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1. Introduction.

In Riemannian geometry, one of interest problems is the determination of
of all Einstein spaces. But it is difficult to solve this problem, for we cannot
even classify the class of harmonic spaces defined by analytic conditions, which
is less general than that of Einstein spaces. The problems of classifying
harmonic spaces, those of finding canonical forms for their metrics and those
of determining its characteristic functions have taken up by E. T. Copson and
H. S. Ruse [1], A. G. Walker [9], [10], [11], A. Lichnerowicz [5], T. J. Willmore
[13], A. J. Ledger [4], S. Tachibana [7], the author [11] and others.

Its typical examples are the following : (1) Euclidean space Rn, (2) sphere
Sn, (3) real projective space RPn, (4) complex projective space CPm, (5) qu-
aternion projective space HPm and (6) the Cayley projective plane (£P(2) ([4],
[6]). The characteristic functions of Sn, RPn and CPm have been already
obtained as follows ([6], [7]) : An n-dimensional space of constant curvature
(k^O) is characterized as a harmonic Riemannian space with characteristic
function

t V2kΩ

and a 2m-dimensional space of constant holomorphic curvature (kφΰ) as a
harmonic Kahlerian space with characteristic function

/(β)=l+(2m-l)(/s) cot (Is)-(ls) tan (Is)
or

/(β)=l+(2m-l)(/s) coth (ls)+(ls) tanh (Is) ,

according to &=4/2, or &=— 4/2 respectively, where s means the geodesic distance
and £-(l/2)s2.

In spite of these facts, the characteristic functions of HPm and &P(2) have
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not been known. In the present paper, we give the characteristic functions
of quaternion Kahlerian spaces of constant Q-sectional curvature. For this
purpose, we consider quaternion Fubinian spaces, which are showed to be
harmonic and also quaternion Kahlerian spaces of constant ζ)-sectional cur-
vature.

The author wishes to express his sincere thanks to Prof. S. Tachibana
and Prof. S. Ishihara, who gave him many valuable suggestions and guidances,
and prof. H. Mizusawa and prof. S. Sawaki, who gave him guidances.

2. Quaternion Kahlerian spaces.

Let M be a differentiate manifold of dimension n and assume that there
is a 3-dimensional vector bundle V consisting of tensors of type (1,1) over M
satisfying the following conditions :

(a) In any coordinate neibourhood U of M, there is a local base {F, G, H }
of V such that

(2.1)
HG=-GH=F, FH=-HF=G, GF=-FG=H ,

/ denoting the identity tensor field of (1,1) in M.
Such a local base {F, G, H} is called a canonical local base of the bundle

V in U. Then the bundle V is called an almost quaternion structure in M and
the set (M, V} an almost quaternion space. In an almost quaternion space
(M, V), we take two intersecting coordinate neighborhoods £7, U/ and local base
{F, G, H}, {F7, G7, H'} satisfying (2.1) in U and ί/', respectively, then they have
relations in Ur\U/ as

F'=snF+s12G+suH,

(2.2) G'=s21F+s22G+sMH,

where sα/3(α, β=l, 2, 3) form an element sUfU = (saβ) of the special orthogonal
group SO(3) of dimension 3. In any almost quaternion space (M, F), there is
a Riemannian metric g such that

g(FX, Y)+g(X, FY)=Q, g(GX, Y)+g(X, GY)=Q

g(HX, Y)+g(X,HY)=0,

hold for any local base {F, G, H} and any vector fields X, Y. Now, let us
assume that the Riemannain connection V of the Riemannian space (M, g) satis-
fies the following conditions :

(b) If {F, G, H} is a canonical local base of V in U, then
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F XF= +r(X}G-q(X}H ,

(2.3) VxG=-r(X)F +P(X)H ,

PXH= q(X}F-p(X)G

for any vector fields Xy where p, q and r are certain local 1-forms defined in
U.

If the set (M, g, V) satisfies the condition (b), then (M, g, V) is called a
quaternion Kahlerian space and (g, V) a quaternion Kahlerian structure.

We take a point p in a quaternion Kahlerian space (M, g, V) of dimension
4m and a vector ^ tagent to M at £. Putting

Q(X)={Y\Y=aX+bFX+cGX+dHX} ,

α, 6, c and d being arbitrary real numbers, we call Q(X) the (3-section determined
by -3Γ, where Q(X) is a 4-dimensional subspace of the tangent space of M at
the point p.

