifold and that F : MðWÞ !
TeichðWÞ is a holomorphic split submersion. See [11] or [21] for basic results in
Teichmüller theory.

We define a map y from TðEÞ into TeichðWÞ by setting yðPEðmÞÞ equal to
the Teichmüller class of the restriction of wm to W. The map y can be easily
shown to be biholomorphic; see Example 3.1 in [18] for the details. This gives a
canonical identification of TðEÞ with the classical Teichmüller space TeichðWÞ.

3. Universal holomorphic motion of E

The universal holomorphic motion CE of E over TðEÞ is defined as follows:
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CEðPEðmÞ; zÞ ¼ wmðzÞ for m A MðCÞ and z A E:

The definition of PE in §2.1 implies that CE is well-defined. It is a holo-
morphic motion since PE is a holomorphic split submersion and m 7! wmðzÞ is a
holomorphic map from MðCÞ to ĈC for every fixed z in ĈC (by Theorem 11 in [1]).
This holomorphic motion is ‘‘universal’’ in the following sense:

Theorem 3.1. Let f : V � E ! ĈC be a holomorphic motion. If V is simply
connected, then there exists a unique basepoint preserving holomorphic map
f : V ! TðEÞ such that f �ðCEÞ ¼ f.

For a proof see Section 14 in [18].
The following result is an easy consequence of Theorem 3.1; see Section 17

in [18] for a proof.

Theorem 3.2. Let f : V � E ! ĈC be a holomorphic motion, where V is a
simply connected complex Banach manifold with basepoint x0. Then, for every
x A V , fðx; �Þ is the restriction to E of a quasiconformal self map of ĈC with
dilatation not exceeding expð2rV ðx0; xÞÞ, where rV is the Kobayashi pseudometric
on V.

(We are assuming that the hyperbolic metric has constant curvature �4.)

Remark 3.3. We consider the special case when E ¼ ĈC. The quotient
map PĈC : MðCÞ ! TðĈCÞ is bijective, and so we use it to identify TðĈCÞ
biholomorphically with MðCÞ. We have the universal holomorphic motion
CĈC : MðCÞ � ĈC ! ĈC as follows:

CĈCðm; zÞ ¼ wmðzÞ
for all z in ĈC.

4. Proof of theorem 1

Suppose E1, E2 are closed subsets of ĈC such that E1 HE2 and 0, 1, and y
are in E1. If m is in MðCÞ, then the E2-equivalence class of wm is contained in
the E1-equivalence class of wm. Therefore, there is a well-defined ‘forgetful map’
pE2;E1

from TðE2Þ to TðE1Þ such that PE1
¼ pE2;E1

� PE2
. It is easy to see that

this forgetful map is a basepoint preserving holomorphic split submersion. We
have the universal holomorphic motions CE1

: TðE1Þ � E1 ! ĈC and CE2
: TðE2Þ �

E2 ! ĈC. The following lemma and its easy corollary will be very useful in our
paper. They are proved in Section 13 in [18]. For the reader’s convenience, we
give the precise statements.

Lemma 4.1. Let V be a connected complex Banach manifold with basepoint
x0 and let F and G be basepoint preserving holomorphic maps from V into TðE1Þ
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and TðE2Þ, respectively. Then pE2;E1
� G ¼ F if and only if G �ðCE2

Þ extends
F �ðCE1

Þ.

Corollary 4.2. Let V be as above and let F and G be basepoint preserving
holomorphic maps from V to TðEÞ and MðCÞ, respectively. Then PE � G ¼ F if
and only if G �ðCĈCÞ extends F �ðCEÞ.

