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ON THE UNIQUENESS PROBLEMS OF ENTIRE FUNCTIONS

AND THEIR LINEAR DIFFERENTIAL POLYNOMIALS*

Qi Han and Hong-Xun Yi

Abstract

The uniqueness problems on transcendental meromorphic or entire functions

sharing at least two values with their derivatives or linear di¤erential polynomials

have been studied and many results on this topic have been obtained. In this paper, we

study a transcendental entire function f ðzÞ that shares a non-zero polynomial aðzÞ with

f 0ðzÞ, together with its linear di¤erential polynomials of the form: L½ f � ¼
a2ðzÞ f 00ðzÞ þ a3ðzÞ f 000ðzÞ þ � � � þ amðzÞ f ðmÞðzÞ ðamðzÞD 0Þ, where the coe‰cients akðzÞ
ðk ¼ 2; 3; . . . ;mÞ are rational functions.

1. Introduction and main result

In this paper, a meromorphic function will always mean meromorphic in the
complex plane C. We adopt the standard notations in the Nevanlinna theory of
value distribution of meromorphic functions such as the characteristic function
Tðr; f Þ, the proximity function mðr; f Þ and the counting function Nðr; f Þ ðNðr; f ÞÞ
of poles. For any non-constant meromorphic function f , we denote by Sðr; f Þ
any quantity satisfying Sðr; f Þ ¼ oðTðr; f ÞÞ, possibly outside a set of finite linear
measure in R. Furthermore, the exceptional set is not necessarily the same at
each occurrence.

Let f be a non-constant meromorphic function on C, and let a A Mf ðCÞ be
any meromorphic function whose characteristic function satisfies Tðr; aÞ ¼ Sðr; f Þ.
Then, we call a a small function of f and Mf ðCÞ the set of small functions of f
over C. Obviously, Mf ðCÞ is a field and contains C.

Let f be a non-constant meromorphic function on C, let a A Mf ðCÞ be a
small function of f , and let ma

f ðzÞ denote the multiplicity of f � a ¼ 0 at z. We
define the a-valued divisor of f by

Ef ðaÞ ¼ fðma
f ðzÞ; zÞ A N� C j z A Cg;
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and the preimage of a under f by

Ef ðaÞ ¼ f �1ðaÞ ¼ fz A C j ma
f ðzÞ > 0g:

Let g be another non-constant meromorphic function on C. We say that f
and g share a CM (resp., IM) whenever Ef ðaÞ ¼ EgðaÞ (resp., Ef ðaÞ ¼ EgðaÞ),
which means counting (resp., ignoring) multiplicities. Also, we say that f and g
share the value y CM (resp., IM) whenever 1=f and 1=g share the value 0 CM
(resp., IM).

It is well-known that a pair of non-constant meromorphic functions f and g
would be identically equal to each other if f and g share five distinct values IM.
That is the famous Nevanlinna’s Five-value Theorem. Also, the Nevanlinna’s
Four-value Theorem states that if a pair of non-constant meromorphic functions
f and g share four distinct values CM, then f is a bilinear transformation of g.
The condition that ‘‘ f and g share four distinct values CM’’ has been weakened
to ‘‘ f and g share two distinct values CM and other two distinct values IM’’ by
G. Gundersen, i.e., ‘‘2CMþ 2IM ¼ 4CM’’ holds.

We refer the reader to [10] and [21] for those foregoing notations and results.
If we focus on the value-sharing problems of f , a non-constant meromor-

phic function, and its derivatives or its linear di¤erential polynomials, then the
number of the shared values could be reduced. For example, if f shares two
finite, distinct values CM with f ðkÞ ðk A NÞ, then f 1 f ðkÞ (see [7], [9] and [18]);

if f shares three finite, distinct values IM with P½ f � :¼ b0 f þ b1 f
0 þ � � � þ bn f

ðnÞ

ðbn 0 0Þ, then f 1P½ f � (see [8], [15] and [19]), where bl are constants for l ¼
0; 1; . . . ; n. If f is entire and shares two finite, distinct values with its linear
di¤erential polynomials of similar forms to P½ f � but with small function coef-
ficients, say, bl A Mf ðCÞ ðl ¼ 0; 1; . . . ; nÞ with bn 2 0, many results have been
obtained (see [1], [14] and [16]).

