NEARLY SASAKIAN STRUCTURES

Dedicated to Professor Y. Komatu on his sixtieth birthday

BY D. E. BLAIR*, D. K. SHOWERS AND K. YANO

1. Introduction. In [1, 2, 3] the authors studied almost contact manifolds with Killing structure tensors (called nearly cosymplectic) and showed that if this structure is normal, it is cosymplectic; in particular the (almost) contact distribution is integrable. In this note, the notion of a nearly Sasakian structure is introduced. It is shown that a normal nearly Sasakian structure is Sasakian and hence in particular is contact. In addition, it is shown that a hypersurface of a nearly Kähler manifold is nearly Sasakian if and only if it is quasi-umbilical with respect to the (almost) contact form. In particular, S^5 properly imbedded in S^6 inherits a nearly Sasakian structure which is not Sasakian.

2. Almost contact manifolds. A (2n+1)-dimensional C^{∞} manifold M^{2n+1} is said to have an almost contact structure with an associated Riemannian metric g if there exist on M^{2n+1} a tensor field φ of type (1, 1), a unit vector field ξ and dual 1-form η with respect to g which satisfy

(2.1) $\begin{aligned} \varphi^2 &= -I + \eta \otimes \xi, \quad \varphi \xi = 0, \\ g(\varphi X, \varphi Y) &= g(X, Y) - \eta(X) \eta(Y), \end{aligned}$

I being the identity tensor. We define a fundamental 2-form Φ by

(2.2)
$$\Phi(X, Y) = g(\varphi X, Y).$$

If M^{2n+1} has an almost contact structure, $M^{2n+1} \times R$ can be given an almost complex structure defined by

(2.3)
$$J(X, fd/dt) = (\varphi X - f\xi, \eta(X)d/dt),$$

where f is a C^{∞} function defined on $M^{2n+1} \times R$. If this almost complex structure is integrable, then the almost contact structure is said to be *normal*. Let [J, J]denote the Nijenhuis torsion of J. Sasaki and Hatakeyama [6] computed [J, J]((X, 0), (Y, 0)) and [J, J]((X, 0), (0, d/dt)) which gave rise to four tensors $N^{(1)}, N^{(2)}, N^{(3)}$ and $N^{(4)}$ given by

Received March 27, 1974.

^{*)} Partially supported by NSF Grant GP-36684.

D. E. BLAIR, D. K. SHOWERS AND K. YANO

(2.4)

$$N^{(1)}(X, Y) = [\varphi, \varphi](X, Y) + d\eta(X, Y)\xi,$$

$$N^{(2)}(X, Y) = (\mathcal{L}_{\varphi X}\eta)(Y) - (\mathcal{L}_{\varphi Y}\eta)(X),$$

$$N^{(3)}(X) = (\mathcal{L}_{\xi}\varphi)X,$$

$$N^{(4)}(X) = (\mathcal{L}_{\xi}\eta)(X),$$

176

where \mathcal{L} denotes Lie differentiation. The result is that J is integrable if and only if $N^{(1)}=0$; in particular $N^{(1)}=0$ implies that $N^{(2)}$, $N^{(3)}$ and $N^{(4)}$ also vanish.

A (2n+1)-dimensional manifold is said to have a contact structure if it carries a 1-form η such that $\eta \wedge (d\eta)^n \neq 0$ everywhere and it is known that a contact manifold carries an associated almost contact metric structure (φ, ξ, η, g) with $\varPhi = \frac{1}{2} d\eta$, called a *contact metric structure*. On a contact manifold the tensors $N^{(2)}$ and $N^{(4)}$ vanish and if ξ is a Killing vector field with respect to $g, N^{(3)}=0$ [6]. If an almost contact metric structure is both normal and contact metric, it is said to be *Sasakian*, equivalently

(2.5)
$$(\nabla_X \varphi) Y = -g(X, Y)\xi + \eta(Y)X,$$

where V denotes covariant differentiation with respect to the Riemannian connection of g. From this one can deduce that for a Sasakian structure

$$(2.6) \nabla_X \xi = \varphi X.$$

Finally consider briefly an almost Hermitian structure (J, G):