Theorem 1 in our paper is a remarkably simple application of the above
corollary. Let E ¼ f0; 1;y; z1; . . . ; zng, where zi 0 zj for i0 j and n is a
positive integerb 2. Consider the universal holomorphic motion

CE : TðEÞ � E ! ĈC:

By our discussion in §2.2, TðEÞ and the classical Teichmüller space TeichðĈCnEÞ
are canonically identified. Consider the identity map I : TðEÞ ! TðEÞ (which is
obviously a basepoint preserving holomorphic map). Let f : TðEÞ � E ! ĈC be
the holomorphic motion I �ðCEÞ (which is the same as CE). Suppose f extends

to a holomorphic motion f̂f : TðEÞ � ĈC ! ĈC. Then, by Theorem 3.1, and
Remark 3.3, there exists a basepoint preserving holomorphic map F : TðEÞ !
MðCÞ such that F �ðCĈCÞ ¼ f̂f. Since f̂f extends f, it follows by Corollary 4.2 that
PE � F ¼ I . That means, the map PE has a (global) holomorphic section F .
Since TðEÞ and TeichðĈCnEÞ are naturally identified, this is impossible by Earle’s
theorem in [6]. r

5. Proof of theorem 2

Our method uses a construction that was central in proving Theorem 3.1
(see [18]). To make our paper self-contained, we give the outline of that
construction.

In this section E0 is a subset of ĈC (not necessarily closed) such that 0, 1, y
belong to E0. Let E denote the closure of E0.

We begin by noting the following fact, which is Lemma 14.1 in [18].

Lemma 5.1. If f is a holomorphic motion of E0 over V , then, for each x in
V , the map fðx; �Þ from E0 into ĈC is continuous.

Let fEng be an increasing sequence of finite subsets of ĈC such that 0, 1, and

y belong to each En and 6
n
En is dense in E0. For each nb 1, let Sn ¼ ĈCnEn.

Recall from §2.2, that TðEnÞ are TeichðSnÞ are naturally identified. Let 0n
denote the basepoint of TeichðSnÞ, and let dn be the Teichmüller metric on
TeichðSnÞ (see [11] or [21] for the definition of Teichmüller metric).

Let S ¼
‘

n Sn be the disjoint union of the Sn. The product Teichmüller
space TeichðSÞ is the set of all sequences t ¼ ftng such that tn A TeichðSnÞ for each
n and

supfdnð0n; tnÞ : nb 1g < y:
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The basepoint of TeichðSÞ is the sequence 0 ¼ f0ng whose nth term is the
basepoint of TeichðSnÞ. We know that TeichðSÞ is a complex Banach manifold.
The following fact will be crucial in our discussion (see Corollary 7.6 in [10] or
Corollary 5.5 in [18]).

Lemma 5.2. Let V be a connected complex Banach manifold and, for each
nb 1, let fn be a holomorphic map of V into TeichðSnÞ. For each v in V , let f ðvÞ
be the sequence f fnðvÞg. If f ðv0Þ belongs to TeichðSÞ for some v0 in V , then f ðvÞ
also belongs to TeichðSÞ for all v in V , and the map v 7! f ðvÞ from V to TeichðSÞ
is holomorphic.

For other properties of TeichðSÞ the interested reader is referred to [8], [10],
and [18].

For each nb 1, let pn be the forgetful map pE;En
from TðEÞ to TeichðSnÞ

and let pn be the forgetful map pEnþ1;En
from TeichðSnþ1Þ to TeichðSnÞ. (The map

pn is the usual puncture-forgetting map in classical Teichmüller theory; see [21]).
It is clear that

pn ¼ pn � pnþ1 for all nb 1:ð5:1Þ

Each forgetful map pn preserves basepoints. Therefore, by Lemma 5.2, the
sequence fpnðtÞg belongs to TeichðSÞ for each t in TðEÞ and the map p : TðEÞ !
TeichðSÞ defined by setting

pðtÞ ¼ ðp1ðtÞ; . . . ; pnðtÞ; . . .Þ for all t A TðEÞ

is holomorphic. Equation (5.1) implies that p maps TðEÞ into the closed subset

T 0 ¼ fx ¼ ðx1; x2; . . .Þ A TeichðSÞ : pnðxnþ1Þ ¼ xn for all nb 1g

of TeichðSÞ. It is proved in §8 in [18] that p maps TðEÞ homeomorphically onto
T 0.

We are now ready to prove Theorem 2.

