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ON THE CHARACTERISTIC FUNCTIONS OF
QUATERNION KAHLERIAN SPACES OF
CONSTANT Q-SECTIONAL
CURVATURE

By YOSHIYUKI WATANABE

1. Introduction.

In Riemannian geometry, one of interest problems is the determination of
of all Einstein spaces. But it is difficult to solve this problem, for we cannot
even classify the class of harmonic spaces defined by analytic conditions, which
is less general than that of Einstein spaces. The problems of classifying
harmonic spaces, those of finding canonical forms for their metrics and those
of determining its characteristic functions have taken up by E. T. Copson and
H.S. Ruse [1], A. G. Walker [9], [107, [1173, A. Lichnérowicz [5], T.J. Willmore
[13], A.J. Ledger [4], S. Tachibana [7], the author [11] and others.

Its typical examples are the following: (1) BEuclidean space R”, (2) sphere
S™, (3) real projective space RP", (4) complex projective space CP™, (5) qu-
aternion projective space HP™ and (6) the Cayley projective plane €P(2) ([4],
[6]). The characteristic functions of S™ RP™ and CP™ have been already
obtained as follows ([6], [7]): An n-dimensional space of constant curvature
(R#0) is characterized as a harmonic Riemannian space with characteristic
function

F()=1+(n—1)+/2k2 cot v/2k2

and a 2m-dimensional space of constant holomorphic curvature (k+#0) as a
harmonic Ké&hlerian space with characteristic function

J(2)=142m—1)(s) cot (Is)—(Is) tan (Is)
or
F()=1+(2m—1)(Is) coth (Is)+(ls) tanh (Is),

according to £=4/%, or k=—4[® respectively, where s means the geodesic distance
and £2=(1/2)s%.
In spite of these facts, the characteristic functions of HP™ and €P(2) have
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not been known. In the present paper, we give the characteristic functions
of quaternion Kdihlerian spaces of constant -sectional curvature. For this
purpose, we consider quaternion Fubinian spaces, which are showed to be
harmonic and also quaternion Kéihlerian spaces of constant @-sectional cur-
vature.

The author wishes to express his sincere thanks to Prof. S. Tachibana
and Prof. S. Ishihara, who gave him many valuable suggestions and guidances,
and prof. H. Mizusawa and prof. S. Sawaki, who gave him guidances.

2. Quaternion Kihlerian spaces.

Let M be a differentiable manifold of dimension # and assume that there
is a 3.dimensional vector bundle V consisting of tensors of type (1,1) over M
satisfying the following conditions :

(a) In any coordinate neibourhood U of M, there is a local base {F, G, H}
of V such that

F=C=H'=—I,
@.1)
HG=—GH=F, FH=—HF=G, GF=—FG=H,

I denoting the identity tensor field of (1,1) in M.

Such a local base {F, G, H} is called a canonical local base of the bundle
V in U. Then the bundle V is called an almost quaternion structure in M and
the set (M, V) an almost quaternion space. In an almost quaternion space
(M, V), we take two intersecting coordinate neighborhoods U, U’ and local base
{F, G, H}, {F’, G’, H'} satisfying (2.1) in U and U’, respectively, then they have
relations in UN\U’ as

F'=s,,F+s5,G+s,H,
(2.2) G’ =5, F+5,,G+s,.H ,
H =3, F+54,G+s5,H,

where s,s(a, f=1, 2, 3) form an element sy =(s,s) of the special orthogonal
group SO(3) of dimension 3. In any almost quaternion space (M, V), there is
a Riemannian metric g such that

g(FX, Y)+g(X, FY)=0, g(GX, Y)+g(X, GY)=0
gHX, Y)+g(X, HY)=0,

hold for any local base {F, G, H} and any vector fields X, Y. Now, let us
assume that the Riemannain connection V' of the Riemannian space (M, g) satis-
fies the following conditions:

(b) If {F, G, H} is a canonical local base of V in U, then
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VyF= +r(X)G—q9(X)H,
2.3) VyG=—r(X)F +p(X)H,
VxH= q(X)F—p(X)G

for any vector fields X, where p, ¢ and 7 are certain local l-forms defined in
U.

If the set (M, g, V) satisfies the condition (b), then (M, g, V) is called a
quaternion Kihlerian space and (g, V) a quaternion K&hlerian structure.