(2.7)
$$J^2 = -I, \quad G(JX, JY) = G(X, Y).$$

Let \overline{V} denote the Riemannian connection of G. Then J is Killing if and only if

(2.8)
$$(\overline{\nu}_X J)Y + (\overline{\nu}_Y J)X = 0$$

An almost Hermitian structure with J Killing is said to be *nearly Kähler* [5] or *almost Tachibana* [7] and if such a J is integrable, the structure is Kählerian.

3. Nearly Sasakian manifolds. An almost contact metric structure (φ, ξ, η, g) is said to be *nearly Sasakian* if

(3.1)
$$(\nabla_{\mathbf{X}}\varphi)Y + (\nabla_{\mathbf{Y}}\varphi)X = -2g(X, Y)\xi + \eta(X)Y + \eta(Y)X.$$

PROPOSITION 3.1. On a nearly Sasakian manifold the vector field ξ is Killing.

Proof. First of all putting $X = \xi$, $Y = \xi$ in (3.1) we find

$$(\nabla_{\xi}\varphi)\xi = 0$$
 or $\varphi \nabla_{\xi}\xi = 0$,

from which applying φ and using (2.1) and $\eta(V_{\xi}\xi)=0$, we find

(3.2)
$$V_{\xi}\xi=0 \text{ and } V_{\xi}\eta=0.$$

Now applying ${\it V}_{\it \xi}$ to the last equation of (2.1) we find

 $g((\nabla_{\xi}\varphi)X, \varphi Y) + g(\varphi X, (\nabla_{\xi}\varphi)Y) = 0$,

or, using (3.1),

or

$$g(\nabla_X \xi, Y) + g(\nabla_Y \xi, X) = 0$$
,

which shows that ξ is Killing.

THEOREM 3.2. For a nearly Sasakian structure normality is equivalent to contact metric. In particular a normal nearly Sasakian structure is Sasakian.

Proof. We compute

$$\begin{split} \eta(N^{(1)}(X, Y)) &= \eta((\overline{\mathcal{V}}_{\varphi X} \varphi)Y - (\overline{\mathcal{V}}_{\varphi Y} \varphi)X) + d\eta(X, Y) \\ &= \eta(-(\overline{\mathcal{V}}_{Y} \varphi)\varphi X - 2g(\varphi X, Y)\xi + (\overline{\mathcal{V}}_{X} \varphi)\varphi Y \\ &+ 2g(\varphi Y, X)\xi) + d\eta(X, Y) \\ &= (\overline{\mathcal{V}}_{Y} \eta)(\varphi^{2}X) - (\overline{\mathcal{V}}_{X} \eta)(\varphi^{2}Y) - 4\varPhi(X, Y) + d\eta(X, Y) \\ &= -(\overline{\mathcal{V}}_{Y} \eta)(X) + (\overline{\mathcal{V}}_{X} \eta)(Y) - 4\varPhi(X, Y) + d\eta(X, Y) \\ &= 2d\eta(X, Y) - 4\varPhi(X, Y) \,. \end{split}$$

Thus if $N^{(1)}(X, Y)=0$ we have $\Phi = \frac{1}{2}d\eta$.

Conversely if a nearly Sasakian structure (φ, ξ, η, g) is also a contact metric structure, $\Phi = \frac{1}{2} d\eta$, so $d\Phi = 0$. Therefore