It were Jank-Mues-Volkmann who first studied the problem of sharing only
one finite, non-zero value between an entire function f and its derivatives. As a
matter of fact, in 1986, they proved the following theorem in [12].

Theorem A. Let f be a non-constant entire function. If f and f 0 share a
finite, non-zero value a A C IM, and f 00 ¼ a whenever f ¼ a, then f 1 f 0.

In fact, from the hypothesis of Theorem A, it could be easily seen that the
value a is shared by f and f 0 CM.

In 2001, Li-Yang obtained the following result in [17].

Theorem B. Let f be a non-constant entire function, let a A C be a finite,
non-zero value, and let kðb 2Þ be a positive integer. If f , f 0 and f ðkÞ share the
value a CM, then f assumes the form

f ðzÞ ¼ cebz þ aðb� 1Þ
b

;

where b, c are two non-zero constants and b satisfies bk�1 ¼ 1.
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In [2] and [3], Chang-Fang generalized Theorems A and B. In e¤ect, their
results state that if we replace the value a A Cnf0g in Theorem A with any ele-
ment a A Mf ðCÞ satisfying aD a 0 and the value a A Cnf0g in Theorem B with any
element a A Mf ðCÞnC, and retain all the other assumptions in Theorems A and B,
respectively, then f 1 f 0. However, the methods of their proofs were similar to
those original ones in [12] and [17], respectively.

In this paper, we investigate the uniqueness problem of a transcendental
entire function f , its first derivative f 0 and its linear di¤erential polynomials of a
certain form. In fact, by employing a di¤erent method from those of Theorems
A or B but more or less inspired by that of Theorem B, we obtain the following
result.

Theorem 1. Let f be a transcendental entire function, and let

L½ f � :¼ a2ðzÞ f 00ðzÞ þ a3ðzÞ f 000ðzÞ þ � � � þ amðzÞ f ðmÞðzÞ ðamðzÞD 0Þ
be a linear di¤erential polynomial in f with rational coe‰cients akðzÞ ðk ¼ 2;
3; . . . ;mÞ. If f and f 0 share a non-zero polynomial a of degree p CM, and
L½ f � ¼ a whenever f ¼ a, then f assumes the form

f ðzÞ ¼ cebz þ ðb� 1ÞFðzÞ;
where b, c are two non-zero constants and FðzÞ is defined as

FðzÞ :¼
Xpþ1

j¼1

að j�1ÞðzÞ
b j

:

In particular, FðzÞ satisfies the equation

CðzÞ1 aðzÞ � ðb� 1ÞL½F�
aðzÞ � ðb� 1ÞFðzÞ ;

where CðzÞ is defined as CðzÞ :¼
Pm

k¼2 akðzÞbk.

Remark 1. Obviously, Theorem 1 generalizes Theorems A and B, since f ðkÞ

ðk A N; kb 2Þ is a special form of L½ f � and any non-zero constant is a poly-
nomial of degree 0. Also, the assumptions that ‘‘ f , f 0 share a CM’’ and
‘‘L½ f � ¼ a whenever f ¼ a’’ are weaker than the assumption that ‘‘ f , f 0 and L½ f �
share a CM’’. Furthermore, it does not seem feasible to apply the methods in
[12] or [17] directly to the assumptions of Theorem 1 to get its conclusion.

Remark 2. Let f be a non-constant meromorphic function on C, and let
n0; n1; . . . ; nk be k þ 1 non-negative integers. We call

M½ f � :¼ f n0ð f 0Þn1 � � � ð f ðkÞÞnk

a monomial in f of degree gM :¼ n0 þ n1 þ � � � þ nk. Now, let M1½ f �;M2½ f �; . . . ;
Ml ½ f � be l monomials in f of degree gMj

ð j ¼ 1; 2; . . . ; lÞ, respectively, and let
b1; b2; . . . ; bl be l elements in Mf ðCÞ. We call
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M �½ f � :¼ b1M1½ f � þ b2M2½ f � þ � � � þ blMl ½ f �

a di¤erential polynomial in f of total degree gM � :¼ maxfgM1
; gM2

; . . . ; gMl
g.

In particular, M �½ f � is called linear if gM � ¼ 1 (see [6], [10] or [21]).

