MINIMUM MODULI OF WEIGHTED COMPOSITION OPERATORS ON ALGEBRAS OF ANALYTIC FUNCTIONS

Takuya Hosokawa

Abstract

We study the minimum moduli of weighted composition operators on the disk algebra and the space of bounded analytic functions.

1. Introduction

Let **D** be the open unit disk, $\overline{\mathbf{D}}$ its closure and **T** the unit circle. Let $H^{\infty} = H^{\infty}(\mathbf{D})$ be the set of all bounded analytic functions on **D** and *A* be the set of all analytic functions bounded on **D** and continuous on $\overline{\mathbf{D}}$, called the disc algebra. Then H^{∞} and *A* are Banach algebras with the supremum norm

$$\|f\|_{\infty} = \sup_{z \in \mathbf{D}} |f(z)|.$$

In this paper, we will deal with the minimum modulus of analytic functions on **D** and **T**. For $f \in H^{\infty}$, the radial limit f^* of f is defined almost everywhere on **T**. We denote that

$$\|f\|_{-\infty,\mathbf{D}} = \inf_{z \in \mathbf{D}} |f(z)|$$

and

$$\|f\|_{-\infty,\mathbf{T}} = \operatorname{essinf}_{\omega \in \mathbf{T}} |f^*(\omega)|.$$

Let $S(\mathbf{D})$ be the set of all analytic self-map of \mathbf{D} . For $\varphi \in S(\mathbf{D})$, we can define the composition operator C_{φ} on H^{∞} as $C_{\varphi}f = f \circ \varphi$. Moreover, for $u \in H^{\infty}$, we can define the multiplication operator M_u on H^{∞} as $M_u f = uf$. Hence the weighted composition operator uC_{φ} is the product of M_u and C_{φ} , that is, $uC_{\varphi}f = M_uC_{\varphi}f = uf \circ \varphi$.

To define the weighted composition operators on A, it is necessary that $\varphi, u \in A$. Denote by $S(\overline{\mathbf{D}})$ the closed unit ball of A. If $\varphi \equiv \omega \in \mathbf{T}$, φ is not in

¹⁹⁹¹ Mathematics Subject Classification. 47B33.

Key words and phrases. Composition operator, injectivity modulus, closed range. Received September 13, 2005; revised January 16, 2006.

 $S(\mathbf{D})$ but in $S(\mathbf{D})$, and C_{φ} is the point evaluation at ω which acts on A. We can identify the set of all point evaluations at boundary points with T. By the maximum modulus principle, it is shown that $S(\overline{\mathbf{D}}) \setminus \mathbf{T} \subseteq S(\mathbf{D})$.

As well known, $||uC_{\varphi}|| = ||u||_{\infty}$ both on H^{∞} and on A. Putting $u \equiv 1$, we have that $||C_{\varphi}|| = 1$.

Let X and Y be Banach spaces and T be a bounded linear operator from Xto Y. The operator norm ||T|| of T is the maximum modulus of its image of the closed unit ball $U_X = \{x \in X : ||x||_X \le 1\}$. In [2], Müller introduced two quantities as the minimum moduli of $T(U_X)$. We can regard j(T) as the minimum modulus of $T(U_X)$ estimating from the outside and k(T) as the minimum modulus estimating from the inside.

DEFINITION 1.1. Let T be a bounded linear operator from X to Y. (i) The injectivity modulus j(T) of T is defined by

$$j(T) = \inf\{\|Tx\|_Y : \|x\|_X = 1\}.$$

(ii) The surjectivity modulus k(T) of T is defined by

$$k(T) = \sup\{r \ge 0 : T(U_X) \supset rU_Y\}.$$

Though the operator norm holds the triangular inequality, neither j(T) nor k(T) hold it. Some properties of j(T) and k(T) are studied in [2].

PROPOSITION 1.2 [2]. Let T be a bounded linear operator from X to Y.