We take a point p in a quaternion Kéihlerian space (M, g, V) of dimension
4m and a vector X tagent to M at p. Putting

QUX)={Y|Y=aX+bFX+cGX+dHX},

a, b, c and d being arbitrary real numbers, we call Q(X) the Q-section determined
by X, where Q(X) is a 4-dimensional subspace of the tangent space of M at
the point p.

We denote by o(X, Y') the sectional curvature of (M, g) with respect to the
section spanned by X and Y. When o(Y, Z) with respect to the section spanned
by any Y, Z=Q(X) is a constant p(X), p(X) is called the Q-sectional curvature
of (M, g, V) with respect to X. A quaternian Kihlerian space is said to be of
constant @-sectional curvature 2 when any Q-section Q(X) has its Q-sectional
curvature p(X) and p(X) is a constant # independent of X at each point p.
By R=(R%), we denote the Riemannian curvature tensor of V. Then the
following propositions are known.

PrOPOSITION 2.1 (c.f. [3]). A quatermon Kdhlerian space of dimension 4m
(m>1) 1s of constant Q-sectional curvature k, 1f and only if 1its curvature tensor
has components of the form

RABCD:“i_(gADch—gBDgAc+FADFBC—FBDFAC—2FABFCD
(2.4)
+G4pGpe—GppGac—2G 45Gop+H pHpe—HppH 0—2H 45Hep) .

PROPOSITION 2.2. ([3]) A quaternion Kdhlerian space of constant Q-sectional
curvature 1s locally symmetric.

Let (M, g V) and (M, g’, V') be two quaternion Kéihlerian spaces of dim-
ension 4m of constant @-sectional curvature k. Let {F, G, H} be a local base
of V in a coordinate neibourhood U in M and {F’, G’, H’} a local base of V’
in a coordinate neighbourhood U’ in M’. Then, we can choose an orthonormal
basis F={e,, ---, en, Fe,, -+, Fey, Ge,, -, Ge,, He,, ---, He,,} of the tangent space
T,(M) at p and an orthonormal basis F'={e/, -+, en’, F'e,, -+, Fe,’/, G'e/, -,
G’ey,’, H'e), -+, H'e,'} of the tangent space T, (M’) at p’ respectively. It easily
seen from Proposition 2.1 that all components of the curvature tensor R with
respect to & are equal to corresponding those of the curvature tensor R’ with
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respect to #’. Thus, from Proposition 2.2 we can see that (M, g, V) and (M,
g’, V') are locally isomorphic, that is, there is an local isometry f such that
{f*F, f*G, f*H} is a canonical local base of V’ in f(U), where f*F denotes the
tensor field induced by f from F and so on. Moreover, it is proved that if
(M, g, V) and (M, g’, V') are complete and simply connected, then (M, g, V) and
(M, g’, V') isomorphic to each other, that is, there is an isometry f such that
{/*F, f*G, f*H} is a canonical local base of V’ in f(U).

For the reasons stated above, the subsequent sections are devoted to study
quaternion Fubinian spaces, which will be showed to be quaternion Ké&hlerian
spaces of constant @-sectional curvature.

3. Quaternion Fubinian spaces.
Let H={x+yi+zj+wk]|x, 3, z, weR'} be the set of quaternions. For
p=x+yi+zjt+wkeH, p=x—yi—zj—wk

is the conjugate of p. Putting |p|=+/pp, we denote p~'=(p/|p|? for p#0. Let
H™ the m-dimensional right hand module over H and

'p'=x/a§1qaq« for p=(qy, -, Q) EH™.

H™ will be always identified with R‘™ as follows: For q,=x,+¥i+z.jtwk,
¢ : (ql’ ) qm) - (xh ) xm; yly ) ymv Zly ) Zmy wly Tty w’m) .

Throughout the paper we shall agree with the following conventions.
(I) The range of indeces.

