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METRICS AND CONNECTIONS ON THE
COTANGENT BUNDLE

BY KAM-PlNG MOK

§1. Introduction.

Let M be an n-dimensional differentiable manifold of class C°° and T*M its
cotangent bundle, which is a 2n-dimensional differentiable manifold. The pro-
blem of extending structures on M to T*M has been the subject of a number
of papers. An account of these can be found in Yano and Ishihara [12].
Starting from a torsion-free linear connection on M, Patterson and Walker [5]
have shown how to construct a metric on T*M, a process which they called
the Riemann extension. Using the Riemann extension, Yano and Patterson [13,
14] have defined the complete and horizontal lifts of linear connections on M
to T*M. On the other hand, Tondeur [8] and Sato [7] have constructed a
metric on T*M from a metric on M, the construction being the analogue of the
metric of Sasaki for the tangent bundle TM [6].

When a linear connection is given on M, we may view T*M as an almost
product manifold. Linear connections on an almost product manifold have been
studied by Walker [9], Yano [10] and Davies [2], among others. In the present
paper, we shall further consider the metrics and connections on T*M mentioned
above, bringing in the general theory of linear connections on an almost pro-
duct manifold whenever possible. In this way, the relations between the various
metrics and connections become clearer, and we obtain a new linear connection
on T*M, namely the intermediate lift, which, in some sense, lies somewhere
between the complete and horizontal lift. Refering to the "adapted frames" on
T*M, we have computed the components of the curvature tensors of the various
linear connections on T*M, as well as that of their covariant derivatives.

Similar considerations to the metrics and connections on the tangent bundle
TM can be found in the papers of Davies [2] and Yano and Davies [11]. In
fact, our intermediate lift is the cotangent bundle analogue of the connection

V on TM appearing in [2, §4].
As to notations and definitions, we shall generally follow that in [12]. In

particular:
1) Indices α, b, c, ••• h, i, j, ••• have range in {1, •••, n}, while indices A, B,

C, ~ λ, μ, v, ~ have range in {1, •••, n n+1, •••, 2n}. We put f— n+i. Sum-
mation over repeated indices is always implied. Entries of matrices are written
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as AS, Λji or Λjί, and in all cases, j is the row index while i is the column
index.

2) π : T*M-»M denotes the canonical projection of T*M onto M. Coordinate
systems in M are denoted by (17, xh\ where U is the coordinate neighbourhood
and xh the coordinate functions. (U, xh) induces in a natural way a coordinate
system {π~l(U\ (xh, ph)} in T*M which is called the induced coordinate system.
We shall sometimes write ph as xn and (xh, ph) as (XA\

3) Components in (ί/, xh) of geometric objects in M will be referred to
simply as components. If we want to emphasize (U, xh\ we shall say com-
ponents in £7. The same applies to geometric objects in T*M.

4) V denotes a linear connection on M with components Γjt. Its covariant
differentiation will again be denoted by the same symbol F. The curvature
tensor R of V has components Rkji

h We assume throughout that F is torsion-
free.

5) g denotes a metric on M with components gjt. The covariant differentia-

tion in (M, g) is denoted by Vs. As usual, {. }is the Christoffel symbol for

gji and [_gsίΊ is the inverse of the matrix [£>]. The curvature tensor K of
(M, g) has components AΓ^ Λ

§2. T*M as an almost product manifold.

Let V be the field of n-planes tangent to the fibres of T*M. It is an in-
tegrable ditribution on T*M, which we called the vertical distribution. A
torsion-free linear connection F on M determines uniquely on T*M an n-dim-
ensional distribution complementary to V. This distribution will be called the
horizontal distribution associated with F and is denoted by H. The pair (H, V)
defines an almost product structure on T*M and turns it into an almost product
manifold.

Let {π~\U\ (xh, ph)} be an induced coordinate system in T*M. The horiz-
ontal distribution //restricted to π~l(U} is spanned by the n independent vector
fields

(2.D ^

where

(2,2)

The vertical distribution V restricted to π~l(U} is spanned by the n independent
vector fields

(2.3) D}=- ^dp,
It follows that {Dλ} = {DJt Dj} constitute a frame on π~\U\ As the frame is
adapted to the almost product structure (H, V\ we call them adapted frames
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on π~l(U\ In what follows, we usually refer our tensors and other geometric
objects on T*M to their components with respect to the adapted frame. Such
components will be called the frame components on π'1^), or more simply
frame components, to distinguish them from the usual components.