- (i) Clearly $0 \le j(T) \le ||T||$ and $0 \le k(T) \le ||T||$. (ii) If T is invertible, then $j(T) = k(T) = ||T^{-1}||^{-1}$.
- (iii) j(T) > 0 (this is said that T is bounded below) if and only if T is one-toone and Ran T is closed.
- (iv) k(T) > 0 if and only if T is onto.
- (v) $j(T) = k(T^*)$ and $k(T) = j(T^*)$.

Example 1.3. Let $l^2(\mathbf{N})$ be the Hilbert space of square summable one-sided complex sequences.

- (i) Let F be the forward shift operator on $l^2(\mathbf{N})$. Then ||F|| = j(F) = 1 but k(F) = 0.
- (ii) Let B be the backward shift operator on $l^2(\mathbf{N})$. Then ||B|| = k(B) = 1but i(B) = 0.

2. Minimum moduli of weighted composition operators on H^{∞}

In this section we estimate $j(uC_{\varphi})$ and $k(uC_{\varphi})$ on H^{∞} . First, we concern with the trivial cases. If $u \equiv 0$ or $\varphi \equiv p \in \mathbf{D}$, then $\operatorname{Ran} uC_{\varphi}$ is a zero or one dimensional subspace spanned by u. Hence we have the following.

PROPOSITION 2.1. If
$$u \equiv 0$$
 or $\varphi \equiv p \in \mathbf{D}$, then $j(uC_{\varphi}) = k(uC_{\varphi}) = 0$.

TAKUYA HOSOKAWA

In the sequel, to exclude these cases, we assume that $u \in H^{\infty}$ is not identically zero and $\varphi \in S(\mathbf{D})$ is not constant. Under this assumption, we call uC_{φ} non-trivial. We remark that uC_{φ} is injective on H^{∞} if uC_{φ} is non-trivial. This fact and (iv) of Proposition 1.2 imply that $k(uC_{\varphi}) > 0$ if and only if $(uC_{\varphi})^{-1}$ is bounded on H^{∞} . Then φ is an automorphism of \mathbf{D} and 1/u is in H^{∞} , that is, $||u||_{-\infty,\mathbf{D}} > 0$. Since $(uC_{\varphi})^{-1} = M_{1/v}C_{\varphi^{-1}}$ where $v = u \circ \varphi^{-1}$, we have the following theorem.

THEOREM 2.2. Let uC_{φ} be a non-trivial weighted composition operator on H^{∞} . Then $k(uC_{\varphi}) > 0$ if and only if $||u||_{-\infty,\mathbf{D}} > 0$ and φ is an automorphism of **D**. Moreover, in such cases, $k(uC_{\varphi}) = j(uC_{\varphi}) = ||u||_{-\infty,\mathbf{D}}$.

Considering the special cases of $u \equiv 1$ and $\varphi(z) = z$, we have the following corollary.

COROLLARY 2.3. Let $u \in H^{\infty}$ and $\varphi \in S(\mathbf{D})$. (i) $k(M_u) = ||u||_{-\infty, \mathbf{D}}$. (ii) If φ is an automorphism of \mathbf{D} , $k(C_{\varphi}) = 1$. Otherwise, $k(C_{\varphi}) = 0$.

Next we will consider the estimation of $j(uC_{\varphi})$. For convenience, we provide some notation.

DEFINITION 2.4. Define that $D_{\delta}(u) = \{z \in \mathbf{D} : |u(z)| \ge \delta\}.$

In [3], Ohno and Takagi have stated their results in terms of Gelfand transformation and Shilov boundary of H^{∞} . Our main theorem is expressed in function theoretic terms. We need the following lemma (see [4] and [5]).

LEMMA 2.5. Let G be a subset of **D** such that $\overline{G} \supset \mathbf{T}$. Then, for any $f \in H^{\infty}$, $\sup_{z \in G} |f(z)| = ||f||_{\infty}$

Now we can prove the main theorem.

