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METRICS AND CONNECTIONS ON THE
COTANGENT BUNDLE

By KaM-PING MoK

§1. Introduction.

Let M be an n-dimensional differentiable manifold of class C* and T*M its
cotangent bundle, which is a 2n-dimensional differentiable manifold. The pro-
blem of extending structures on M to T*M has been the subject of a number
of papers. An account of these can be found in Yano and Ishihara [12].
Starting from a torsion-free linear connection on M, Patterson and Walker [5]
have shown how to construct a metric on T*M, a process which they called
the Riemann extension. Using the Riemann extension, Yano and Patterson [13,
147 have defined the complete and horizontal lifts of linear connections on M
to T*M. On the other hand, Tondeur [8] and Sato [7] have constructed a
metric on 7*M from a metric on M, the construction being the analogue of the
metric of Sasaki for the tangent bundle TM [6].

When a linear connection is given on M, we may view 7*M as an almost
product manifold. Linear connections on an almost product manifold have been
studied by Walker [9], Yano [10] and Davies [2], among others. In the present
paper, we shall further consider the metrics and connections on 7*M mentioned
above, bringing in the general theory of linear connections on an almost pro-
duct manifold whenever possible. In this way, the relations between the various
metrics and connections become clearer, and we obtain a new linear connection
on T*M, namely the intermediate [ift, which, in some sense, lies somewhere
between the complete and horizontal lift. Refering to the “adapted frames” on
T*M, we have computed the components of the curvature tensors of the various
linear connections on T*M, as well as that of their covariant derivatives.

Similar considerations to the metrics and connections on the tangent bundle
TM can be found in the papers of Davies [2] and Yano and Davies [11]. In
fcact, our intermediate lift is the cotangent bundle analogue of the connection
V' on TM appearing in [2, §47.

As to notations and definitions, we shall generally follow that in [12]. In
particular:

1) Indices a, b, ¢, - ; h, 1,7, -+ have range in {1, ---, n}, while indices A, B,
C, ;4 v, - have range in {1, ---, n;n+1, -, 2n}. We put z=n-+i. Sum-
mation over repeated indices is always implied. Entries of matrices are written
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as A7, A;; or A%, and in all cases, j is the row index while i is the column
index.

2) =m:T*M—M denotes the canonical projection of 7*M onto M. Coordinate
systems in M are denoted by (U, x*), where U is the coordinate neighbourhood
and x* the coordinate functions. (U, x*) induces in a natural way a coordinate
system {z~*(U), (x*, p»)} in T*M which is called the induced coordinate system.
We shall sometimes write p, as x* and (x*, p,) as (x4).

3) Components in (U, x*) of geometric objects in M will be referred to
simply as components. If we want to emphasize (U, x*), we shall say com-
ponents in U. The same applies to geometric objects in T*M.

4) F denotes a linear connection on M with components [%. Its covariant
differentiation will again be denoted by the same symbol V. The curvature
tensor R of V' has components R,;". We assume throughout that / is torsion-
free.

5) g denotes a metric on M with components g;;. The covariant differentia-

tion in (M, g) is denoted by V2. As usual, {].h i}is the Christoffel symbol for

g;; and [g7'] is the inverse of the matrix [g,]. The curvature tensor K of
(M, g) has components K,;;".

§2. T*M as an almost product manifold.

Let V be the field of n-planes tangent to the fibres of T*M. It is an in-
tegrable ditribution on 7*M, which we called the vertical distribution. A
torsion-free linear connection V on M determines uniquely on 7*M an n.dim-
ensional distribution complementary to V. This distribution will be called the
horizontal distribution associated with ¥ and is denoted by H. The pair (H, V)
defines an almost product structure on T*M and turns it into an almost product
manifold.

Let {z"*(U), (x*, p»)} be an induced coordinate system in T*M. The horiz-
ontal distribution H restricted to #*(U) is spanned by the n independent vector
fields

0 0

@D D=+ g5,
where
2:2) I=p I,

The vertical distribution V restricted to #~'(U) is spanned by the z independent
vector fields

@2.3) D,-=—a%— .