A, B, C, =1, -, 4m, Ay By Ty r=mA1, -0, 2m,
a, b, ¢, =1, -, m+1 gy, B, Ty r=2m+1, -+, 3m,
a, B, 7, =1, -, m, sy Pesyy Temyy -=3m~+1, -+, 4m.,
(I D=(Ea Eacrrr Eacrrr Eacr)
=(*a Yar Za Wa)
=(Xg, ) Xy Y1y % Yy 21+ Zmy Wiy ** W) -
(II1) The summation convention. For examples,
Qed,=%:dsF > +qnln s
Xo@Yo=210Y1+ ++ + XndYm s
FpAXP=FAX'+ -« +F 4 X*",

H™ is a real analytic manifold with the coordinate system (X, Ya Za Wa)-
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We introduce real valued functions # and 8 on H™ defined by

3.1)
. k
(9—1—}--——4 u,

where %k is a non-zero real number. We consider the maximal connected domain
D™ such that >0, and define a (positive definite) Riemannian metric on it
given vy

d32=—é—{6’(dx;dxl—l— 0y,dy:+dz;dz,+ dwsdw,

—%(amdxldxﬂ—i— b,;,ldxxdy#—l—cmdx;dzy-l— d,z#dxzdw#

(3.2) —b,dy:2dx,+a;,dY:dY A+ d;,dY:d2,— 3, dYdw,

—clf,dzldx/,—dzydzzdy/,—i—az#dz;dzy—{—b;#dzzdw#
—dzr,,dwjdxﬂ—}-cxﬂdw;dy#—bzpdw;dzp-{-ax#dw;dwy)} ,

where = XXy +2Y 222, Wow, ,
b2 =XV X2V 23W y— Z3W
Cau=X22)— X232, — YW, YW,
Q3= X3W — XW Y32, Va2 «

The matrix expression of the matric g is given by

k k k k
052#——4‘01# —Tblﬁ *‘4_0,{;1 '—'—4_611;4
k k
1 —4]2—17]‘“ 051,1——{:-01# -’4_(11‘4 Tcx,u
3.2y (g4p)=-
3.2) 4B)= . y s . &,
'4—01;‘ 4 % z;ﬁ‘Taxﬂ — 4 Y
k k k k
Tdm - Tcz/z Tblzz ‘951/4_T‘11#

Such an (D™ g) will be called a quaternion Fubinian space of real dimension
4m and denoted by HF™. Then (g4?) is given by
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k k k
Ot g @i | g b T 7 %
k k k
“abu | Owtpan | racs
(g4%)=0 . , p
k
I e S T I T B w
k k k
- lep TCI/J - —4_ b]/j 51/1 aZ;A

Putting (¢,)=(%4, Ya 2. W,), the Christoffel symbols { BAC} are given by

{BAC}:— (=%

0Zsp
08

ag_cg__
3&‘3

_08pc_
06p

Then (3.2)' and (3.3) give the following results:

G4 @ {5}
—"xlapfc—x/lalk _ylaluc—y,ualx _215/1&—2/15216 _wlay/:_w/labc
_ ) “ylafm'—'yluabc xlapx+x;z6bc '—wlayx+w/152k 225;1/:'—2/452/:
40 —‘2'15/“:—"2”51,: wlafuc—w,uahc xiayx+xy51x —ylalm"l_y,ualx
- w,l(s,zuc'— wyalx - Zlayx+2{452x ylalzzc—"y;tahc xla;uc_"_x,uébc
for fixed «;
(b) { ’5(1)
yla,u/c—i—y/ta]/c —'xia;zl—xyabc wka;u:_w;za}x _'Zlapx—l_z/xalx
. ) —xla/_uc“x/xalx —‘ylaym—'y/taht _zlayx_z,uahc _'wlafuc_}'z/zallc
49 "wla/uc—l—wya]:c _'Zlafuc_'z/.tahc ylazm_}'_ypalx xla,mc—-x;zal/:
—'2,25;:,:—2#51,; —wlaplc_wyalm _xlaym—i_xaaln‘ ylaym+yy51x
for fixed k¢ ;
(c) { ’5(2)
215/1/:_1_2/1521: —'wla/m—l_wyahc _xlafuc_x/zaix yla/_uc—y,ualm
. bk wlﬁylc_w,uallc Zla/xlc-l_zpahc ‘"3’15,“—3’#52,: _x15ﬂ5+xy52x
Y

- xla;w— xya}/;

-_ylaylc —y;taim

- 225;15—2;:52,&:

-—w;ﬁy,c—w‘,ﬁz,f

_ya/m—'—ypah:

%30 e X0

—wﬁm~wﬂ5h

215;15—1— Z/zalfc
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for fixed &y ;

@ {4%
W30+ W02 230 16— 2,021 ~Y10urt Y02 | —Xa0pe— X0z
ey’ —~230,t2,02, | W30, W05 520 e — X021 —20c—Y 026
-4 Y10~ u02¢ — X0t X0 | Wil W,05 — 230202
—xiaﬂx—xyalx “J’z5,zx“yp5/zx —"215;m_2y51.x _wla/_m_w/zabr

for fixed k.