THEOREM 2.6. Let uC_{φ} be a non-trivial weighted composition operator on H^{∞} . Then we have

(1)
$$j(uC_{\varphi}) = \sup\{\delta : \varphi(D_{\delta}(u)) \supset \mathbf{T}\}$$

(2)
$$= \inf_{\omega \in \mathbf{T}} \limsup_{\varphi(z_n) \to \omega} |u(z_n)|$$

where we define the supremum in (1) is equal to 0 if such a constant δ does not exist, and we define also the infimum in (2) is equal to 0 if $\overline{\varphi(\mathbf{D})} \neq \mathbf{T}$.

Proof. Let d be the supremum in (1) and m be the infimum in (2).

250

First, we will prove that $j(uC_{\varphi}) \ge d$. We may suppose that d > 0. Then for any δ such that $0 < \delta < d$, $\overline{\varphi(D_{\delta}(u))} \supset T$. By Lemma 2.5, for any $f \in H^{\infty}$ such that $||f||_{\infty} = 1$,

$$\begin{split} 1 &= \sup\{|f(z)| : z \in \varphi(D_{\delta}(u))\}\\ &= \sup\{|f(\varphi(z))| : z \in D_{\delta}(u)\}\\ &\leq \delta^{-1} \sup\{|u(z)| |f(\varphi(z))| : z \in D_{\delta}(u)\}\\ &\leq \delta^{-1} \|uC_{\varphi}f\|_{\infty}. \end{split}$$

Hence we have that $j(uC_{\varphi}) \ge \delta$. Since $\delta \in (0, d)$ is arbitrary, we have that $j(uC_{\varphi}) \ge d$.

Conversely, suppose that $j(uC_{\varphi}) > 0$. For any r such that $0 < r < j(uC_{\varphi})$, we have that $r < ||uC_{\varphi}f||_{\infty}$ where $||f||_{\infty} = 1$. We will show that $\varphi(D_r(u)) \supset \mathbf{T}$ by contradiction.

Suppose that there exists $\zeta \in \mathbf{T} \setminus \overline{\varphi(D_r(u))}$. Put

$$f_n(z) = \left(\frac{z+\zeta}{2}\right)^n$$

Clearly, we can see that $f_n \in H^{\infty}$ and $||f_n||_{\infty} = 1$ for all positive integer *n*. Since $\zeta \in \mathbf{T} \setminus \overline{\varphi(D_r(u))}$, we have that $|f_1(\varphi(z))| < 1$ for any $z \in D_r(u)$. For enough large *n*, we can suppose that $|f_n(\varphi(z))| < r||u||_{\infty}^{-1}$ for any $z \in D_r(u)$. Then we have that for any $z \in D_r(u)$,

$$|uC_{\varphi}f_n(z)| = |u(z)f_n(\varphi(z))| < r \frac{|u(z)|}{||u||_{\infty}} \le r.$$

On the other hand, for any $z \in \mathbf{D} \setminus D_r(u)$,

$$|uC_{\varphi}f_n(z)| \le r|f_n(\varphi(z))| \le r.$$

Therefore we get $||uC_{\varphi}f_n||_{\infty} \leq r$. Hence we conclude that $j(uC_{\varphi}) \leq r$. This contradicts our assumption. Thus we have that $\overline{\varphi(D_r(u))} \supset \mathbf{T}$ and then $r \leq d$. Now we get $j(uC_{\varphi}) = d$.

Next we prove that d = m. Suppose that m > 0. Fix $\varepsilon > 0$ such that $m - \varepsilon > 0$. Then for all $\omega \in \mathbf{T}$,

$$\limsup_{\varphi(z_n)\to\omega}|u(z_n)|\geq m-\varepsilon.$$

This means that $\overline{\varphi(D_{m-\varepsilon}(u))} \supset \mathbf{T}$. Now we get $d \ge m - \varepsilon$. Since ε is arbitrary, we have that $d \ge m$.

To complete our proof, we will show that $d \le m$. Suppose that d > 0. For $0 < \delta < d$, we have that $\varphi(D_{\delta}(u)) \supset \mathbf{T}$. For all $\omega \in \mathbf{T}$, there exists a sequence $\{z_n\} \in D_{\delta}(u)$ such that $\varphi(z_n) \to \omega$. Moreover we have that

$$\limsup_{\varphi(z_n)\to\omega}|u(z_n)|\geq\delta$$

This implies that $d \le m$. This completes our proof.