It follows that {D;}={D,, D;} constitute a frame on = *(U). As the frame is
adapted to the almost product structure (H, V), we call them adapted frames
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on #~(U). In what follows, we usually refer our tensors and other geometric
objects on T*M to their components with respect to the adapted frame. Such
components will be called the frame components on wm'(U), or more simply
Jrame components, to distinguish them from the usual components.

The coframe {D’, Di} on #~*(U) dual to the adapted frame is given by

2.4 D’=dx’,

(2.5) Di=—T;dx*+dp,.

The component matrix of the adapted frame and its coframe are
@26), L:[ ] and L‘1=[ ]

respectively. We write
(2.6), L=[L4] and L'=[L%]

to indicate their entries.
The “non-holonomic objects” £2,,” of the adapted frame are defined by

(2-7) [:Db DF]:‘QX,L:VDD:
ie., by
(2.8) 2,,"=[DAL{)—D,(LH)IL% .

Using (2.8), (2.1), (2.3) and (2.6), we get the following as the possibly nonzero
components of £2,,”:

‘jSﬁ:paRjiha )
2.9) ) )
‘jSh: _"QLJJL: [‘gu .

The projection tensors of 7*M onto H and V will again be denoted by H
and V. They are tensors of type (1,1) on T*M whose frame component

matrices are
d;; 0 0 0
w0 vl o]
0 O‘ O 5,’5

and satisfy

(2.10) H*=H, V*=V, HV=VH=0, H+V=I,

where [ is the identity tensor. The usual expression for the torsion tensor
S=Su,y associated with H and V (see [3, p. 37]) reduces, by virtue of (2.10)
and the integrability of V, to

S(X, V)y=—2VIHX, HY]

where X, ¥ are arbitrary vector fields on T*M. It follows that the only possibly
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non-zero frame component of S is
(2.11) Sjiﬁ: —'ZQ“EZ *"2paRjiha .

Let 7 be an arbitrary linear connection on T*M whose components in
n Y (U) are I'4s. The frame components of V in n~*(U) are defined by

(2.12) PX/,-—[DZ(L“H—I’ s LSLELY .
If Xis a vector field on T*M whose frame components are )?”, then
(2.13) ,IX“ D;(X )+F” Xr

are exactly the frame components of the covariant derivative ¥ X of X. There
are formulas analogous to (2. 13) for tensor fields of other types. The frame
components of the torsion tensor 7' and the curvature tensor R of 7 are given

by
(2.14) T;p:fj/z—f:tl—gy ’
(2~15) ﬁwlyv:Dw(f%y)_Dl(f:)/:)—]—fZ)r ~§/.t_'f%ff;/l_‘9mlrf:/z-

Let C be a curve in T*M whose equation in 7-'(U) is x4=x4(t). The frame
components of its velocity vector are then LY (dx*/dt)=(D?/di). Tt can be shown
that C is a geodesic of V iff on each = *(U), we have

d /D’ D* D
(2.16) g Car )t T gr—gr =0

When a linear connection ¥ is given on an almost product manifold, Walker
[9] has considered the conditions for the distributions of the almost product
manifold to be path-parallel, relative parallel, etc. These conditions have been
reformulated by Yano [10] in terms of the connection components relative to
the frames adapted to the almost product structure. In the case of T*M, the
conditions of parallelism for H and V with respect to a linear connection 4
are:

(2.17) H is path-parallel iff F L+ "=0
H is parallel along V iff I“;-‘i-——O,
H is parallel iff ['%=0,
V is path.parallel iff F”+F”—O
V is parallel along H iff "—O
V is parallel iff F,I;ZO.