4. Geodesics in HF™.

Consider a quaternion Fubinian space HF™ We shall find the equation of

geodesics passing through a point p,= HF™.
The differential equation of geodesic is given by

4.1) e+ oFes'6r =0,

where throughout the paper we denote by (/) the derivative with respect to
the arc length s. Since our space is a quaternion Fubinian space, substituting

(3.4) into (4.1) implies
4.2
17— k W Iay ? 1ot Tapy /

(a) X2 ‘_‘_70-{_'7{0'](« X2 +xaya Ya +xaza Z; +xawn' wy
—‘yaya,xll_yaxa/y/_zaza/xl,_zaxa/zl/—wawa,xll_waxalwl/
_wtxya/zl,+waza/yll-'_zaya’,wl’——zawalyl,"yaza,wll—l_yawa,zll} ’

10— k Iay 1 Vot /N2 27N

() W=y DV Vi T Vakd X+ Y aa 2 YW T
_xaxa/yll_xayn’/xk,—}-u"axzrlzl,_wazalxl,_Zaxalw1/+zawalx2/
22V 20V 2 W o Vi WY Wi A KaZd WY — XKW 2}

1 — k Iy ot Iay ! Tape !

(C) == 20 {—Zaza 23 +zaxa X2 +zaya Y2 +zawa wy

_waxaf,yl/_'_ waya,xll—'xaxalzll _xaza,xl/ _ya'xa/wk,_yawa/xll

—yaya,zl, _yaza/yll _xayalw2/+ xawa,yl,- waza/wll - wawalzll} y
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d) w/’:-———{ Wl o W W Xo X2 FWo ¥V FWaz 2y

+zaxa’y2/ - Zaya,xl/ _yaxa/zll +yaza/xil - xaxa,wll_ xawa,xll
+xaya,21, _xaza,yRI _yaya/wX/ —yawa,yll - zaza/wl, - zawalzll} .

Now, we shall find a geodesic passing through a point po=(x%, 3%, 2%, W)-
Let #(s) be a real valued function of s satisfying #(0)=0 and #(0)>0. If for
any constant A=(a,, b,, C. d,), substituting x,=a,t(s)+x3, Y.=bt0)+3% z.=
¢ t(s)+2% and w=d,t(s)+w) into (4.2), then we get

43 @ ar =" (| 41%0,0) +va—mby—ne,—rdy},
) bt =-2EED (| Aj2pt(9)+mat vy tre—ndy)
© et (=L (| Ajtet(9)+na,—rbytvertmds)

@ dt (=L (| A1 dn(s) +ratnb,—meptody)

where v=x%a,+ %0+ zoc+Wwid,,
m=x%b,—y%a,—2%d,+wdc,,
N=x%CqtVodo— 220 — Wb, ,
r=x%d,— Y%t 250 —wa, .

From (4.3) and the definition of #, we can get

e REOR (AL <o)
49 )= ) (| AT 20K T

where u,=x3x%+y3v%+2%23+wdw). Hence, taking account of g,zE45z=1 and
10)=0, we get

LEMMA 3.1. A geodesic with direction A=(aGg, ba Co do) Dassing a point po=
(%%, ¥%, 28, w) is given by
(i) for the case of k>0,

Foa=a {,\/—_tan (\/ks-'_ ) |A[2 }"‘Xay
ye=bd g tan (GEs )~ ok,
45)

tmc{ i tan (st )2},

wazda{ h (‘/ks—i— ) IA!Q }+wa,

7—k= tan
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where
lAIz \/kuo|A| +41A*—
and
_\/? -1 \/?‘U
=" BN RraAr