2. Some lemmas

Lemma 1 (see [5] and [6]). Let f be a non-constant meromorphic function,
and let Q�½ f � and Q½ f � be two di¤erential polynomials in f with arbitrary mer-
omorphic coe‰cients q�

1 ; q
�
2 ; . . . ; q

�
s and q1; q2; . . . ; qt, respectively. Furthermore,

let Pð f Þ be a non-constant polynomial of f of degree p whose coe‰cients are small
functions of f . If the total degree gQ of Q½ f � is at most p, then from the following
equation

Pð f ÞQ�½ f �1Q½ f �;

we have

mðr;Q�½ f �Þa
Xs
u¼1

mðr; q�
u Þ þ

Xt

v¼1

mðr; qvÞ þ Sðr; f Þ:

Lemma 2 (see [13, p.p. 58, Remark 1]). Let f be a solution of the following
homogeneous di¤erential equation

anðzÞ f ðnÞðzÞ þ an�1ðzÞ f ðn�1ÞðzÞ þ � � � þ a1ðzÞ f 0ðzÞ þ a0ðzÞ f ðzÞ ¼ 0;

where the coe‰cients a0ðzÞ; . . . ; anðzÞ are polynomials and are not all identically
equal to zero. Then, f is an entire function of finite order.

The order of a meromorphic function, say, f , is defined as sð f Þ :¼

lim supr!þy
log Tðr; f Þ

log r
. Then, the well-known Chuang’s inequality (see [4]) and

the lemma of logarithmic derivative (see [10, p.p. 34–42]) yield sð f Þ ¼ sð f ðkÞÞ for
all positive integers k A N.

Lemma 3. Let PðzÞ and QðzÞ be two polynomials with PðzÞD 0 and QðzÞ A
C½z�nC. Then, every entire solution FðzÞ of the following di¤erential equation

F 0ðzÞ � eQðzÞF ðzÞ ¼ PðzÞ
has infinite order.

The proof of Lemma 3 will be given in the next part since it is relatively long
and of interest in itself.
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Lemma 4 (see [20] or [21]). Let f be a non-constant meromorphic function,
and let Rð f Þ ¼

Pm
s¼0 as f

s=
Pn

t¼0 bt f
t be an irreducible rational function in f with

small function coe‰cients fasgms¼0 and fbtgnt¼0 ðam � bn D 0Þ. Then,

Tðr;Rð f ÞÞ ¼ maxfm; ngTðr; f Þ þ Sðr; f Þ:

3. Proof of Lemma 3

On the contrary, we assume that there exists some entire solution F ðzÞ of the
following di¤erential equation

F 0ðzÞ � eQðzÞF ðzÞ ¼ PðzÞð3:1Þ
with finite order, say, sb 0. The classical Wiman-Valiron estimate (see [11],
also see [13] for an analogous form) states that, for the transcendental entire
function F ðzÞ, and for any positive real number e with 0 < e < 1=8, if we let z
with jzj ¼ r be such that the following inequality

jFðzÞj > Mðr;FÞðnðr;FÞÞ�1=8þeð3:2Þ

holds, then there exists a set EHRð1;yÞ with finite logarithmic measure such
that the following estimate

F ðkÞðzÞ
F ðzÞ ¼ nðr;F Þ

z

� �k
ð1þOðnðr;FÞ�1=8þeÞÞð3:3Þ

holds for all k A N and all r B EUR½0; 1�, where Mðr;F Þ denotes the maximal
module of FðzÞ at jzj ¼ r. As to the term nðr;F Þ, called the central index of FðzÞ,
is defined as nðr;F Þ :¼ maxnb0fn j janjrn ¼ mðr;F Þg with the maximum term of

FðzÞ defined as mðr;FÞ :¼ maxnb0fjanjrng if the Taylor expansion of F ðzÞ is
FðzÞ ¼

Py
n¼0 anz

n with center 0 and radius r. Furthermore, we have s ¼

lim supr!þy
logþ nðr;F Þ

log r
with logþ x :¼ maxflog x; 0g for xb 0.

Suppose that the degree of PðzÞ is l. Then, di¤erentiating both sides of Eq.
(3.1) l þ 1 times yields the following homogeneous di¤erential equation

F ðlþ2ÞðzÞ � eQðzÞðF ðlþ1ÞðzÞ þQlðzÞF ðlÞðzÞ þ � � � þQ0ðzÞF ðzÞÞ ¼ 0;ð3:4Þ

where the coe‰cients QjðzÞ ð j ¼ 0; 1; . . . ; lÞ are polynomials written in terms of
QðzÞ, its derivatives and their combinations.