Step 1. Let f : V � E0 ! ĈC be a holomorphic motion, where V is a simply
connected complex Banach manifold with a basepoint. For each nb 1, the
restriction fn of f to V � En is a holomorphic motion of the finite set En. By
Theorem 3.1, there exists a basepoint preserving holomorphic map fn : V !
TðEnÞ such that f �

n ðCEn
Þ ¼ fn. Recall that each TðEnÞ can be identified with the

classical Teichmüller space TeichðSnÞ. By Lemma 5.2, the formula

F̂F ðxÞ ¼ ð f1ðxÞ; . . . ; fnðxÞ; . . .Þ; x A V ;

defines a basepoint preserving holomorphic map F̂F : V ! TeichðSÞ.
Clearly, each fnþ1 extends fn, for each nb 1. Hence, by Lemma 4.1, we

have pn � fnþ1 ¼ fn for all nb 1 (here, pn : TeichðSnþ1Þ ! TeichðSnÞ is the
puncture-forgetting map). Therefore, F̂F maps V into T 0. Since p maps TðEÞ
homeomorphically onto T 0, we get a unique map F : V ! TðEÞ such that F̂F ¼
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p � F . This map F is clearly basepoint preserving. By Theorem 7.3 in [18], it is
holomorphic.

Finally, define f̂f ¼ F �ðCEÞ. Since pn � F ¼ fn for each nb 1, it follows by
Lemma 4.1 that f̂f extends fn for each nb 1. Therefore, f̂f ¼ f on V �6y

n¼1
En.

Since 6
n
En is dense in E0 it follows by Lemma 5.1 that f̂f ¼ f on V � E0, which

means f̂f extends f.

Step 2. Now suppose V is any complex Banach manifold. Choose a
holomorphic universal covering h : U ! V such that hðt0Þ ¼ x0 where x0 is the
basepoint of V and t0 is a basepoint of U .

Consider the holomorphic motion c :¼ h�ðfÞ of E0 over U . Since U is
simply connected, by Step 1, there exists a holomorphic motion ~cc : U � E ! ĈC
that extends c, i.e.

~ccðt; zÞ ¼ cðt; zÞ ¼ fðhðtÞ; zÞð5:2Þ
for all t in U and z in E0.

By Lemma 5.1, the map ~ccðt; �Þ, from E to ĈC is continuous. By formula
(5.2), this map depends only on hðtÞ, since E0 is dense in E. Hence there is a
well-defined map ~ff : V � E ! ĈC such that

~ffðhðtÞ; zÞ ¼ ~ccðt; zÞ
for all t in U and z in E. We claim that ~ff is the desired extension of f.

Let ðx; zÞ A V � E0. Then, ~ffðx; zÞ ¼ ~ccðt; zÞ, where hðtÞ ¼ x and z A E0.
And, ~ccðt; zÞ ¼ cðt; zÞ ¼ fðhðtÞ; zÞ ¼ fðx; zÞ. Hence, ~ff extends f.

Also, for each x in V , the map ~ffðx; �Þ : E ! ĈC is injective, because
~ccðt; �Þ : E ! ĈC is injective.

We have hðt0Þ ¼ x0 where x0 is the basepoint of V , and t0 is a basepoint of
U . Then, ~ffðx0; zÞ ¼ ~ccðt0; zÞ ¼ z for all z in E.

Finally, for each z in E, t in U , and x in V , where hðtÞ ¼ x, set
~cczðtÞ ¼ ~ccðt; zÞ and ~ffzðxÞ ¼ ~ffðx; zÞ. Fix any z in E. Since ~cc is a holomorphic

motion, the map ~ccz : U ! ĈC is holomorphic. Since ~ccz ¼ ~ffz � h and h is locally
biholomorphic, it follows that ~ffz : V ! ĈC is holomorphic.