Considering the special cases, we have the following.

COROLLARY 2.7. Let $u \in H^{\infty}$ and $\varphi \in S(\mathbf{D})$. (i) $j(\underline{M}_u) = ||u||_{-\infty, \mathbf{T}}$. (ii) If $\varphi(\mathbf{D}) \supset \mathbf{T}$, then $j(C_{\varphi}) = 1$. Otherwise, $j(C_{\varphi}) = 0$.

Next we state the characterization of the closedness of Ran uC_{φ} . We denote by \hat{f} the Gelfand transform of $f \in H^{\infty}$. Let $M(H^{\infty})$ be the maximal ideal space of H^{∞} . Then the adjoint C_{φ}^* of C_{φ} induces a continuous map Φ from $M(H^{\infty})$ into $M(H^{\infty})$. More precisely we can see that $\widehat{C_{\varphi}f}(x) = \widehat{f}(\Phi(x))$ for $x \in M(H^{\infty})$. Let S be the Shilov boundary of $M(H^{\infty})$ and $\Delta_{\delta}(u) = \{x \in S :$ $|\widehat{u}(x)| \ge \delta\}$. Hence, combining our result and the result of [3], we get the following corollary.

COROLLARY 2.8. Let $u \in H^{\infty}$ and $\varphi \in S(\mathbf{D})$. The followings are equivalent; (i) Ran uC_{φ} is closed in H^{∞} . (ii) there exists $\delta > 0$ such that $\overline{\varphi(D_{\delta}(u))} \supset \mathbf{T}$. (iii) there exists $\delta > 0$ such that $\Phi(\Delta_{\delta}(u)) \supset S$.

Now we give a typical example which shows what affects the estimation of the injectivity modulus.

Example 2.9. Let u(z) = 1 - z. Let $\varphi(z) = z$ and $\psi(z) = z^2$. Then $j(uC_{\varphi}) = 0$ and $j(uC_{\psi}) = \sqrt{2}$.

Proof. Indeed, $j(uC_{\varphi}) = j(M_u) = ||1 - z||_{-\infty, \mathbf{T}} = 0$. On the other hand, we have that

$$j(uC_{\psi}) = \inf_{\omega \in \mathbf{T}} \max\{|1 - \zeta| : \zeta^2 = \omega\}$$
$$= \inf_{\theta \in [0,\pi]} \max\{|1 - e^{\theta}|, |1 + e^{\theta}|\} = \sqrt{2}$$

In the last of this section, we give the comparison between some norms and minimum moduli of C_{φ} and M_u . The essential norm $||T||_e$ of T is the distance from T to the closed ideal of compact operators, that is, $||T||_e = \inf\{||T + K|| : K \text{ is compact}\}$. It is trivial that T is compact if and only if $||T||_e = 0$. It is known that C_{φ} is compact on H^{∞} if and only if $\varphi(\mathbf{D}) \cap \mathbf{T} \neq \emptyset$. Moreover if C_{φ} is not compact on H^{∞} , then $||C_{\varphi}||_e = 1$ (see [7]). On the other hand, in [6], it is estimated that $||M_u||_e = ||M_u|| = ||u||_{\infty}$. Hence we have the following inequalities.

COROLLARY 2.10. Let $u \in H^{\infty}$ and $\varphi \in S(\mathbf{D})$.

- (i) $0 \le k(C_{\varphi}) \le j(C_{\varphi}) \le ||C_{\varphi}||_{e} \le ||C_{\varphi}|| = 1$ and each of these quantities above *is zero or one.*
- (ii) $0 \le k(M_u) \le j(M_u) \le ||M_u||_e = ||M_u|| = ||u||_{\infty}$.

3. Minimum moduli of weighted composition operators on A

In this section, we consider weighted composition operators on the disc algebra A. We remark that the phenomena observed through the estimation of the minimum moduli of weighted composition operators on A and H^{∞} are very similar. We can prove the following results in the similar method in the case of H^{∞} . More precisely, we can prove them only in term of the subset of **T**, without Lemma 2.5. Here we omit the proof.