Let fzngyn¼1 be a sequence of complex numbers with jznj ! y as n ! y
such that it satisfies Eq. (3.2) and Eq. (3.3) simultaneously, and let QðzÞ be of the
form QðzÞ ¼ qmz

m þ qm�1z
m�1 þ � � � þ q0 with qm 0 0. Now, suppose that there

exists a subsequence fznkg
y
k¼1 of fzngyn¼1 such that

jeQðznk Þj@ expf<ðqmzmnk Þð1þ oð1ÞÞgð3:5Þ

holds, and such that <ðqmzmnk Þ > 0 holds for su‰ciently large k’s. Substituting
Eq. (3.3) and Eq. (3.5) into Eq. (3.4) written in the following form
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F ðlþ2ÞðzÞ
FðzÞ � eQðzÞ F ðlþ1ÞðzÞ

F ðzÞ þQlðzÞ
F ðlÞðzÞ
F ðzÞ þ � � � þQ0ðzÞ

� �
¼ 0ð3:6Þ

yields a contradiction since we assume that FðzÞ has finite order.
On the other hand, if there exists no such subsequence fznkg

y
k¼1 of fzngyn¼1

for which Eq. (3.5) holds could be found with <ðqmzmnk Þ > 0, then we should
have either <ðqmzmnk Þ < 0 or <ðqmzmnk Þ ¼ 0 for an infinite number of points from

fzngyn¼1. If <ðqmzmnk Þ < 0 holds for an infinite number of k’s with k ! y, then

substituting Eq. (3.3) and Eq. (3.5) into Eq. (3.6) yields a contradiction again.
Finally, if <ðqmzmnk Þ ¼ 0 holds for all subsequences fznkg

y
k¼1 of fzngyn¼1, then

we would consider the next term <ðqm�1z
m�1
nk

Þ instead. If <ðqm�1z
m�1
nk

Þ ¼ 0
holds for all subsequences fznkg

y
k¼1 of fzngyn¼1 again, then we would repeat the

argument to yet another lower term of QðzÞ and so on and so forth. We could
eventually derive a contradiction by repeating the argument, which completes the
proof. r

4. Proof of Theorem 1

We now define the function a to be

a :¼ ða� a 0ÞðL½ f � � L½a�Þ � ða� L½a�Þð f 0 � a 0Þ
f � a

:ð4:1Þ

By the lemma of logarithmic derivative, we have mðr; aÞ ¼ Sðr; f Þ. It is not
di‰cult to see that the poles of a arise from the zeros of a� a 0, since f and f 0

share a CM, and the poles of ak ðk ¼ 2; 3; . . . ;mÞ. Since f is transcendental, we
get

Tðr; aÞ ¼ mðr; aÞ þOðlog rÞ ¼ Sðr; f Þ:ð4:2Þ

We now distinguish the following two cases.

Case (i). a is rational.
Write a in the form aðzÞ ¼ pðzÞ=qðzÞ, where pðzÞ and qðzÞ are two poly-

nomials with no common factors. It is not di‰cult to see that f satisfies a linear
di¤erential equation with polynomial coe‰cients by Eq. (4.1), and hence has finite
order by the conclusion of Lemma 2 and the fact that sð f Þ ¼ sð f ðkÞÞ ðk A NÞ.

Since f and f 0 share a CM, we may suppose that

f 0ðzÞ � aðzÞ
f ðzÞ � aðzÞ ¼ eQðzÞ;ð4:3Þ

where QðzÞ is an entire function. Rewrite Eq. (4.3) as

ð f 0ðzÞ � a 0ðzÞÞ � ð f ðzÞ � aðzÞÞeQðzÞ ¼ aðzÞ � a 0ðzÞ:
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We now apply the conclusion of Lemma 3 to the above equation to derive
that QðzÞ is a constant. Thus, there exists a constant b A Cnf0g such that

f 0ðzÞ � aðzÞ
f ðzÞ � aðzÞ ¼ b:

Solving the above non-homogeneous linear di¤erential equation yields

f ðzÞ ¼ cebz þ ðb� 1ÞFðzÞ;ð4:4Þ
where cð0 0Þ is a constant and FðzÞ is defined as FðzÞ :¼

Ppþ1
j¼1

að j�1ÞðzÞ
b j

. So,

Tðr; f Þ ¼ Tðr; ebzÞ þ Sðr; f Þ;ð4:5Þ
f ðkÞðzÞ ¼ cbkebz þ ðb� 1ÞFðkÞðzÞ ðkb 1Þ;

and

L½ f ðzÞ� ¼ cebzCðzÞ þ ðb� 1ÞL½FðzÞ�;ð4:6Þ
where CðzÞ is defined as CðzÞ :¼

Pm
k¼2 akðzÞbk.