(ii) for the case of k<0,
B h V1B
xa-—aa{ﬁtanh< |2 |S+\/|k|> |A]2}+x“'

ya:ba{ﬁ——k—l— tanh(vlzkl s+'\/Ik] ) IAlz }+ya,,

4.5)

h 0
Zazca{v]k| tanh(‘/|kls+~/]k[) I—Xi—z—}-l—zm

wazda{:/—fl‘-k——l— tanh (X/Izk s+'\/lkl ) lAlz }‘|‘10a

where

_‘\/m_ -1'\/m1}
e=—— tanh AV iR

5. d,s in HF™

In the next section, getting its characteristic function, we shall show that
any quaternion Fubinian space is harmonic. For this purpose, we shall calculate
the Laplacian 4,s in HF™ Putting

. { 47° if k>0,
—4[* if <0,
we give an outline of the calculations for the case of 2>0, where [ is a positive
constant.

Since each point p,HF™ has a normal neighbourhood U such that arbitr-

ary points in U can be joined with p, by exactly one geodesic segment con-

tained in U, any point of U is represented in the form of (i) or (ii) according
to £>0, or £<0 respectively. Therefore, it follows that

u:xaxa+yaya+zaza+wawa
(5.1) __h*|A|® VE eh \\?
———k——{tan (Ts-}—ﬁ)} Fu,—

from which

UZ
IA|2 ’
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wedn _ PIAP* <\/ks+ ){Sec(«/ker h?)}f,

T}

ds — vk
(5.2)

u”:ﬂ_—_ R A|* {sec (“/Z—Es-l—-\e/%)}z{l—}ﬁ(tan (izﬂs—i-

ds® 2

Differentiating (5.1) by x;, ¥i, 2z and w, respectively, we have

(@) 2x=u’ 6622 , () 2z;=u’ aa; s
(5.3) s 5
(b)  2y,=w’ 3; , (d) 2w;=u’ E)ui

Moreover, differentiating (5.3.a) by x,, we have

Dy I— Os 0Os L 0°s
= 0x, 0x; '~ 0x;0%,

Multiplying this equation by g**, then we obtain

o, ds 0s ,
(5.4) 2g%0,,=u"' gt ox, ox, +u g“—axxax#

On the other hand, it follows from (3.2)’ and (5.3.a) that

gw&m:0<Bl#+%a1;,)ﬁz,l=0<m+%u> ,

and
2 aaxs2 _0s (u')z (xzx; . B ity )
Substituting these into (5.4) gives
g2 () B (et ey ).

Similarly we get
ana__0°S __ku’0

v (u/)ﬂ bk/rxlyu ’

xxay
o%s ku'’@

g ax-az- = ——(u—,)g—cx,lxxzy ,

o 0%s ku’’6
g P __ 7 axlaw —_ ( ,)3 dl,uxlw# ’
Apu___ 2 a S u//
s = )~ et ).
2

k r7
(Zl)f d]/tylz;z ’

. 9%
A 2) —_
g ayzaZ#

293
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0% ku'’6
ACH3), —_ r
g aylaw‘u - (ul)3 '-'R[_zylw# ’

, s 4u’’6
g @pue___Y 5 zz Z# — ( - 4 ) (u/)a (Zxe'l’ 01p212#>
9% ku''g
gD Gzdw, = W) bz,
a < u//0
2
giowe__ 25 T w#_ ( +— 4 ) - (wzwx-}' 1 az,uwzw/t)

Hence we get

0* k
8 ey = w (1))
“’%‘(1 +_Z‘u>{4(xzxz +ya¥at 22zt waw;)

(5.5) +Ray (X2, Y23yt 222, Waw,,)

+2k(b2,22Y pt CapXaZut dapXaW o+ A 22— Cap YW b2, )}
8 k k Aun’’ k
7<I+Tu>(m+Tu> —'W)—s—<1 +—4—u> .

First, we are going to obtain g“’{ ACB}—aa?;T by using (3.2) and (3.4):

g4, B}— {2t 2,02) (Bt az,,)
—szdz,c—kZ;sz—kysz;'

=% {4x+K(x0,,— W d 3 — 232, —Y2D20)}

=k0xx ’

and similarly

g4® Ax(l)B}:key“ gAB{A’:Q)B}:kazm gAB{A’CM)B}:kowx.