$$\begin{split} 0 &= (\mathcal{F}_{\mathcal{X}} \boldsymbol{\varPhi})(Y, Z) - (\mathcal{F}_{\mathcal{Y}} \boldsymbol{\varPhi})(X, Z) + (\mathcal{F}_{\mathcal{Z}} \boldsymbol{\varPhi})(X, Y) \\ &= g((\mathcal{F}_{\mathcal{X}} \varphi)Y, Z) - g((\mathcal{F}_{\mathcal{Y}} \varphi)X, Z) + g((\mathcal{F}_{\mathcal{Z}} \varphi)X, Y) \\ &= g((\mathcal{F}_{\mathcal{X}} \varphi)Y, Z) - g(-(\mathcal{F}_{\mathcal{X}} \varphi)Y - 2g(X, Y)\xi + \eta(X)Y + \eta(Y)X, Z) \\ &+ g(-(\mathcal{F}_{\mathcal{X}} \varphi)Z - 2g(X, Z)\xi + \eta(X)Z + \eta(Z)X, Y) \\ &= 3g((\mathcal{F}_{\mathcal{X}} \varphi)Y, Z) + 3g(X, Y)\eta(Z) - 3g(X, Z)\eta(Y) \end{split}$$

and hence

$$(\nabla_X \varphi)Y = -g(X, Y)\xi + \eta(Y)X$$

and the structure is Sasakian and consequently normal.

We state expressions for $N^{(2)}$, $N^{(3)}$ and $N^{(4)}$ on a nearly Sasakian manifold; these are obtained by direct computation.

$$\begin{split} N^{(2)}(X, Y) &= -4 [g(\varphi \nabla_X \xi, Y) + g(X, Y) - \eta(X)\eta(Y)], \\ N^{(3)}(X) &= 3 [\varphi \nabla_X \xi - \eta(X)\xi + X], \\ N^{(4)}(X) &= 0. \end{split}$$

In particular, $N^{(2)}=0$ if and only if $\nabla_X \xi = \varphi X$ and hence in view of Theorem 3.2, on a nearly Sasakian manifold the vanishing of $N^{(1)}$ and $N^{(2)}$ are equivalent. Similarly the vanishing of $N^{(1)}$ and $N^{(3)}$ are equivalent on a nearly Sasakian manifold.

4. Hypersurfaces of nearly Kähler manifolds. Let M^{2n+2} be an almost Hermitian manifold with structure tensors (J, G) and Riemannian connection \overline{V} . Let $\iota: M^{2n+1} \rightarrow M^{2n+2}$ be a C^{∞} orientable hypersurface and C a unit normal. The induced metric g is given by $g(X, Y) = G(\iota_* X, \iota_* Y)$ and its Riemannian connection \overline{V} is governed by the Gauss-Weingarten equations

(4.1)
$$\overline{\nabla}_{\iota_*X}\iota_*Y = \iota_*\overline{\nabla}_XY + h(X, Y)C, \quad \overline{\nabla}_{\iota_*X}C = -\iota_*HX,$$

where h denotes the second fundamental form and H the corresponding Weingarten map.

A hypersurface is said to be quasi-umbilical [4] if $h(X, Y) = \alpha g(X, Y) + \beta u(X)u(Y)$ where α and β are functions on the hypersurface and u a non-vanishing 1-form.

Y. Tashiro [8] showed that the hypersurface M^{2n+1} inherits an almost contact metric structure (φ, ξ, η, g) given by

(4.2)
$$J\iota_*X = \iota_*\varphi X + \eta(X)C, \quad JC = -\iota_*\xi$$

and g the induced metric.

THEOREM 4.1. Let M^{2n+1} be a hypersurface of a nearly Kähler manifold M^{2n+2} . Then the induced structure on M^{2n+1} is nearly Sasakian if and only if

(4.3)
$$h(X, Y) = g(X, Y) + (h(\xi, \xi) - 1)\eta(X)\eta(Y).$$

Proof. By the nearly Kähler condition

$$(\overline{\mathcal{V}}_{\iota_{*X}}J)\iota_{*}Y + (\overline{\mathcal{V}}_{\iota_{*Y}}J)\iota_{*}X = 0$$
,

that is,

$$\bar{\mathcal{V}}_{\iota_*X}J\iota_*Y - J\bar{\mathcal{V}}_{\iota_*X}\iota_*Y + \bar{\mathcal{V}}_{\iota_*Y}J\iota_*X - J\bar{\mathcal{V}}_{\iota_*Y}\iota_*X = 0.$$