Since ebz has two Picard values 0 and y, noting Eq. (4.4) and Eq. (4.5), we
see that f has two Picard ‘‘small functions’’ ðb� 1ÞF and y, i.e.,

Nðr; f Þ ¼ Sðr; f Þ; N r;
1

f � ðb� 1ÞF

� �
¼ Sðr; f Þ:

Obviously, ðb� 1ÞFðzÞD aðzÞ; otherwise, we would have �1 ¼ 0, a con-

tradiction. We now define the function f � to be f � :¼ f � a

f � ðb� 1ÞF . Hence,

Tðr; f Þ ¼ Tðr; f �Þ þ Sðr; f Þ;ð4:7Þ
and

N r;
1

f � a

� �
¼ N r;

1

f �

� �
þ Sðr; f Þ:ð4:8Þ

Furthermore, Nðr; f �Þ ¼ N r;
1

f � ðb� 1ÞF

� �
¼ Sðr; f Þ and N r;

1

f � � 1

� �
¼

Nðr; f Þ þOðlog rÞ ¼ Sðr; f Þ. By Eq. (4.7), we also have Sðr; f Þ ¼ Sðr; f �Þ.
We now apply the Second Main Theorem to f � with 0, 1 and y to conclude

Tðr; f �Þ ¼ N r;
1

f �

� �
þ Sðr; f �Þ:

Hence, combining the above equation with Eq. (4.7) and Eq. (4.8) yields

Tðr; f Þ ¼ N r;
1

f � a

� �
þ Sðr; f Þ:ð4:9Þ

From Eq. (4.9), we see that f � a has infinitely many zeros. Take za to be
a zero of f � a. Since L½ f � ¼ a whenever f ¼ a, from Eq. (4.4) and Eq. (4.6),
we derive
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aðzaÞ ¼ cebza þ ðb� 1ÞFðzaÞ;
aðzaÞ ¼ cebzaCðzaÞ þ ðb� 1ÞL½FðzaÞ�:

Eliminating cebza from the above two equations yields

aðzaÞ � ðaðzaÞ � ðb� 1ÞFðzaÞÞCðzaÞ � ðb� 1ÞL½FðzaÞ� ¼ 0:

If aðzÞ � ðaðzÞ � ðb� 1ÞFðzÞÞCðzÞ � ðb� 1ÞL½F� is not identically equal to
zero, then we derive

N r;
1

f � a

� �
aN r;

1

a� ða� ðb� 1ÞFÞC� ðb� 1ÞL½F�

� �

aT r;
1

a� ða� ðb� 1ÞFÞC� ðb� 1ÞL½F�

� �
¼ Oðlog rÞ ¼ Sðr; f Þ;

which contradicts Eq. (4.9). Hence,

aðzÞ1 ðaðzÞ � ðb� 1ÞFðzÞÞCðzÞ þ ðb� 1ÞL½F�;ð4:10Þ

which can be rewritten as CðzÞ1 aðzÞ � ðb� 1ÞL½F�
aðzÞ � ðb� 1ÞFðzÞ .

Case (ii). a is transcendental.
Rewrite Eq. (4.1) as

f � a ¼ 1

a
ðða� a 0ÞðL½ f � � L½a�Þ � ða� L½a�Þð f 0 � a 0ÞÞ:

Di¤erentiating the above equation yields

f 0 � a 0 ¼ 1

a

� �0
ðða� a 0ÞðL½ f � � L½a�Þ � ða� L½a�Þð f 0 � a 0ÞÞð4:11Þ

þ 1

a
ðða 0 � a 00ÞðL½ f � � L½a�Þ þ ða� a 0ÞðL 0½ f � � L 0½a�Þ

� ða 0 � L 0½a�Þð f 0 � a 0Þ � ða� L½a�Þð f 00 � a 00ÞÞ:

A routine calculation leads to

1þ ða� L½a�Þ 1

a

� �0
þ ða 0 � L 0½a�Þ 1

a

� �
ð f 0 � aÞð4:12Þ

¼
Xmþ1

k¼2

a�
kð f ðkÞ � aðk�1ÞÞ

þ
(
ða 0 � aÞ þ 1

a

� �0
ða� a 0Þ

Xm
k¼2

aka
ðk�1Þ � aða� a 0Þ

 !
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þ 1

a

 
ða� a 0Þ

Xm
k¼2

a 0
ka

ðk�1Þ � a 0 þ
Xm
k¼2

aka
ðkÞ

 !

þ ða 0 � a 00Þ
Xm
k¼2

aka
ðk�1Þ � a

 !!)
;

where a�
k ðk ¼ 2; 3; . . . ;mþ 1Þ are linear combinations of aj ð j ¼ 2; 3; . . . ;mÞ, 1=a

and their derivatives, a and a� a 0 etc..
Since aD a 0, we claim that the following expression

ða 0 � aÞ þ 1

a

� �0
ða� a 0Þ

Xm
k¼2

aka
ðk�1Þ � aða� a 0Þ

 !
ð4:13Þ

þ 1

a

 
ða� a 0Þ

Xm
k¼2

a 0
ka

ðk�1Þ � a 0 þ
Xm
k¼2

aka
ðkÞ

 !

þ ða 0 � a 00Þ
Xm
k¼2

aka
ðk�1Þ � a

 !!

could not be identically equal to zero. If not, we rewrite Eq. (4.13) as

a� a 0 1
1

a

 
ða� a 0Þ

Xm
k¼2

a 0
ka

ðk�1Þ � a 0 þ
Xm
k¼2

aka
ðkÞ

 !

þ ða 0 � a 00Þ
Xm
k¼2

aka
ðk�1Þ � a

 !!

þ 1

a

� �0
ða� a 0Þ

Xm
k¼2

aka
ðk�1Þ � aða� a 0Þ

 !
:

Dividing ða� a 0Þ on both sides of the above equation yields

11
1

a

Xm
k¼2

a 0
ka

ðk�1Þ � a 0 þ
Xm
k¼2

aka
ðkÞ

 !
þ a 0 � a 00

a� a 0

� � Xm
k¼2

aka
ðk�1Þ � a

 ! !
ð4:13�Þ

þ 1

a

� �0 Xm
k¼2

aka
ðk�1Þ � a

 !
:

Multiplying a on both sides of Eq. ð4:13�Þ, plus the fact that Nðr; aÞ ¼ Oðlog rÞ
from Eq. (4.2) and the lemma of logarithmic derivative, yields

Tðr; aÞ ¼ mðr; aÞ þOðlog rÞaSðr; aÞ þOðlog rÞ;
which contradicts the assumption that a is transcendental.

Let b denote the expression of Eq. (4.13) which is not identically equal to
zero. Dividing both sides of Eq. (4.12) by b yields
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1 ¼
1þ ða� L½a�Þ 1

a

� �0
þ ða 0 � L 0½a�Þ 1

a

� �
ð f 0 � aÞ

b
ð4:12�Þ

�

Pmþ1

k¼2

a�
kð f ðkÞ � aðk�1ÞÞ

b
:

Dividing ð f 0 � aÞ on both sides of Eq. ð4:12�Þ, plus the lemma of logarithmic
derivative and the fact that a, ak ðk ¼ 2; 3; . . . ;mÞ, a and thus b are all small
functions of f , yields

m r;
1

f 0 � a

� �
¼ Sðr; f Þ:ð4:14Þ

Since f is entire, we have

Tðr; f Þ ¼ mðr; f Þ þOð1Þ

¼ m r; aþ 1

a
ðða� a 0ÞðL½ f � � L½a�Þ � ða� L½a�Þð f 0 � a 0ÞÞ

� �
þOð1Þ

amðr; f 0Þ þ Sðr; f ÞaTðr; f 0Þ þ Sðr; f ÞaTðr; f Þ þ Sðr; f Þ;
that is,

Tðr; f Þ ¼ Tðr; f 0Þ þ Sðr; f Þ:ð4:15Þ
By Eq. (4.14), Eq. (4.15) and the assumption that f and f 0 share a CM, we

get

m r;
1

f � a

� �
¼ Tðr; f Þ �N r;