Thus, we get

(5.6) g*f ,© B} 9, = =22 (1+ 51

Since the Laplacian 4,s is given by
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o 0%s
dis=g*" 55 5g—— g+, B} 9,

it follows from (5.5) and (5.6) that on U,
4uu’’ k. \?
6.7 23— (1+ 4 ) Wy <l+—4—u) )
where (;) denotes the covariant differentiation with respect to the Christoffel

symbols { AC B}'

6. The main theorem.

An analytic Riemannian space of dimension n is harmonic if every point
Do is the origin of a nomal neighbourhood U such that, if £ is the distance
function £2(p,, p)=(1/2)s?, then its Laplacian 4,£, calculated for fixed p, and
variable p, is a function depending upon £ and not otherwise upon p, ie.,
4,2=f(£2), where f(£2) called the characteristic function.

Now, the left hand member of (5.7) does not depend on the choice of
coordinate system. So, if we represent the right hand member in terms of
the normal coordinate system (£,) on U with origin p,, then by (5.2) we have

6.1) d,s=@Am—1)l cot (Is)—3l tan (Is),
because of definitions, of %, v and u,. Thus, the characteristic function
6.2) f(&2)=14(@m—1)(Is) cot (Is)—3(ls) tan (Is),

by virtue of the identity 4,2=1+sd,s. Thus we see that HF™ is harmonic.
Similarly, for k=—4[% we can get

6.2)" J(2)=14+(4m—1)(Is) coth (Is)+3(Is) tanh (Is) .
On the other hand, we have
(6.3) xcot x=1—%x2—4L5x 925 e
from which
i 1 126
(6.4) x tan x—x2+—3—x 945 * e,

If we develop f(2) in power series of £ and s, then taking account of (6.3)
and (6.4), we have, respectively

A@Q=tm+F(O)@+5F 0@+ 02+

4(m3+2) (Is)*— 4(m4‘g11) (Is)*— 8("62;_)47) (Is)*—

=4m
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Thus, we have
65) fo=—B0tD p fg= BMAID o
Similarly, for the f(£2) given by (6.2)’, we get

8(m+2) .. s 32(m+11)
-——3————1 , fO)=——2—o ==l

(65) /0= o

Now, we define a base {F, G, H} of an almost quaternion structure V in
the quaternion Fubinian space HF™ with the coodinate system (&,)=(X4 Yar Zao
w,) as follows:

0 0 0 0
P o) ayx o (G B = e
0 0 0
F( 0y, )—— ’ G< 0, ) ow; ’ H< 0y; >:— 0z, ’
0 0
F( 321 )__ ’ G< azl )_— <822 )

0 0 0
F( awz)z—ﬁ’ G( aw):‘ oy; ’ H< aw;>:_ ox; °

Then F, G and H have numerical components of the form

(6.6)

0 —E 00 0 0 —E 0 0 0 0 —E
E 0 00 0 0 0 —E 0 0 E 0
6.7) F; ,  G; , H; ’
0 0 O0E EO0O 0 0 0 —E 0 0
0 0 —E 0 0E 0 0 E 00 0

where E denotes the identity (m, m)-matrix. It is easily seen that {F, G, H}

satisfies (2.1) and each of F, G and H is almost Hermitian with respect to g.
We shall calculate V xF by putting
4t 3

X2 V2

v .
Z, ' aUJx

X=s* 3 +u? p

Since
Vely'= 8553: +{p s —{5" Pt

it follows from (3.4) and (6.7) that

VanssF= g5 (—wiGt-zH) , Vopy F=-gg(—2G—wiH).

Vo F = nG—2H), Vo F=—g-(1iGt3;H)

k
20
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from which
VXFz—z—%—{(xrvT—]—yruT——zrtr~wrsT)G—(xruf—yrv'”—zrsf—}—wrtT)H} .
Similarly we can get
VXGz—Zl%{—(x,vf—i—yruf——zrtf—wrsT)F—}—(xrtT—yrsT—l—zrv?’—wruT)H}
and

VXHz—%{(xru7~yrv7—zrs7'+wrtT)F—(xrﬂ——yTsT+zrvT—wTuT)G} .

Thus, since {F, G, H} satisfies (2.3), we have
ProrosITION 6.1. (HF™, g, V) 1s harmonic and quaternion Kdhlerian.