We denote by σ(X, Y} the sectional curvature of (M, g) with respect to the
section spanned by X and Y. When <τ(Ύ, Z) with respect to the section spanned
by any Y, Z^Q(X) is a constant p(X), p ( X } is called the ζ?-sectional curvature
of (M, g, V) with respect to X. A quaternian Kahlerian space is said to be of
constant Q-sectional curvature k when any Q-section Q(X) has its Q-sectional
curvature p(X) and ρ ( X ) is a constant k independent of X at each point p.
By R=(Rljki), we denote the Riemannian curvature tensor of V . Then the
following propositions are known.

PROPOSITION 2.1 (c.f. [3]). .A quaternion Kahlerian space of dimension 4m
(m>l) zs 0/ constant Q-sectwnal curvature k, if and only if its curvature tensor
has components of the form

(2.4)
JrGADGBc—GBDGAC—2GABGCD+HADHBC—HBDHAC~~2HABHCD) .

PROPOSITION 2.2. ([3]) A quaternion Kahlerian space of constant Q-sectional
curvature is locally symmetric.

Let (M, g, V) and (Mx, g', V'} be two quaternion Kahlerian spaces of dim-
ension 4m of constant Q-sectional curvature k. Let {F, G, H] be a local base
of F in a coordinate neibourhood U in M and {Fx, Gx, /ί7} a local base of V
in a coordinate neighbourhood U/ in M7. Then, we can choose an orthonormal
basis 3r={e1, •••, em, Felf •••, Fem, G^, •••, Gem, Hel9 ••-, //em} of the tangent space
TP(M) at p and an orthonormal basis 3r/={e1

/, --, ^^x, F^/, — , F7^7, Gxe/, — ,
G7^m

7, /ί^/, •••, Hfem'} of the tangent space TP.(M'} at ί7 respectively. It easily
seen from Proposition 2.1 that all components of the curvature tensor R with
respect to 3" are equal to corresponding those of the curvature tensor Rf with
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respect to £?''. Thus, from Proposition 2.2 we can see that (M, g, V) and (M7,
£•', FO are locally isomorphic, that is, there is an local isometry / such that
{/*F, /*G, /*#} is a canonical local base of V in /(£/), where f*F denotes the
tensor field induced by / from F and so on. Moreover, it is proved that if
(M, g, F) and (Mx, #', V'} are complete and simply connected, then (M, #, F) and
(M', g', F') isomorphic to each other, that is, there is an isometry / such that
{/*F, /*G, /*//} is a canonical local base of V in /(£/).

For the reasons stated above, the subsequent sections are devoted to study
quaternion Fubinian spaces, which will be showed to be quaternion Kahlerian
spaces of constant Q-sectional curvature.

3. Quaternion Fubinian spaces.

Let H={x+y\+z]+w\ί\x, y, z, w^R1} be the set of quaternions. For

p=XJry'1Jr zj + wk^H, p—x—yi—zi—wk

is the conjugate of p. Putting |ρ| = Vpp, we denote p~ 1 =(p/|p| 2) for p=£θ. Let
Hm the m-dimensional right hand module over H and

|p |=Λ/Σ Qα^ for p=(q l f -,
V α=l

Hm will be always identified with R*m as follows: For qα=A:α+^ίri+2rJ+M;ίrk,

Φ ' til, ~, Qm) - > Ul, •", Xm, yi, -, ^m, *ι, -, ^m, «Ί, -, ^m) -

Throughout the paper we shall agree with the following conventions.

( I ) The range of indeces.

A, B, C, -- = 1, •••, 4m, αα), /5(1), ^a), » = m+l, •••, 2m ,

a, 6, c, — = 1, •••, ?7t+l a(2), ^2), τ (2), --=2m+l, •-, 3m ,

a, j9, 7*, — = 1, •-, 77i, a(s), j8(8), res), —=3m+l, •-, 4m .

(II) (f^)11^ '̂, fa d), ?a(2)» fa<3))

(III) The summation convention. For examples,

q«q*=qιqιH — +qmQ[m ,

xady(x=x1dy1-i ----- \-xndyn ,

FB

AX»=FιAXl+ - +F4m^Z4w.