The coframe {D3, Dj} on π~λ(U) dual to the adapted frame is given by

(2.4) D>=dx>,

The component matrix of the adapted frame and its coframe are

Γ
δji Oη i- δjt Oη

and L-1-T9 5 I I T1 s I
£ . . Q . . J L 2 O -*

respectively. We write

(2.6)2 L—\_L%] and L~I—\_LA]

to indicate their entries.

The "non-holonomic objects" Ωλμ

v of the adapted frame are defined by

(2.7) LDλ,Dμ-]=Ωλμ

vD»,

i.e., by

Using (2.8), (2.1), (2.3) and (2.6), we get the following as the possibly nonzero
components of Ωλμ

v:

(2.9) JίΓ_ a Jίh_^

The projection tensors of T*M onto H and V will again be denoted by H
and V. They are tensors of type (1, 1) on T*M whose frame component
matrices are

rSji 0Ί Γ0 0
H:\ ]• V:\

L 0 0-1 10 δ1t

and satisfy

(2.10) H2=H, V2=V, HV=VH=Q, H+V=I,

where / is the identity tensor. The usual expression for the torsion tensor
S=SHjV associated with H and V (see [3, p. 37]) reduces, by virtue of (2.10)
and the integrability of V, to

S(X, }=-

where X, Ϋ are arbitrary vector fields on T*M. It follows that the only possibly
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non-zero frame component of 5 is

(2.11) Sjt*= -2*V= -2paRjih

a .

Let V be an arbitrary linear connection on T*M whose components in
π~\U) are Γ£B. The frame components of F in π~l(U) are defined by

(2.12)

If ^ is a vector field on T*M whose frame components are Xv, then

(2.13) PiX^DάX^+ΓϊμX*'

are exactly the frame components of the covariant derivative P ' X of X. There
are formulas analogous to (2.13) for tensor fields of other types. The frame
components of the torsion tensor f and the curvature tensor R of F are given

by

(2.14) flμ=nμ-fv

μλ-Ωμ,

(2.15) Ra,ιμ

v=Dω(nμ}-Dλ(fv

ωμϊ + Γ^

Let C be a curve in T*M whose equation in π~l(U} is ^=^(i). The frame
components of its velocity vector are then Lv

A(dxA / df)=(Dv / dt\ It can be shown
that C is a geodesic of F iff on each π~l(U\ we have

d

When a linear connection F is given on an almost product manifold, Walker
[9] has considered the conditions for the distributions of the almost product
manifold to be path-parallel, relative parallel, etc. These conditions have been
reformulated by Yano [10] in terms of the connection components relative to
the frames adapted to the almost product structure. In the case of T*M, the
conditions of parallelism for H and V with respect to a linear connection F
are :

(2.17) H is path-parallel iff

H is parallel along V iff f£=0,

H is parallel iff f£=0,

V is path-parallel iff f^+f^=Q9

V is parallel along H iff /V=0,

V is parallel iff f jϊ=0.

Here, all parallelisms are with respect to F and f\μ are the frame components
of F as defined in (2.12).

Walker and Yano have also explicitly constructed linear connections on an
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almost product manifold satisfying certain conditions of parallelism. We now
adapt these constructions to T*M. We first follow Davies [2] and consider the
Λ-tensor and the 5-tensor associated with a linear connection ^ on T*M. They
are tensors of type (1, 2) on T*M whose frame components Aλ[l

v and Bλμ

v are
respectively:

Λ h — r\ Λ h— ~nh
-ΓLjί —v > - f ^ j i —* jί "

A "^ T*fy- A fc π

(2.18) " " Jt'
Ajih=0, Atf=Γfi9

..h _ f'h
—
_ f'h
—L j ί >

B,t

h=-ni, Bjf=-f*,
(2.19) Λ _ _ ~ Λ ,__-,-

B^=~γ(Γ^+f^), Bjf=Q.

The construction of linear connections on T*M mentioned above are then:

LEMMA 2.1. Let V be a torsion-free linear connection on T*M and B its as-
sociated B-tensor. With respect to the linear connection P+B, H is parallel along
V, V is parallel along H and both H, V are path-parallel.

LEMMA 2.2. Let V be a torsion-free linear connection on T*M and A its as-
sociated A-tensor. With respect to the linear connection V—A, both H ana V are
parallel.

