ON CONFORMALLY FLAT SPACES WITH DEFINITE RICCI CURVATURE II

BY SAMUEL I. GOLDBERG

1. Introduction. There is a formal similarity between the theory of hypersurfaces and conformally flat \(d \)-dimensional spaces of constant scalar curvature provided \(d \geq 3 \). For, then, the symmetric linear transformation field \(Q \) defined by the Ricci tensor satisfies the "Codazzi equation"

\[
(V_X Q)Y = (V_Y Q)X.
\]

This observation together with the technique and results in [2] and [3] yields the following statement.

Theorem. Let \(M \) be a compact conformally flat manifold with definite Ricci curvature. If the scalar curvature \(r \) is constant and \(\text{tr} \, Q^2 \leq r^2/d - 1 \), \(d \geq 3 \), then \(M \) is a space of constant curvature.

The corresponding result for hypersurfaces is due to M. Okumura [3].

Corollary. A 3-dimensional compact conformally flat manifold of constant scalar curvature whose sectional curvatures are either all negative or all positive is a space of constant curvature.

Note that, in general \(\text{tr} \, Q^2 \geq r^2/d \) with equality, if and only if, \(M \) is an Einstein space.

Examples of compact negatively curved space forms are given in the paper by A. Borel [1].

2. Definitions and formulas. Let \((M, g) \) be a Riemannian manifold with metric tensor \(g \). The curvature transformation \(R(X, Y), X, Y \in M \) — the tangent space at \(m \in M \), and \(g \) are related by

\[
R(X, Y) = \nabla_{[X, Y]} - \nabla_{[Y, X]},
\]

where \(\nabla_X \) is the operation of covariant differentiation with respect to \(X \) defined in terms of the Levi-Civita connection. In terms of a basis \(X_1, \ldots, X_d \) of \(M \), we set

Received Feb. 7, 1975.
1) Research partially supported by the National Science Foundation.
We denote the scalar curvature by \(r \), that is \(r = \text{tr} Q \), where \(Q = (R^i_j) \), \(R^i_j = g^{ik}R_{jk} \). The manifold \((M, g)\) is conformally flat if \(g \) is conformally related to a locally flat metric. The Weyl conformal curvature tensor defined by

\[
C^i_{jkh} = R^i_{jkh} - \frac{1}{d-2} (R_{jk} \delta^i_h - R_{jh} \delta^i_k + g_{jh} R^i_k - g_{jh} R^k_i) \\
+ \frac{r}{(d-1)(d-2)} (g_{jh} \delta^i_k - g_{jh} \delta^k_i)
\]

consequently vanishes, so if \((M, g)\) is conformally flat

\[
R^i_{jkh} = \frac{1}{d-2} (R_{jk} \delta^i_h - R_{jh} \delta^i_k + g_{jh} R^i_k - g_{jh} R^k_i) \\
- \frac{r}{(d-1)(d-2)} (g_{jh} \delta^i_k - g_{jh} \delta^k_i).
\]

From (2.1) and the second Bianchi identity

\[
\nabla_i C^i_{jkh} = (d-3)C_{jkh},
\]

where

\[
C_{jkh} = \frac{1}{d-2} (\nabla_h R_{jk} - \nabla_k R_{jh}) - \frac{1}{2(d-1)(d-2)} (g_{jh} \nabla^i_r - g_{jh} \nabla^r_i).
\]

For \(d=3 \) it can be shown that if \((M, g)\) is conformally flat, then \(C_{i,j,k} = 0 \).

3. The Laplacian of the square length of the Ricci tensor.

The following formula may be found in [2]:

\[
\frac{1}{2} \Delta \text{tr} Q^2 = g^{ab} \nabla_a R^i_j \nabla_b R_{ij} + R^{ij} g^{ab} \nabla_a (\nabla_b R_{ij} - \nabla_i R_{bj}) \\
+ \frac{1}{2} R^{ij} \nabla_i \nabla_j + K,
\]

where \(\text{tr} Q^2 = R^{ij} R_{ij} \) and

\[
K = R^{lk} (R_{jk} R_{lk} + R_{kj} R_{lk}) + \frac{1}{2} R^{ij} \nabla_i \nabla_j + K.
\]

If \(r = \text{const.} \), the third term on the right-hand side of (3.1) vanishes. If, furthermore, \(M \) is conformally flat and \(d \geq 3 \), then from (2.3) and (2.4), the second term on the right-hand side of (3.1) also vanishes. Substituting (2.2) into the right-hand side of (3.2), we obtain
\[\frac{1}{2} \Delta \text{tr } Q^2 = K + g(FQ, FQ), \]

where

\[(d-1)(d-2)K = d(d-1) \text{tr } Q^2 - r(2d-1) \text{tr } Q^2 + r^3. \]

4. Proof of Theorem. Put

\[S = Q - \frac{r}{d} I, \]

where \(I \) is the identity. Since \(\text{tr } S^2 \geq 0, \)

\[\text{tr } Q^2 \geq \frac{r^2}{d}, \]

equality holding if and only if \(M \) is an Einstein space. Since the scalar curvature is constant, the Laplacian \(\Delta f^2 \) of the function \(f^2 = \text{tr } S^2, f \geq 0, \) satisfies

\[\Delta f^2 = \Delta \text{tr } Q^2, \]

so that

\[\frac{1}{2} \Delta f^2 = K + g(FQ, FQ). \]

From the definition of \(S, \) we get

\[\text{tr } S = 0, \]

\[\text{tr } Q^2 = \text{tr } S^2 + \frac{r^2}{d}, \]

\[\text{tr } Q^2 = \text{tr } S^2 + \frac{3r}{d} \text{tr } S^2 + \frac{r^3}{d^2}. \]

Substituting (4.3) and (4.4) in (3.3), we obtain

\[(d-1)(d-2)K = d(d-1) \left(\text{tr } S^2 + \frac{3r}{d} f^2 + \frac{r^3}{d^2} \right) - r(2d-1) \left(f^2 + \frac{r^2}{d} \right) + r^3. \]

Lemma. Let \(a_i, i = 1, \ldots, d \) be real numbers such that

\[\sum_{i=1}^{d} a_i = 0, \quad \sum_{i=1}^{d} a_i^2 = k^2, \quad k = \text{const.} \geq 0. \]

Then,

\[-\frac{d-2}{\sqrt{d(d-1)}} k^3 \leq \sum_{i=1}^{d} a_i^3 \leq \frac{d-2}{\sqrt{d(d-1)}} k^3. \]

Applying the lemma to the eigenvalues of \(S, \) (4.5) yields the following inequality

\[(d-1)K \geq f^2 (r - \sqrt{d(d-1)} f). \]
Thus, since $f \leq r/\sqrt{d(d-1)}$, $\Delta f \geq 0$, from which since M is compact, $f^2 = \text{const.}$, so $\text{tr} \ Q^2 = \text{const.}$ It follows from (3.1) that $\nabla Q = 0$. Theorem 1 of [2] then gives the desired result.

In case the sectional curvatures are all positive the corollary is due to M. Tani [4].

The condition that the Ricci tensor is definite is essential. For, if $M = M_1 \times N$ where M_1 has constant curvature and N is 1-dimensional, then M is conformally flat, r is constant, and $\text{tr} \ Q^2 = r^2/d-1$.

BIBLIOGRAPHY

University of Illinois, Urbana