Hence, ~ff : V � E ! ĈC is a holomorphic motion that extends f. r

6. Holomorphic family of hyperbolic holomorphic dynamical systems

Suppose W and W 0 are simply connected sets in the Riemann sphere ĈC. We
assume either (1) W and W 0 are homeomorphic to discs with W relatively compact
in W 0, i.e., WHW 0 or (2) W ¼ W 0 is the whole Riemann sphere. Consider
RðzÞ : W ! W 0 a surjective holomorphic mapping, proper of degree d. In the first
case, R is a polynomial-like map defined in Douady-Hubbard’s paper [5]. In the
other case, R is a rational map. Anyhow we call R a holomorphic dynamical
system on W since in both cases, we can consider iterations of R and study the
dynamical property of R. We will be only interested in the case db 2, and
assume this in the rest of the paper.
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A point z A W is called a Fatou point if either RnðzÞ B W for some integer
nb 1 or there is a neighborhood U HW about z such that RnðUÞJW for all
nb 0 and fRnjUg is a normal family. All Fatou points form an open set
F . This set is called the Fatou set of R. The set J ¼ WnF is called the Julia set
of R. The Julia set J is a compact subset of W. (For some properties of the
Julia set, the reader may refer to [3, 17, 5].)

Since db 2, J is a perfect set (refer to [3, Chapter 3, Theorem 1.8] and [5,
Chapter 1, Theorem 1]). Therefore, it consists of infinitely many points.

A point z A W is called a periodic point of period nb 1 if RiðzÞ0 z for
0 < i < n but RnðzÞ ¼ z. In particular, if the period is one then we call z a fixed
point.

For a periodic point z of period n, let l ¼ ðRnÞ0ðzÞ. The number l is called
the multiplier of R at z. According to the multiplier of R at a periodic point z,
we can classify z into the following classes:

1) attractive if jlj < 1;
2) repelling if jlj > 1;
3) rational neutral if lk ¼ 1 for some k > 0;
4) irrational neutral if lk 0 1 for all k > 0 and jlj ¼ 1.
An attractive periodic point z is called super-attractive if l ¼ 0.
A holomorphic dynamical system R is called hyperbolic if there are constants

C > 0 and m > 1 such that

jðRnÞ0ðzÞjbCmn; z A J; nb 1:

An equivalent statement is that R is hyperbolic if and only if all periodic points
of R are either repelling or attractive (see [3], [17]).

Let E0 be the set of all repelling periodic points of R.

Lemma 6.1. The closure of E0 is J, i.e., E0 ¼ J.

For a proof see [3] or [17]. This also implies that E0 must be an infinite set.
We consider a family of holomorphic dynamical systems defined on a fixed

simply connected domain W. Let V be a simply connected complex Banach
manifold with a basepoint x0. Let Rðx; zÞ be a map from V �W to ĈC. We say
that it is a family of holomorphic dynamical systems over V if

i) Rðx; zÞ : V �W 7! ĈC is holomorphic;

ii) for each x A V , Rx ¼ Rðx; �Þ : W ! ĈC is a holomorphic dynamical system.
We call Rðx; zÞ a family of hyperbolic holomorphic dynamical systems if in

addition to (i) and (ii), we also have,
iii) for each x A V , Rx is hyperbolic.

7. Proof of theorem 3

For each x in V , Rx ¼ Rðx; �Þ is a holomorphic dynamical system. Suppose
Ex;0 is the set of all repelling periodic points of Rx for x in V . Consider a
periodic point zðxÞ A Ex;0 of period n and the equation,
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Fðy; zÞ ¼ Rn
y ðzÞ � z ¼ 0; y A V ; and z A W:ð7:1Þ

Then ðx; zðxÞÞ is a solution of Equation (7.1) and, furthermore, R j
xðzðxÞÞ�

zðxÞ0 0 for all 0 < j < n.
Since the multiplier ðRn

xÞ
0ðzðxÞÞ has absolute value greater than one, we have

qF

qz
ðx; zðxÞÞ0 0:

By the implicit function theorem and the continuity of ðqF=qzÞðy; zÞ, there is a
neighborhood UðxÞ about x such that for each y A UðxÞ, Equation (7.1) has a
unique solution zðyÞ with the initial value condition zðxÞ. Furthermore, since
ðqF=qzÞðy; zÞ is jointly holomorphic on ðy; zÞ, zðyÞ depends holomorphically
on y. Since R j

xðzðxÞÞ � zðxÞ0 0 for all 0 < j < n, we can choose UðxÞ so that
R j

yðzðyÞÞ � zðyÞ0 0 for all 0 < j < n. Therefore, zðyÞ, y A UðxÞ, is a periodic
point of Ry of period n.