§3. The Riemann extension and the complete lift.

Starting from a torsion-free linear connection V on M, Patterson and
Walker [5] have constructed a metric on T*M, namely the Riemann extension
of V. If the components in U of V are /% the component matrix in π~\U)
of the Riemann extension is

(3.1)
δίt 0

It follows that the corresponding frame component matrix is

Γ ° δa-]
(3.2) '1

U,f O J

Let Vc be the Riemannian connection on T*M associated with the Riemann
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extension. Yano and Patterson [13] called Vc the complete lift of V to T*M.
For an arbitrary metric on T*M whose frame component matrix on π~l(U}

is \_Gλμ~], the frame components f\μ of its associated Riemannian connection
can be shown to be given by

(3.3) Γ^^G^CAiG^+flA^

where [G ]̂ is the inverse of the matrix \_Gλμ~] and

(3.4) Ω»λμ=G"GμτΩσf .

On letting [_Gλμ] to be the matrix in (3.2), we then get from (3.3) the follow-
ing as the possibly non-zero frame components of the complete lift Vc :

(3.5) Γ5t=Γh f $=AΛuΛ Γ^-Γ** -

By using (3.5) and (2.15), we obtain the following as the possibly non-zero
frame components of the curvature tensor R of Ψ° :

(3.6) „ _ „ _ „ .
p Ji _ _ . p ^ p .h _ _ .p. h _ __ p j
K kji — κkjfι ) K kji — K jki — κhik

It follows from (3.6) that (T*M, Pc) is locally flat iff (M, Ψ} is locally flat. Fur-
thermore, we can use (3.5) and (3.6) to compute the frame components of VCR.
Its possibly non-zero frame components are found to be :

(3.7)

From (3.7), we can get the result of Afifi [1] that (T*M, Fc) is locally symmetric
iff (M, Γ) is locally symmetric (cf. [12, p. 271-2]).

A curve C in Γ*M can be regarded in a natural way as its projection C—
πC onto M together with a field of covectors along C. We wish to consider
the condition for C to be a geodesic in (T*M, F°). As usual, we confine ours-
elves to π~\U) and let the equations of C be xh=xh(t), Pn=ph(f). Then the

equation of C is xh=xh(f) and ph(t) gives the components of the covector field
along C. We recall that (Dv/df) are the frame components of the velocity
vector of C and that DJ is just the usual covariant differential
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From (2.16) and (3.5), we get immediately the following as the condition for C
to be a geodesic in (T*M, Pc) :

d2xh

(3.8)

Here, (d2ph/dtz)—(d/df)(dpft/df) is the usual second intrinsic derivative of the
covector field along C. The first condition in (3.8) means that C is a geodesic
in (M, Γ).

For the special case of V = V8 , i.e., V is the Riemannian connection of a
metric g on M, we can interpret the second condition in (3.8) as follows. Let
us consider the vector field along C whose components are yh(f)=ghapa(t\ Then,
equation (3.8)2 is easily seen to be equivalent to

k a dxj dxl _

where (δ2yk/dt2)=(δ/dt)(dyk/dt) is the usual second intrinsic derivative for
yk(t). In this case, (3.9) is exactly the condition for the vector field along C to
be a Jacobi field in (M, V8}.

§4. Horizontal lift of linear connection.

Let R be the curvature tensor of V . The local tensor fields

a

on each π~l(U) piece together to form a tensor field of type (1, 2) on T*M,
which we denote by γR. In [14], Yano and Patterson define the horizontal lift
7H of V to T*M to be the linear connection

Since the only possibly non-zero frame component of γR is (γR)ji

h=paRhlJ

a, it
follows from (3.5) that the non-zero frame components of VH are

(4.1) n=O,f5ι=-Γ5Λ.
From (4.1) and (2.14), it can be shown that the only posssibly non-zero

frame components of the torsion tensor T of VH are

(4.2) V=-β/=-/>αfy*β

Comparing (4.2) with (2.11), we found that the torsion tensor T of VH is exactly
half that of the torsion tensor S=SH)V associated with the projection tensors
H and V. On the other hand, a routine calculation using (4.1) and (3.2) shows
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that the metric tensor of the Riemann extension of F is parallel with respect
to VH. Hence,

PROPOSITION 4.1. VH is the metric connection of the Riemann extension of
F with torsion equal to (l/2)SHjV.