Here, all parallelisms are with respect to 7 and fﬁ,, are the frame components

of 7 as defined in (2.12).
Walker and Yano have also explicitly constructed linear connections on an
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almost product manifold satisfying certain conditions of parallelism. We now
adapt these constructions to 7*M. We first follow Davies [2] and consider the
A-tensor and the B-tensor associated with a linear connection ¥ on T*M. They
are tensors of type (1,2) on T*M whose frame components A;,” and B,,” are
respectively :

A,"=0, An’zz ffz .
Aﬁh:f’jzi’ Ajiﬁ:() ’
(2.18) T
Aiih:O, Aiihzrﬁ,
Aﬁh:f%, A;F=0
Bjih:()y Bjii:—%(f;‘:i"_ffj ,
B,A=—T%, BT,
(2.19) ~ v
B;ih:_[‘?f, B]'lhz'—['j?,

Bif'=——4[%+1%),  Bifi=0.

The construction of linear connections on T*M mentioned above are then:

LEMMA 2.1. Let ¥ be a torsion-free linear connection on T*M and B its as-
sociated B-tensor. With respect to the linear connection V-+B, H is parallel along
V, V is parallel along H and both H, V are path-parallel.

LEMMA 2.2. Let V be a torsion-free linear connection on T*M and A its as-

sociated A-tensor. With respect to the linear connection V—A, both H and V are
parallel.

§3. The Riemann extension and the complete lift.

Starting from a torsion-free linear connection ¥ on M, Patterson and
Walker [5] have constructed a metric on 7*M, namely the Riemann extension
of V. 1If the components in U of V are I'%, the component matrix in = *(U)
of the Riemann extension is

—oI,, 6.
3.1 [ ’ ]].
0 0
It follows that the corresponding frame component matrix is

(32) [50 ‘Z]

Jjt

Let ¢ be the Riemannian connection on T*M associated with the Riemann
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extension. Yano and Patterson [13] called V° the complete lift of V to T*M.

For an arbitrary metric on T*l\{ whose frame component matrix on 7 *(U)
is [Gys,], the frame components /7, of its associated Riemannian connection
can be shown to be given by

(3.3) I‘;yz%G”o(DzG,,y+DFG,,X——DGGZ,,)+%(.QM”+.Q”M+ 20,

where [G*] is the inverse of the matrix [G;,] and
(3.4) 22, =G"G . 2,7 .

On letting [G;,.] to be the matrix in (3.2), we then get from (3.3) the follow-
ing as the possibly non-zero frame components of the complete lift F/°:

(35) =T, [h=poRu.,* [l=—T"%..

By using (3.5) and (2.15), we obtain theNfollovving as the possibly non-zero
frame components of the curvature tensor K of F¢:

B n__ [ > S A
Riji"=Ru;i", Ruji"=paV i Rpo,*—V jRni®
Rlzji :—'Rkjhly Rkji'zz _'Ri‘lnhz_‘Rhik] .

It follows from (3.6) that (T*M, V°) is locally flat iff (M, V) is locally flat. Fur-
thermore, we can use (3.5) and (3.6) to compute the frame components of F°R.
Its possibly non-zero frame components are found to be:

(3.6)

4 ﬁ "h:Vlejihy

V Riji*=pV V Ry ,*—V 7 jRyix®)
F DRt Ryji' + Ryt * R ) + Ry Ruist + Ryt Rijnl)
Vlﬁkﬂ_:_‘V Ry,
VRBuyii=—V R5uf=—F Ry’ ,
ViR =V iR, =V ;Ruii .

From (3.7), we can get the result of Afifi [1] that (T*M, F'°) is locally symmetric
iff (M, F) is locally symmetric (cf. [12, p. 271-2]).

A curve C in T*M can be regarded in a natural way as its projection C=
zC onto M together with a field of covectors along C. We wish to consider
the condition for C to be a geodesic in (T*NM, 7°). As usual, we confine ours-
elves to 7-*(U) and let the equations of C be x"=x"(t), po=pus(f). Then the
equation of C is x"=x"(f) and p,(f) gives the components of the covector field
along C. We recall that (D*/dt) are the frame components of the velocity
vector of C and that D7 is just the usual covariant differential

3.7

0p;=dp,—p. L %dx" .