Recall that x0 is the basepoint of V . We now consider E0 ¼ Ex0;0 the set of
all repelling periodic points of Rx0 . Then E0 is a subset of W. Since E0 contains
infinitely many points, we can assume, without loss of generality, that E0 contains
0, 1, and y. We would like to construct a holomorphic motion of E0 over V .

For each periodic point z A E0 of period nb 1 of Rx0 , consider the solution
zðyÞ of Equation (7.1) on Uðx0Þ. Then zðx0Þ ¼ z. Since V is simply connected,
by definition, it is also path connected. For each x in V , consider a path cðtÞ
from x0 to x, then the graph W of cðtÞ, 0a ta 1, is a compact subset in V .
The neighborhood fUðxÞ; x A Wg is an open cover of W . So it has a subcover
consisting of a finite number of neighborhoods fUðxiÞgki¼0 such that (a) x0 is our
basepoint and xk ¼ x and (b) xiþ1 A UðxiÞ. In each UðxiÞ, we have a solution
ziðyÞ of Equation (7.1). By uniqueness, ziðyÞ ¼ ziþ1ðyÞ for y A UðxiÞVUðxiþ1Þ.
Therefore, we have a unique solution of zðyÞ on 6k

i¼0
UðxiÞ depending on y

holomorphically. Thus we can holomorphically extend the solution zðyÞ in Uðx0Þ
to any point in V . Since V is simply connected, this extension does not depend
on the choice of a path. Furthermore, zðyÞ has the same period n as we proved
in the second paragraph.

Now we define a map f : V � E0 7! ĈC as fðx; zÞ ¼ zðxÞ. Then
(a) fðx0; zÞ ¼ z Ez A E0;
(b) for each fixed z A E0, fð�; zÞ : V 7! ĈC is a holomorphic map on V .

Now we will check ðcÞ that for each fixed x in V , fðx; �Þ : E0 7! Ex;0 H ĈC is
injective. Let cðtÞ be a path from x0 to x, then the graph W of cðtÞ, 0a ta 1,
is a compact subset in V . Let fUðxiÞgki¼0 be the finite subcover of W which we
got in the previous paragraph.

Suppose z0w are two points in E0. If z and w have di¤erent periods, then
zðxÞ0wðxÞ since they must have di¤erent periods. So let us assume z and w
have the same period n. Then zðxÞ and wðxÞ have the same period n. Both of
them are solutions of Equation (7.1) for the same n. Then zðcðtÞÞ and wðcðtÞÞ
are two paths in ĈC. We now have a similar argument as above but reversely as
follows: If zðxÞ ¼ wðxÞ, since both zðyÞ and wðyÞ are solutions of Equation (7.1)
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on UðxkÞ, by the uniqueness, zðxk�1Þ ¼ wðxk�1Þ. Inductively, we get z ¼ zðx0Þ ¼
wðx0Þ ¼ w. We get a contradiction. Thus we have shown that zðxÞ0wðxÞ and
so fðx; �Þ is injective. Therefore,

fðx; zÞ ¼ zðxÞ : V � E0 7! ĈC

is a holomorphic motion. By Theorem 2, fðx; zÞ can be extended to a holo-
morphic motion

f̂fðx; zÞ ¼ zðxÞ : V � E0 7! ĈC:

The closure of Ex;0 is the Julia set Jx of Rx. Since fðx; zÞ is continuous, for
each x A V (see Lemma 5.1), f̂fðx;E0Þ ¼ fðx;E0Þ ¼ Ex;0 ¼ Jx is the Julia set of
Rx. We conclude that Jx depends holomorphically on x over V .

By Theorem 3.2, for each x A V , f̂fðx; �Þ is a restriction of a quasiconformal
self-map of ĈC with dilatation less than or equal to expð2rV ðx; x0ÞÞ. This
completes our proof. r
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