Hm is a real analytic manifold with the coordinate system (xa, ym zm wa\
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We introduce real valued functions u and θ on Hm defined by

(3.1)

where k is a non-zero real number. We consider the maximal connected domain
Dm such that #>0, and define a (positive definite) Riemannian metric on it

uy

ds2=-Q-{θ(dxλdxλ+dyλdyλ+dzλdzλ-\-dwλdwλ

(3.2)

where

-Q

k
— ^(aλμdxλdxμ+bλμdxλdyμ+cλμdxλdzμ+dλμdxλdwμ

—bλμdyλdxμ+aλμdyλdyμ+dλμdyλdzμ—cλμdyλdwμ

-cλμdzλdxμ-dλμdzλdyμ+aλμdzλdzμ+bλμdzλdwμ

— dλμdwλdxμ+cλμdwλdyμ-bλμdw2dzμ+aλμdwλdwμ}},

aλμ=xλxμ+yλyμ+zλzμ+wλwμ ,

dλμ=xλwμ—xλwμ+yλzμ—yλzμ .

The matrix expression of the matric g is given by

(3.2)'

k
4

θδλμ

Such an (Dm, g) will be called a quaternion Fubinian space of real dimension
4m and denoted by HFm. Then (gAB) is given by
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(3.3), c~

k

-—b

k
4 C*μ

^_d

k b

^+^
~—d

k

k

—d

k

k b

r A ^
Putting (ζ^)=(xmya9 zm

 w«)> the Christoffel symbols {̂  ^j

/ A \ 1 AΌ/ dgBD dgCD dgβc \
\B CJ 2 g v dξc dξB dξD ) '

k d

 N

-— c

k b

*»+-?-**

are given by

Then (3.2)' and (3.3) give the following results:

(3.4) (a)

for fixed it

^ ίί'1],}
wλδμκ-wμδλ

for fixed Λ:(I)

fc\ ί ^(2) \
(c) \A Bf

-yδμκ+yμδ* — wλδμκ—wμδλκ
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for fixed Λr ( 2 )
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40

—zλδμκ+zμδλμ

Wλδμκ+wμδλκ —zλδμκ—zμδλ

-wλδμκ-wμδλκ

for fixed /r(3>

4. Geodesies in HFm.

Consider a quaternion Fubinian space HFm. We shall find the equation of
geodesies passing through a point p0GHFm.

The differential equation of geodesic is given by

(4.1)

where throughout the paper we denote by (0 the derivative with respect to
the arc length s. Since our space is a quaternion Fubinian space, substituting
(3.4) into (4.1) implies

(4.2)

(a) */'= — -{-χaχ«'χ/

λ' ~ ZaZa

fXλ

f - ZaXa

fZλ

f ~WaWa'X/ - WaXa

fWλ'

(b)

«Z/ - w^sa'χλ

r - zaχa'wλ

f + zawa

fχλ

f

(c)

waxa

fyλ

f / — xaxa'z/ - xaza'x/ -yaxa'wλ' -yaw a'xλ'
f - xaya'wλ' + xawa

fyλ' -waza'wλ

f - wawa

fzλ'
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'
d)

Now, we shall find a geodesic passing through a point pQ= (x%, fy, zί, w°a\
Let t(s) be a real valued function of s satisfying f(0)=0 and f'(0)>0. If for
any constant A=(am bm cm da\ substituting xa=aat(s)+x°a, ya=bj(ty+y°a, za=
cat(s)+zί and w—dat(s)+w°a into (4.2), then we get

(4.3) (a) aλt"(s)= k(t^}Y {\A\*aλt(s)+vaλ-mbλ-ncλ-rdλ} ,

(b) bλt"(s)= k(

(c) cΛt"(s)= {\A\'cΛt(s)+naλ-rbλ+vcλ+mdλ}

(d) dΛt"(s)=

where v=xiaa+^aba+zίca+wida ,

From (4.3) and the definition of 0, we can get

-$~ 2+(k/2}{\A\*(t(s)?+2vt(s)+uQ] '

where u0=x$txit+yit$t+zilzi+w'iwl. Hence, taking account of
f(0)=0, we get

LEMMA 3.1. A geodesic with direction A=(aa, bm cm da) passing a point
(4, fΛ, zl, w^ is given by

(i) for the case of k>Q,

(4.5)
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where

and
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h=-

! Vkv
JΓ h\A\2'

_

(ii) for the case of k<Q,

tanh

wn—

5. in HFm.