We start on the trivial cases.

PROPOSITION 3.1. If
$$u \equiv 0$$
 or $\varphi \equiv p \in \overline{\mathbf{D}}$, then $j(uC_{\varphi}) = k(uC_{\varphi}) = 0$.

We suppose that uC_{φ} is non-trivial, that is, $u \neq 0$ and $\varphi \in S(\overline{\mathbf{D}})$ is not constant. If uC_{φ} is non-trivial, then uC_{φ} is injective on A. Hence we can prove the following results as the same way of the cases of H^{∞} .

THEOREM 3.2. Let uC_{φ} be a non-trivial weighted composition operator on A. Then $k(uC_{\varphi}) > 0$ if and only if u has no zero on $\overline{\mathbf{D}}$ and φ is an automorphism of \mathbf{D} . Moreover, in such cases, $k(uC_{\varphi}) = j(uC_{\varphi}) = ||u||_{-\infty, \mathbf{D}}$.

COROLLARY 3.3. Let $u \in A$ and $\varphi \in S(\overline{\mathbf{D}})$. (i) $k(M_u) = ||u||_{-\infty, \mathbf{D}}$. (ii) If φ is an automorphism of \mathbf{D} , $k(C_{\varphi}) = 1$. Otherwise, $k(C_{\varphi}) = 0$.

Next we estimate $j(uC_{\varphi})$ on A.

DEFINITION 3.4. Denote that $T_{\delta}(u) = \{z \in \mathbf{T} : |u(z)| \ge \delta\}.$

Since uC_{φ} is injective, $j(uC_{\varphi}) > 0$ if and only if Ran uC_{φ} is closed in A. We can get the following theorem by the similar proof of Theorem 2.6 replacing D_{δ} by T_{δ} .

THEOREM 3.5. Let uC_{φ} be a non-trivial weighted composition operator on A. Then we have

(3)
$$j(uC_{\varphi}) = \sup\{\delta : \varphi(T_{\delta}(u)) \supset \mathbf{T}\}$$

(4)
$$= \inf_{\omega \in \mathbf{T}} \sup\{|u(\zeta)| : \varphi(\zeta) = \omega\}$$

where we define the supremum in (3) is equal to 0 if such a constant δ does not exist, and we define also the infimum in (4) is equal to 0 if $\varphi(\mathbf{T}) \neq \mathbf{T}$.

TAKUYA HOSOKAWA

COROLLARY 3.6. Let $u \in A$ and $\varphi \in S(\overline{\mathbf{D}})$. (i) $j(M_u) = ||u||_{-\infty, \mathbf{T}}$. (ii) If $\varphi(\mathbf{T}) \supset \mathbf{T}$, then $j(C_{\varphi}) = 1$. Otherwise, $j(C_{\varphi}) = 0$.

References

- C. C. COWEN AND B. D. MACCLUER, Composition operators on spaces of analytic functions, CRC Press, Boca Raton, 1995.
- [2] V. MÜLLER, Spectral theory of linear operators, Birkhäuser, Basel, 2003.
- [3] S. OHNO AND H. TAKAGI, Some properties of weighted composition operators on algebras of analytic functions, J. Nonlinear and Convex Analysis 2 (2001), 369–380.
- [4] R. ROAN, Composition operators on H^p with dense range, Indiana Univ. Math. J. 27 (1978), 159–162.
- [5] D. SARASON, Weak-star generators of H^{∞} , Pacific J. Math. 17 (1966), 519–528.
- [6] H. TAKAGI, J. TAKAHASHI AND S. UEKI, The essential norms of a weighted composition operator on the ball algebra, Acta. Sci. Math. (Szeged) 70 (2004), 819–829.
- [7] L. ZHENG, The essential norms and spectra of composition operators on H^{∞} , Pacific J. Math. **203** (2002), 503–510.

1-10-8 402 Kosugi-jinyacho Nakahara, Kawasaki Kanagawa 211-0062 Japan E-mail: turtlemumu@yahoo.co.jp