Using (4.1) and (2.15) we found that the possibly non-zero frame components
of the curvature tensor R of VH are

(4.3) Rkjί

h=Rkjf, RkJf=-RkJh* .

From (4.1) and (4.3), we can compute the frame components of VHR, the follow-
ing of which are possibly non-zero :

(4.4) VιRkji

h=PιRkji\ PιRkJf= -VιRkjh

l .

Thus, (T*M, F") is locally flat (resp. locally symmetric) iff (M, F) is locally flat
(resp. locally symmetric).

Let C be a curve in T*M whose equations in π~l(U) are xh=xh(t\ ph=ph(t).
The condition for C to be a geodesic, namely (2.16), in the case of VH, reduces
to

dxj

Λ ,
^, and

(4.5)
dph \ Γ< dx>- ( ph \

~ dt\ dt )dt\ dt jh at at ~

Thus, C is a geodesic in (T*M, Ϋ H ) if its projection onto M is a geodesic and
its associated covector field has vanishing second intrinsic derivative in (M, F).

§5. The intermediate lift.

Let us consider the parallelisms of H and V. If we compare the frame
components of Fc as listed in (3.5) with conditions (2.17) for parallelism, we
found that V is path-parallel and is parallel along H in (T*M, Fc). Whereas
H is parallel along V, it is not in general path-parallel. However, we can con-
struct from Fc a linear connection on T*M having this property as well, bearing
in mind that Vc is torsion-free so that wτe can use Lemma 2.1.

To do this, we first obtain from (2.19) and (3.5) the frame components of
the 5-tensor B associated with Fc. We find that the only possibly non-zero
frame component is

(5.1) Bjf= — \-pa(Rhl,*+Rh,n .

It follows that the possibly non-zero frame components of the linear connection
Fc+β are

(5.2) Π^Γ^ n=paRjih

a, f*i=-Γ}h .
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Thus,
PROPOSITION 5.1. Let V1 be the linear connection on T*M which is obtained

from Ψc according to Lemma 2.1, i.e., F7—Fc+£. The possibly non-zero frame
components of V1 are given by (5.2). With respect to F7, H is parallel along V,
V is parallel along H and both H, V are path-parallel.

From (5.1), we see that the skew-symmetric part of the B-tensor of Fc is
zero. It then follows from F 7—ΫC+B that V1 is torsion-free. Hence, the only
case when V1 is metrical with respect to the Riemann extension of V is when
F7=FC.

Let us compare (5.2) and the conditions (2.17) for parallelism. We notice
that V is parallel in (T*M, F7) but H is not (unless V is locally flat). Since F7

is torsion-free, we can obtain from it a linear connection with respect to which
both H and V are parallel by Lemma 2.2. From (2.18) and (5.1), we first obtain
the following as the only possibly non-zero frame components of the ^1-tensor
A associated with F7:

(5.3) Aji :=z~2'PaRjiha

The linear connection V1~A constructed according to Lemma 2.2 has

ΓΊi ~Γh f'h. jΓi1 jί—1 jit L 3i—~~L jh

as its non-zero frame components. But this is exactly that appearing in (4.1).
Hence,

PROPOSITION 5.2. The horizontal lift F77 is obtainable from F7 by Lemma
2.2, i.e., PH=PJ-A.

Since F7 is obtained from Vc and F77 from F7, we shall call F7 the in-
termediate lift of F to T*M.

We can compute the curvature tensor R of F7 in the usual way. Its pos-
sibly non-zero frame components are found to be

Rkji

h=Rkji\
(5.4)

It follows that (T*M, F7) is locally flat if (M9J7) is locally flat. Furthermore,
the possibly non-zero frame components of F7J? are

(5.5)

+_JL . / p α p t i 1 p a
~~Pa\^-ίth K kjt ~\ f)~-K kit
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I •*•
i 2

Thus, there is no nice condition for (T*M, F7) to be locally symmetric.
From (5.3), we see that the symmetric part of the ^4-tensor of V1 is zero.

It then follows from ΨH=VI—A that VH and V1 have the same geodesies.

§6. The metric T*(g, F).