In the next section, getting its characteristic function, we shall show that
any quaternion Fubinian space is harmonic. For this purpose, we shall calculate
the Laplacian Δ2s in HFm. Putting

4/2

-4/2

we give an outline of the calculations for the case of &>0, where / is a positive
constant.

Since each point p0^HFm has a normal neighbourhood U such that arbitr-
ary points in U can be joined with p0 by exactly one geodesic segment con-
tained in U, any point of U is represented in the form of (i) or (ii) according
to &>0, or k<Q respectively. Therefore, it follows that

U =

from which
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, du= - =

(5.2)
eh

Differentiating (5.1) by *;, yλ, zλ and u/j respectively, we have

(5.3)

(a)

(b)

/ \(c)

(d)

, 9s
='-

Moreover, differentiating (5.3.a) by xμι we have

9χβxμ '

Multiplying this equation by gλμ, then we obtain

(5.4)
92s

-" * dxλ dxμ^"* dxλdxμ '

On the other hand, it follows from (3.2)' and (5.3.a) that

and

Substituting these into (5.4) gives

λa 92s 2Θ / , k
"

s 2Θ / , k \ 4w x /^ / , fe \
- = - /-( ^H — T-W ) -- 7-7\s-( XλXλλ — IΓ^λn^λ^υ )Xμ u' \ 4 / (w7) V 4 ;< x ^/

Similarly we get

ku"θ

92s ku"θ

92s 20

ku"θ j
- (u'Y UΊμyiZμ,
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3*5 __ ku"θ

x — = — - -
ozλόzμ u

2Θ S .
=-ίί-/-( m-\f

Hence we get

(5.5)

wλdwμ u' \ 4
.α ;

~~First, we are going to obtain £xs{^ β}~dj~~ b^ using (3.2)7 and (3.4)

and similarly

Thus, we get

Since the Laplacian J2s is given by
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C

it follows from (5.5) and (5.6) that on ί/,

/5 y\ Λ „ 8m Λ , k

where ( ) denotes the covariant differentiation with respect to the Christoffel

symbols Γ

6. The main theorem.

An analytic Riemannian space of dimension n is harmonic if every point
PQ is the origin of a nomal neighbourhood U such that, if Ω is the distance
function Ω(p0, p)= (l/2)s2, then its Laplacian Δ2Ω, calculated for fixed pϋ and
variable p, is a function depending upon Ω and not otherwise upon p, i.e.,
Δ2Ω=f(Ω\ where f(Ω) called the characteristic function.

Now, the left hand member of (5.7) does not depend on the choice of
coordinate system. So, if we represent the right hand member in terms of
the normal coordinate system (ξA) on U with origin p<» then by (5.2) we have

(6.1) Jas=(4m-l)/ cot (/s)-3/ tan (Is) ,

because of definitions, of h, v and u0. Thus, the characteristic function

(6.2) /(fl)=l+(4m-l)(/s) cot (/s)-3(/s) tan (Is) ,

by virtue of the identity J2β=l+sJ2s. Thus we see that HFm is harmonic.
Similarly, for &— — 4/2, we can get

(6.2)' /(β)=l+(4ro-l)(/s) coth (/s)+3(/s) tanh (Is) .

On the other hand, we have

(6.3)

from which

(6.4) x tan x=x2+^x*+-jj^-xG+ ' .

If we develop f(Ω) in power series of Ω and s, then taking account of (6.3)
and (6.4), we have, respectively

-
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Thus, we have

(6.5)
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- 32(m

4+
n) f .

Similarly, for the f(Ω) given by (6.2)', we get

(6.5)' /(0)=J^+2L ;;_ 32(OT+11) ,445 '

Now, we define a base {F, G, H] of an almost quaternion structure V in
the quaternion Fubinian space HFm with the coodinate system (ζA)=(Xa,ya,

 za>
wa) as follows:

(6.6)

9
dwλ

. G(- 9

9^
9

zλ

Then F, G and // have numerical components of the form

(6.7)

(0 -E

E 0

0 0

0 0

0 0

0 E

lo 0 -E 0)

(0 0 -E 0

0 0 0 - E

E 0 0 0

0 E 0 OJ

0 0 0 -E

0 0 E 0

0 -£ 0 0

£ 0 0 OJ

where £ denotes the identity (m, m)-matrix. It is easily seen that {F, G, H}
satisfies (2.1) and each of F, G and // is almost Hermitian with respect to g.