232 KAM-PING MOK
From (2.16) and (3.5), we get immediately the following as the condition for ¢
to be a geodesic in (T*M, F°):

d*x" n dX? dxt
dt* +I ar dr =0

3.8 *p dx’ d
a 4X X" —
dtzh +path1, dt 7'—0-

Here, (0%p,/dt*)=(0/dt)(0p,/dt) is the usual second intrinsic derivative of the
covector field along C. The first condition in (3.8) means that C is a geodesic
in (M, F).

For the special case of V'=F*%, ie., V is the Riemannian connection of a
metric g on M, we can interpret the second condition in (3.8) as follows. Let
us consider the vector field along C whose components are y*(£)=g"*p,(t). Then,
equation (3.8), is easily seen to be equivalent to

o%y* . dx? dxt
(3.9) _Li%'_+Kajiky - ar =0
where (0%y*/dt*)=(8/dt)(6y*/dt) is the usual second intrinsic derivative for
y*(t). In this case, (3.9) is exactly the condition for the vector field along C to
be a Jacobi field in (M, F¥).

§4. Horizontal lift of linear connection.

Let R be the curvature tensor of /. The local tensor fields
0
paRh““—aE@dx’@dx’

on each #7'(U) piece together to form a tensor field of type (1,2) on T*M,
which we denote by yR. In [14], Yano and Patterson define the horizontal lift
VE of V to T*M to be the linear connection

PE=F°—yR.

Since the only possibly non-zero frame component of yR is (7R);;/*=p.Ru.," it
follows from (3.5) that the non-zero frame components of V¥ are

(4-1) f?i:['?i, f’}i:“‘['gh .

From (4.1) and (2.14), it can be shown that the only posssibly non-zero
frame components of the torsion tensor T of ¥ are
(4~2) Tjiﬁ: -0 jiﬁ: —‘PaR jiha .

Comparing (4.2) with (2.11), we found that the torsion tensor T of V¥ is exactly
half that of the torsion tensor S=Sy,, associated with the projection tensors
H and V. On the other hand, a routine calculation using (4.1) and (3.2) shows
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that the metric tensor of the Riemann extension of V is parallel with respect
to V¥, Hence,

PROPOSITION 4.1. V# 1s the metric connection of the Riemann extension of
V with torsion equal to (1/2)Su,v.

Using (4.1) and (2.15) we found that the possibly non-zero frame components
of the curvature tensor R of /¥ are

(4.3) ﬁk]’l, _ﬁk]l s ﬁk}l :—Rkjhl .

From (4.1) and (4.3), we can compute the frame components of VER, the follow-
ing of which are possibly non-zero:

(4-4) 711?1:;‘1”:’711?1@;'1'11, ’7zﬁkﬁﬁ: “Vszjht-

Thus, (T*M, V'®) is locally flat (resp. locally symmetric) iff (M, V) is locally flat
(resp. locally symmetric).

Let C be a curye in T*M whose equations in 7 }U) are x*=x"(t), pr=pn(D).
The condition for C to be a geodesic, namely (2.16), in the case of V¥, reduces
to

d%x"
dr?

dx’ dx*
dt dt

+I, =0, and

(4.5)

0P Opn dx’_ 0p; _
= ()Tl —o.

Thus, C is a geodesic in (T*M, F'¥) if its projection onto M is a geodesic and
its associated covector field has vanishing second intrinsic derivative in (M, ).

§85. The intermediate lift.

Let us consider the parallelisms of H and V. If we compare the frame
components of V¢ as listed in (3.5) with conditions (2.17) for parallelism, we
found that V is path-parallel and is parallel along H in (T*M, V°). Whereas
H is parallel along V, it is not in general path-parallel. However, we can con-
struct from V¢ a linear connection on T*M having this property as well, bearing
in mind that V¢ is torsion-free so that we can use Lemma 2.1.