1

f � a

� �
þ Sðr; f Þð4:16Þ

¼ Tðr; f 0Þ �N r;
1

f 0 � a

� �
þ Sðr; f Þ

¼ m r;
1

f 0 � a

� �
þ Sðr; f Þ ¼ Sðr; f Þ:

Thus, Eq. (4.9) still holds.
We now define c to be

c :¼ f 0 � a

f � a
:ð4:17Þ

Obviously, by the lemma of logarithmic derivative and Eq. (4.16), plus the as-
sumption that f and f 0 share a CM, we see that c is a small entire function of
f , i.e., Tðr;cÞ ¼ Sðr; f Þ. Rewrite Eq. (4.17) as

f 0 ¼ cf þ að1� cÞ ¼ l1 f þ m1;ð4:18Þ
where l1 and m1 are defined as l1 :¼ c, m1 :¼ að1� cÞ.
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We repeat the above argument ðk � 1Þ-times by di¤erentiating Eq. (4.18)
repeatedly and by substituting the di¤erential equations into earlier ones to
conclude

f ðkÞ ¼ lk f þ mk ðk ¼ 1; 2; . . .Þ;ð4:19Þ
where lk and mk are small entire functions with the following recurrence for-
mulas:

lk ¼ l 0
k�1 þ l1lk�1; mk ¼ m 0

k�1 þ m1lk�1 ðk ¼ 2; 3; . . .Þ:
It is not di‰cult, by applying induction in the number k to lk and mk, plus

the knowledge that di¤erentiation never increases the total degree of a di¤erential
polynomial, to deduce that

lk ¼ ck þ Pk�1½c�; mk ¼ �ack þ P�
k�1½c� ðk ¼ 1; 2; . . .Þ;ð4:20Þ

mkþ1 þ alkþ1 ¼ ða� a 0Þck þQk�1½c� ðk ¼ 1; 2; . . .Þ;ð4:21Þ
where Pk�1½c�, P�

k�1½c� and Qk�1½c� are di¤erential polynomials in c with poly-
nomial coe‰cients and maxfgPk�1

; gP�
k�1

; gQk�1
ga k � 1. Here, gPk�1

denotes the
total degree of Pk�1½c� and gP�

k�1
, gQk�1

are similarly defined.

Since L½ f � ¼ a whenever f ¼ a, by Eq. (4.9), Eq. (4.19), the expression of
L½ f � and the fact that c, a, ak, lk and mk ðk ¼ 2; 3; . . . ;mÞ are all small functions
of f , plus analogous reasoning to that of Eq. (4.10), we have

a1
Xm
k¼2

akðalk þ mkÞ1
Xm
k¼2

akðða� a 0Þck�1 þQk�2½c�Þð4:22Þ

1 ða� a 0Þamcm�1 þQ�
m�2½c�:

Obviously, Q�
m�2½c�D a; otherwise, we would have c1 0, a contradiction. We

now apply the conclusion of Lemma 1 to Eq. (4.22) to conclude

Tðr;cÞ ¼ mðr;cÞ þOð1ÞaSðr;cÞ þOðlog rÞ;

which implies that c is a polynomial without zeros, and hence a non-zero con-
stant, say, b A C=f0g. Thus, Eq. (4.4), Eq. (4.5) and Eq. (4.6) still hold.

On the other hand, by Eq. (4.4) and Eq. (4.6), Eq. (4.1) can be written as

a ¼ cebzðða� a 0ÞC� bða� L½a�ÞÞ
cebz þ ðb� 1ÞF� a

ð4:23Þ

þ ða� a 0Þððb� 1ÞL½F� � L½a�Þ � ða� L½a�Þððb� 1ÞF 0 � a 0Þ
cebz þ ðb� 1ÞF� a

:

We now apply the conclusion of Lemma 4 to Eq. (4.23), noting Eq. (4.5),
to obtain that either Tðr; aÞ ¼ Oðlog rÞ or Tðr; aÞ ¼ Tðr; f Þ þOðlog rÞ dependent
upon whether a is reducible or not. However, it contradicts the assumption that
a is a transcendental small function of f .

This contradiction finishes the proof of Theorem 1. r
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