We shall calculate 7XF by putting

Since

dξc

it follows from (3.4) and (6.7) that

p r
B I B
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from which

-*rF^

Similarly we can get

f^G—-_{—(x rv
r-\-y ru

r—z rt
r—w rs

r)F+(x rt
r—y rs

r+z rv
r—w ru

r)H}

and

Thus, since {F, G, H} satisfies (2.3), we have

PROPOSITION 6.1. (HFm, g, V) is harmonic and quaternion Kdhlenan.

To prove Proposition 6.3, we need

PROPOSITION 6.2. ([11]) In any ^m-dimensional harmonic quaternion Kdhlenan
space M, the inequality

(6.8)

holds. Equality sign is valid if and only if M is of constant Q-sectional curvature.

It is easily seen from (6.5) and (6.5)' that the caracteristic function of the
triple (HFm, g, V) satisfies the equality sign in (6.8). Thus we have

PROPOSITION 6.3. (HFm, g, V) is a quaternion Kdhlerian space of constant
Q-sectional curvature, which is harmonic.

By Proposition 6.3 and the fact stated in §2, a quaternion Kahlerian space of
constant Q-sectional curvature (kΦΰ) is locally regarded as a quaternian Fub-
inian space. Therefore, such a space is harmonic, and its characteristic func-
tion f(Ω) is given by (6.5) and (6.5)'. Thus we get the following main theorem.

THEOREM. A Am-dimensιonal space of constant Q-sectional curvature (kφϋ)
is characterized as a harmonic quaternion Kdhlerian space with characteristic
function given by

/(fl)=l+(4m-l)(/s) cot (/s)-3(/s) tan (Is)
or

/(β)=l+(4m-l)(/s) coth (/s)+3(/s) tanh (Is),

according to k—4/2, or k= — 4/2 respectirely.

7. The canonical metric of HPm.

Let Hm+1 be the (m+l)-dimensional right module over the quaternions H.
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£4m+3 means the unit hypersphere with center 0 defined by pαpα=l If there is
an element x of H such that qα=PαX, α=l, •••, m+1, |#|=1, then we shall say
(pα) to be equivalent to (qα) and represent this fact by (pα)~(Qα) As this
relation (~) clearly satisfies the three conditions of equivalence relation, S4m+3

is classified into the set

of the equivalence classes. HPm is called the quaternion projective space. We
denote by [PI, — , ρm+ι] the equivalence class containing (ρlf — , pm+ι)^54m+3.

The natural local coordinate systems (Ub, ψb\ b=l, •••, m+1, of HPm are
introduced as follows : For each b, we set

Then, each Ub is open in HPm and \J Ub=HPm. Let ψb on Ub be

Rewriting φoφb as ψb (see §3), ψb is a real coordinate system on Ub. Thus, it
is easily seen that HPm is a 4m-dimensional real analytic manifold. Putting

ΨύdPi, -,ίm+ι]) = (^ι, -, Qm)

we see that the canonical metric of HP™ is defined by

2 -

-(aλμdxλdxμ+bλμdxλdyμ+cλμdxλdzμ+dλμdxλdwμ

-bλμdyλdxμ+aλμdyλdyμ+dλμdyλdzμ—cλμdyλdwμ

- cλμdzλdxμ-dλμdzλdyμ+aλμdzλdzμ+bλμdzλdwμ

-dλμdwλdxμ+cλμdwλdyμ-bλμdwλdzμ+aλμdwλdwμ] ,

where Θ=ί+x0^c0f+yotya+zcιza+wawίx. We take any two intersecting coordinate
r**

neighborhoods (Ub, ψb) and (Ue, φc\ where ψb=(ξA) and </>C=(£A) respectively.
/***

If we denote by gAB and gAB the components of dsz with respect to (ξA) and

(ξA) respectively, then we can see that in Ubr\Uc,

~ ~

This shows that ds2 is (globally) tensor field on HPm. Thus, it is a Rieman-
nian metric on HPm. Since the metric has the form (3.2) with fe=4, HPm is
naturally a quaternion Kahlerian space of constant Q-sectional curvature, which
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is harmonic.
On the other hand, we have already known that the curvature tensor of

HPm, which is the base space of the Hopf fibring S*m+*-»HPm ([2], [3]), is the
form (6.6) with k—^.
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