To do this, we first obtain from (2.19) and (3.5) the frame components of
the B-tensor B associated with F°. We find that the only possibly non-zero
frame component is

(5.1) Byf= =5 Dal R+ R

It follows that the possibly non-zero frame components of the linear connection
V¢4-B are

(5.2) Fl=I", Dh=—gpoRyu, Fli=—T%.
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Thus,

PROPOSITION 5.1.  Let V7 be the linear connection on T*M which 1s obtained
Sfrom V¢ according to Lemma 2.1, i.e., V=F°+B. The possibly non-zero frame
components of V! are gwen by (5.2). With respect to V!, H 1s parallel along V,
V 1s parallel along H and both H, V are path-parallel.

From (5.1), we see that the skew-symmetric part of the B-tensor of F°¢ is
zero. It then follows from V/=F°+B that F! is torsion-free. Hence, the only
case when V7 is metrical with respect to the Riemann extension of F/ is when
Vi=pe,

Let us compare (5.2) and the conditions (2.17) for parallelism. We notice
that V is parallel in (T*M, V’) but H is not (unless V is locally flat). Since /!
is torsion-free, we can obtain from it a linear connection with respect to which
both H and V are parallel by Lemma 2.2. From (2.18) and (5.1), we first obtain
the following as the only possibly non-zero frame components of the A-tensor
A associated with F7:

(5.3) Ajiﬁz%paRjiha .
The linear connection /?—A constructed according to Lemma 2.2 has
F?iZF?u F;:i:—['?h
as its non-zero frame components. But this is exactly that appearing in (4.1).
Hence,

PROPOSITION 5.2. The horizontal Lift V¥ 1s obtainable from V! by Lemma
2.2, e, VE=FT—A.

Since V! is obtained from F° and F¥ from F?, we shall call /! the in-

termediate lift of V to T*M.
We can compute the curvature tensor R of V'’ in the usual way. Its pos-
sibly non-zero frame components are found to be

fékjih:Rkjih, kkjt’z:—é‘pa(VkRjiha‘Vijina) )
(5.4)
ﬁkjiﬂ:_Rkjhty ﬁkhﬁZ “ﬁjmﬁz —%ka’ .

It follows that (T*M,F?) is locally flat if (M,NV ) is locally flat. Furthermore,
the possibly non-zero frame components of V’R are

7lﬁkjih:Vlejih ’

(5.5) Vlﬁkjiﬁ: %pa(VleRjiha—VthRkina)

5 Pa Run* Ry +5-Ruue* Ry
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+ 5 Rue R+ Rt i)

7'Lﬁkjii:%(VkRjihl—Vijihl)-

Thus, there is no nice condition for (7*M, F'?) to be locally symmetric.
From (5.3), we see that the symmetric part of the A-tensor of V! is zero.
It then follows from F#=F?—A that F'¥ and P’ have the same geodesics.

§6. The metric 7*(g, V).

Let g be a metric and V a torsion-free linear connection on M. We shall
construct from g and V' a metric on T*M, which we denote by T*(g, V). The
line element of T*(g, V) on = *(U) is taken to be

(6.1) g]idx]dxt +gji5pj5pi

where 0p,=dp,—p.L%dx* is the usual covariant differential appearing in (2.5).
It is easily seen that (6.1) indeed defines a global metric on 7*M and that the

frame component matrix of T*(g, V) is
8ji 0
©62) [ ]
0 g

We would like to establish conditions for V¢ V! and F¥ to be metrical
with respect to T*(g, V). Let us denote by G the metric tensor of T%(g, V) and
by [G.] the matrix in (6.2). By a simple calculation, the possibly non-zero
frame components of V°G, VG and V'”G are found respectively to be

(6.3) VkCG]i—_—ngji, VkCGji:chGi]:—prajkbgmy VkCGﬁ:ngﬁ'
(6.4) ViG;=V 18 Vi'Gui=V'Gi;= “‘—%—PbRkjabgm, ViG5i=V g7
(6.5) Vi"Gi=V 4850, V 7 G5=V g% .