Substituting $J\iota_*X = \iota_*\varphi X + \eta(X)C$ and using the Gauss-Weingarten equations we can reduce the above to

178

$$(\nabla_{X}\varphi)Y + (\nabla_{Y}\varphi)X + 2h(X, Y)\xi - \eta(X)HY - \eta(Y)HX = 0$$

Clearly if $h(X, Y) = g(X, Y) + (h(\xi, \xi) - 1)\eta(X)\eta(Y) M^{2n+1}$ is nearly Sasakian. Conversely if the structure is nearly Sasakian we have

$$-2g(X, Y)\xi + \eta(X)Y + \eta(Y)X + 2h(X, Y)\xi - \eta(X)HY - \eta(Y)HX = 0,$$

from which

$$2h(X, Y) = 2g(X, Y) - 2\eta(X)\eta(Y) + \eta(X)h(Y, \xi) + \eta(Y)h(X, \xi).$$

Setting $Y = \xi$ we find that

$$h(X, \xi) = h(\xi, \xi)\eta(X)$$

and therefore

$$2h(X, Y) = 2g(X, Y) - 2\eta(X)\eta(Y) + 2h(\xi, \xi)\eta(X)\eta(Y),$$

or

$$h(X, Y) = g(X, Y) + (h(\xi, \xi) - 1)\eta(X)\eta(Y)$$

as desired.

As an example we show that the 5-dimensional sphere S^5 has a nearly Sasakian structure which is not Sasakian; in particular this is not the usual almost contact metric structure on an odd-dimensional sphere.

First consider the unit sphere S^6 in \mathbb{R}^7 with its vector product \times induced from the Cayley algebra. Letting N denote the unit outer normal and ϕ the imbedding, $\phi_*JX=N\times\phi_*X$ defines an almost complex structure J on S^6 which, as is well known, is nearly Kähler with respect to the induced metric. Now consider S^5 umbilically imbedded in S^6 at a "latitude" of 45° and with unit normal C such that the second fundamental form h(X, Y)=g(X, Y). Then by Theorem 4.1 we see that the induced structure on S^5 from the nearly Kähler structure on S^6 is nearly Sasakian. However on a Sasakian manifold all sectional curvatures of plane sections containing ξ are equal to 1. Thus since the induced metric on S^5 has constant curvature 2, the induced nearly Sasakian structure is not Sasakian.

BIBLIOGRAPHY

- BLAIR, D. E., Almost contact manifolds with Killing structure tensors, Pacific J. of Math., 39 (1971), 285-292.
- [2] BLAIR, D. E. AND D. K. SHOWERS, Almost contact manifolds with Killing structure tensors, II, to appear.
- [3] BLAIR, D. E. AND K. YANO, Affine almost contact manifolds and f-manifolds with affine Killing structure tensors, Ködai Math. Sem. Rep., 23 (1971), 473-479.
- [4] CHEN, B. Y. AND K. YANO, Special quasi-umbilical hypersurfaces and locus of spheres, Atti della Accademia Nazionale dei Lincei, 53 (1972), 255-260.
- [5] GRAY, A., Nearly Kähler manifolds, J. of Diff. Geom., 4 (1970), 283-309.

- [6] SASAKI, S. AND Y. HATAKEYAMA, On differentiable manifolds with contact metric structures, J. of Math. Soc. Japan, 14 (1962), 249-271.
- [7] TACHIBANA, S., On almost analytic vectors in certain Hermitian manifolds, Tôhoku Math. J., 11 (1959), 351-363.
- [8] TASHIRO, Y., On contact structures of hypersurfaces in complex manifolds, Tôhoku Math. J., 15 (1963), 50-62.
- [9] YANO, K. AND T. SUMITOMO, Differential geometry on hypersurfaces in a Cayley space, Proc. Roy Soc. of Edinburgh, 66 (1964), 216-231.

MICHIGAN STATE UNIVERSITY