Let g be a metric and V a torsion-free linear connection on M. We shall
construct from g and V a metric on T*M, which we denote by T*(g, F). The
line element of T*(g, F) on π~\U} is taken to be

(6.1) gjidx'dxi+gVδpjδpt

where dpJ—dpJ—p(1Γ
a

jidx1' is the usual covariant differential appearing in (2.5).
It is easily seen that (6.1) indeed defines a global metric on T*M and that the
frame component matrix of T*(g, F) is

rSjt 0 -,
(6.2)

L o ^*J

We would like to establish conditions for Fc, F7 and VH to be metrical
with respect to T*(g, F). Let us denote by G the metric tensor of T*(g, F) and
by [_Gλμ~] the matrix in (6.2). By a simple calculation, the possibly non-zero
frame components of FCG, FJG and F^G are found respectively to be

(6.3) F/G;ΐ=F^, VfG^VfGi^-ptRvfg", V fG^

(6.4) F/G^

(6.5)

From (6.3) and (6.4), we get

PROPOSITION 6.1. Let g be a metric and F a torsion-free linear connection
on M. Then, the following conditions are equivalent :

(a) Fc is metrical with respect to T*(g, F),
(b) F7 is metrical with respect to T*(g, F),
(c) F is the Riemannian connection of g and is locally flat.
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In this case, ψc^=.VI^= VH and is the Riemannian connection of T*(g, F). It is
also the Riemannian connection of the Riemann extension of F.

Proposition 6.1 is especially interesting when g is positive definite. Then,
T*(g, F) is again positive definite. On the other hand, the Riemann extension
of F has n positive and n negative signs. Yet their associated Riemannian
connections are still the same.

From (6.5), we similarly get

PROPOSITION 6.2. Let g be a metric and F a torsion-free linear connection
on M. Then, VH is metrical with respect to T*(g, F) iff F is the Riemannian
connection of g.

§7. The metric T*g.

The results of Propositions 6.1 and 6.2 indicate that the interesting cases
of T*(g, F) occur when V—Vg, i.e., F is the Riemannian connection of g. From
now on, we shall assume this. The metric T*(g, F) now depends solely on g
and we denote it by T*g. Its line element is still given by (6.1), but with

.; zJ~"

The metric T*g was first studied by Tondeur [8], who showed that T*g
together with the canonical 2-form dxJAdpj on T*M defined an almost Kaeh-
lerian structure on T*M. Let TM be the tangent bundle over M, p: TM—>M
the canonical projection and {p~l(U}, (xh, /*)} the usual induced coordinate
system in TM. Let Tg be the Sasaki metric on TM ([6]). It was shown by
Sato [7] that the maps p~l(U)^π~l(U) defined by

pieced together to form an isometry/: (TM, Tg)^(T*M, T*g). Although / does
not preserve the complete lifts of vector fields to TM and to T*M, the metric
properties of T*g can be obtained from the corresponding properties of Tg. In
particular, Kowalski [4] has shown that (TM, Tg) is never locally symmetric,
and the same is thus Ltrue for (T*M, T*g). Note that we require a locally
symmetric space to be first of all, non-flat.

From Proposition 6.2 and Proposition 4.1, we get

PROPOSITION 7.1. Let g be a metric on M. Then, the horizontal lift (Ϋg}H

of Ψg to T*M is the metric connection of T*g with torsion (l/2)SHfV where H is
the projection tensor onto the horizontal distribution of T*M determined by I78.
Furthermore, (Γg)H is also metrical with respect to the Riemann extension of Vg.

To see what other connections are deducible from T*g, let us work out the
frame components of its Riemannian connection. They can be obtained from



METRICS AND CONNECTIONS 237

(3.3) by letting [_Gλfl~] to be the matrix in (6.2). The resulting frame components
are:

(7.1)

/>=o, /*=o.

We point out that the frame components in (7.1) are different from that given
in [7, p. 4661 because the adapted frame used there is different from that of
ours.

From (7.1), we can work out the associated 5-tensor of the Riemannian
connection, using (2.19). The possibly non-zero frame components are

1

and
±

The linear connection on T*M obtained from the Riemannian connection of T*g
according to Lemma 2.1 has therefore the following possibly non-zero frame
components:

~ r /ι ϊ ~ - 1 ~ - ( i 1
faI - } • ? ' ( ' fa O r d'*• jiϊi i •*• ji I -, h \ *

\.J It £ι \*J liJ

Thus, finally, we have
PROPOSITION 7.2. The linear connection obtained from the Riemannian con-

nection of T*g according to Lemma 2.2 is just the intermediate lift of F8.
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