From (6.3) and (6.4), we get

PROPOSITION 6.1. Let g be a metric and V a torsion-free linear connection
on M. Then, the following conditions are equivalent:

(@) V¢ 1s metrical with respect to T*(g, V),

(b) V1 is metrical with respect to T*(g, V),

(¢) V is the Riemanman connection of g and 1s locally flat.
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In this case, VC=FV'=F*" and 1s the Riemanman connection of T*(g V). It 1s
also the Riemannian connection of the Riemann extension of V.

Proposition 6.1 is especially interesting when g is positive definite. Then,
T*(g,V) is again positive definite. On the other hand, the Riemann extension
of V' has n positive and n negative signs. Yet their associated Riemannian
connections are still the same.

From (6.5), we similarly get

PROPOSITION 6.2. Let g be a metric and V a torswon-free linear connection
on M. Then, V¥ 1s metrical with respect to T*(g, V) iff V 1s the Riemannian
connection of g.

§7. The metric T*g.

The results of Propositions 6.1 and 6.2 indicate that the interesting cases
of T*(g, V) occur when V'=F%, ie., V is the Riemannian connection of g. From
now on, we shall assume this. The metric T*(g, V) now depends solely on g
and we denote it by T*g. Its line element is still given by (6.1), but with

Bpjzdp,—pa{] a i}dx’ .

The metric T*g was first studied by Tondeur [8], who showed that T*g
together with the canonical 2-form dx’Adp, on T*M defined an almost Kaeh-
lerian structure on T*M. Let TM be the tangent bundle over M, p:TM—-M
the canonical projection and {p~*(U), (x*, y*)} the usual induced coordinate
system in TM. Let Tg be the Sasaki metric on TM ([6]). It was shown by
Sato [7] that the maps p '(U)—zx"*(U) defined by

h__ h —
XT=Xx yph_‘gh]y]1

pieced together to form an isometry f: (TM, Tg)—(T*M, T*g). Although f does
not preserve the complete lifts of vector fields to TM and to T*M, the metric
properties of T*g can be obtained from the corresponding properties of 7g. In
particular, Kowalski [4] has shown that (TM, Tg) is never locally symmetric,
and the same is thus ,true for (T*M, T*g). Note that we require a locally
symmetric space to be first of all, non-flat.

From Proposition 6.2 and Proposition 4.1, we get

PROPOSITION 7.1. Let g be a metric on M. Then, the horizontal lift (F4)¥
of V& to T*M 1s the metric connection of T*g with torsion (1/2)Sy,y where H 1s
the projection temsor onto the horizontal distribution of T*M determined by V*.
Furthermore, W)¥ 1s also metrical with respect to the Riemann extension of V*.

To see what other connections are deducible from T*g, let us work out the
frame components of its Riemannian connection. They can be obtained from
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(3.3) by letting [G;,.] to be the matrix in (6.2). Th= resulting frame components
are:

= h ~p_ 1 a

F?i:{] 1}’ F?f:TpaKjih y

[h,— 1 a i ¢ al i

ng—Tgh 8 bpcKa]b ’ [,.'ztz'— _'{] h} y
(7.0)

~;"Li:_%—ghagjbpcKaibc ’ wfl:() ’

=0, Fi=0

We point out that the frame components in (7.1) are different from that given
in [7, p. 466] because the adapted frame used there is different from that of
ours.

From (7.1), we can work out the associated B-tensor of the Riemannian
connection, using (2.19). The possibly non-zero frame components are

Bji*= *%g"“g“’pcff ap’

and

Biih: —‘%ghagjbpcl{aibc .

The linear connection on 7T*M obtained from the Riemannian connection of T*g
according to Lemma 2.1 has therefore the following possiblv non-zero frame
components :

f?i: ]h i}’ f?_i:_ZLpaKﬂha’ fvfi:—‘{] l /’l}'

Thus, finally, we have
PROPOSITION 7.2. The linear connection obtained from the Riemannian con-
nectwon of T*g according to Lemma 2.2 1s just the wntermediate lift of V.
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