To prove Proposition 6.3, we need

PROPOSITION 6.2. ([117]) In any 4m-dimensional harmonic quaternion Kdhlerian
space M, the inequality

X 10( +2)2 .
(6.8) O+ =0

holds. Equality sign is valid 1f and only if M 1sof constant Q-sectional curvature.

It is easily seen from (6.5) and (6.5)" that the caracteristic function of the
triple (HF™, g, V) satisfies the equality sign in (6.8). Thus we have

PROPOSITION 6.3. (HF™ g, V) 1s a quatermwon Kdhlerian space of constant
Q-sectional curvature, which is harmonic.

By Proposition 6.3 and the fact stated in §2, a quaternion Kdhlerian space of
constant Q-sectional curvature (2+#0) is locally regarded as a quaternian Fub-
inian space. Therefore, such a space is harmonic, and its characteristic func-
tion f(2) is given by (6.5) and (6.5)’. Thus we get the following main theorem.

THEOREM. A 4m-dimensional space of constant Q-sectional curvature (k+0)
15 characterized as a harmonic quaternion Kdhlerian space with characteristic

function given by

S()=1+@m—1)(Is) cot (Is)—3(Is) tan (Is)
or
() =1+@m—1)(Is) coth (/s)+3(Is) tanh (Is) ,

according to k=4l%, or k=—4[* respectirely.

7. The canonical metric of HP™.

Let H™! be the (m+1)-dimensional right module over the quaternions H.
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S*™*% means the unit hypersphere with center 0 defined by p.p.=1. If thereis
an element X of H such that q,=p.X, a=1, ---, m+1, |x|=1, then we shall say
(ps) to be equivalent to (q,) and represent this fact by (p.)~(qs). As this
relation (~) clearly satisfies the three conditions of equivalence relation, S*™*?
is classified into the set

HPm:S47n+3/N

of the equivalence classes. HP™ is called the quaternion projective space. We
denote by [py, ***, Pm+1] the equivalence class containing (ps, ***, Pms+r) ES™.

The natural local coordinate systems (U,, ¢), b=1, ---, m+1, of HP™ are
introduced as follows: For each b, we set

Upy={[py, **, Pn+1 JEHP™|(py, -+, pm+1)€Sm+3, Po#0} .
m+
Then, each U, is open in HP™ and b&_}:szHP"‘. Let ¢, on U, be

&o([Py, %, Pm+1)=(P1Ps™", ***, Po-1Ds" " Po+1Ps 5 ***y Pm+1Po 1) -

Rewriting ¢o¢, as ¢, (see §3), ¢, is a real coordinate system on U, Thus, it
is easily seen that HP™ is a 4m-dimensional real analytic manifold. Putting

¢b([pl’ ) pm+1]):(fh, Tty qm)
:(xa’i ym zm wa) ’
we see that the canonical metric of HP™ is defined by

ds*= 512 {0(dxdx;,+dyady,+dzdz+dwdw;)

—(@2,dx;d %+ b2,d2dY €2 d%;:d 2+ d g d X dw
—b2,Y:2d%,+ 02,4y :dY ,+d;,dY;:d2,— €3 dy AW,
—Capdz2dx,—dy,dz;dy ,+ ay,dzidz,+b;dzdw,
—d,dwdX,+ Cdwidy ,— by, dwidz,+ az,dwidw,}
where 0=1+4x,X,+VoVat 202+ W W, We take any two intersecting coordinate
neighborhoods (U, ¢3) and (U, ¢.), where ¢,=(&,) and ¢c=(é:) respectively.
If we denote by g4z and g:B the components of ds® with respect to (§,) and
(é:) respectively, then we can see that in U,"NU,,

~

gAB:_g‘gf g_gi—g’; .

This shows that ds® is (globally) tensor field on HP™ Thus, it is a Rieman-
nian metric on HP™. Since the metric has the form (3.2) with k=4, HP™ is
naturally a quaternion Kéhlerian space of constant @-sectional curvature, which
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is harmonic.

On the other hand, we have already known that the curvature tensor of
HP™, which is the base space of the Hopf fibring S*™**—HP™ ([2], [3]), is the
form (6.6) with k=4.
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