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1. Introduction.

Let X be a compact Hausdorff space, and let C(X) be the commutative C*-
algebra of all continuous complex functions on X. A bounded linear operator
T of C(X) into itself is called a Markov operator it T=0, |T||=1, and T1=1.

Let X be a semigroup of Markov operators. For each fe C(X), co{Tf: T2}
denotes the closed convex hull of {Tf:TeX}. geC(X)is called a 2-invariant
function if Tg=g for all TeJX.

In ergodic theory the following conditions on X are interesting: (I) Each
co{Tf: T2} contains exactly one 2-invariant function. (II) Eachco{Tf: T}
contains at least one X-invariant function. In Theorem 1, we shall give some
necessary and sufficient conditions that (I) holds.

Let C(X)* be the dual Banach space of C(X). p=C(X)*is called a state if
#=0 and |pl=p(1)=1. If T is a Markov operator and if g is a state, then
T*p is also a state where T* denotes the adjoint operator of 7. A state p is
called a X-invariant state if T*u=g for all Tel.

Let K; be the set of all Y-invariant states. Then K is a weak*-compact
convex subset of C(X)* peK; is called an extremal X-invariant state if g is
an extreme point of Kj.

A proper closed ideal I of C(X) is called a 2-invariant ideal if T(I)CI for
all TeX. There exists at least one maximal X-invariant ideal, and each 2X-
invariant ideal is contained in some maximal X-invariant ideal. If g is a -
invariant state, then I,={feC(X): u(|f])=0} is a Y-invariant ideal.

In Theorem 2, we shall show that if (I) holds, then g#—I, is a bijection of
the set of all extremal X-invariant states onto the family of all maximal X-
invariant ideals.

Our discussion is much due to Deleeuw and Glicksberg [1], Schaefer [2],
Sine [3], and Takahashi [4].

2. Theorems.

co 2 denotes the set of all finite convex linear combinations of operators
in 2. co2 is also a semigroup of Markov operators. We note that ¢o {Tf:
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Te3}={Af: Acco Y}. f denotes the unique 3-invariant function in <o {Tf:
T<2} whenever (I) holds.

LEMMA 1. If (I) holds, thgn for any e>0and f;€C(X) (i=1, 2, ---, n), there
exists an Aeco X such that | fi—Af;|Ze (1=1, 2, ---, n).

Proof. It is easy to see that 1217=f~ for all feC(X) and A=co 2. First we
choose an A,=co X such that | /i—A,f,|<e. Next we choose an A,=co X such
that IIAT]‘Z—AZ(AIfz)Ilés. Let A=A,A,. Then Acco X and || f,—Af;|<e (i=1, 2).
An induction argument completes the proof.

Let B(2) be the commutative C*-algebra of all bounded complex functions
on 2. For each feC(X) and veC(X)* we define fQveB(XY) by (JQu)(T)=
v(Tf). Let L(X) be the linear span of {f/Qv:feC(X), veC(X)*} in B(X). We
note that 1€ L(X) and p*L(Y) if p=L(2) where ¢* denotes the complex con-
jugate function of ¢, and that ¢; (or ;p)eL(2) if S€¥ and = L(3) where ¢,
(or ,¢) denotes the right (or left) translation of ¢ by S. meL(2)* is called a
right (or left) invariant mean on L(2) if m(p)=0 whenever =0, |m|=m(1)=1,
and m(g;) (or m(;p))=m(p) for all S€X and p=L(X). A right and left invari-
ant mean m on L(X) is called a two-sided invariant mean on L(X). If m is a right
invariant mean on L(Z), then for each state ¢ we can define Z€ Ky by f(f)=
m(f@u). In the following theorem, M; denotes the set of all X-invariant
functions in C(X).

THEOREM 1. The following conditions are equivalent-

(1) (I) holds.

(2) There exists a two-sided invariant mean on L(X), and My separates K.
(3) There exists a right invariant mean on L(X), and My separates K.

(4) There exists a nght invariant mean on L(ZX), and (II) holds.

Proof. (1) implies (2): If g, and g, are distinct Z'-Ninvariant states, then
w(f)*p(f) for some feC(X). This implies that p,(7)=p(F)> ()= p(f).
Thus M; separates K;. For each =7 [:Qv; € L(Y), we define m(p)=3%; vy( 7).
We shall show that m(p) is independent of the particular representation of ¢
and that m is a two-sided invariant mean on L(X). Suppose 32, f:Qy, is
identically zero. By Lemma 1, for any >0 there exists an A=co 2 such that
| fi—Afi<e (i=1,2, ---,n). Then we have
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Since ¢>0 is arbitrary, 2%, v;( f,):O. Thus we may unambiguously define m(yp).
It is easy to see that m is linear and m(1)=1. We shall show that |m|=1.
Since m(1)=1, it suffices to show that |m||<1. Suppose =37,/ ;®v;. Again
by Lemma 1, for any >0 there exists an Aeco X such that |fi—Afi|<e (i=
1,2, -+, n). Then we have
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Since ¢>0 is arbitrary, |m(p)|=|l¢ll. It is easy to see that m(¢*)=m(¢p). Sup-
pose =237, f;&@v,=0. Then m(p) is real. We assume that a=m(p)<0. Let ¢
be a number such that 0<e<—a. By Lemma 1, we can choose an Aeco
such that | f;i—Afill=e/Zi v, =1, 2, ---, n). Let =3, v(Af,). Then =0
and |a—p|<e, so we have 0=<pB=|a—fB|+a=<e+a<0. This is a contradiction.
Thus m(p)>0. If o=37, f,Qv;, then ¢,=2%; Sf;Qv, and ;0=2%, i QS*y;. It
is easy to see that m(p,)=m(;p)=m(p).

(2) implies (3): Evident.

(3) implies (4): Let m be a right invariant mean on L(2), and let 0, be
the point measure at xX. For each f=C(X), we can define PfeC(X) by
(P)(x)=m(fX0d,) (see [3] and [4]). Then P is a Markov operator such that
PT=P for all T2 and Pg=g for all g€ M;. We shall show that Pf is a 2-
invariant function in €0 {7f:T€2}. Let p be a state. Then P*T*yu, P*u and
£ are XY-invariant states. If g is a Y-invariant function, then (P*T*u)(g)=
wTPg)=u(Tg)=pu(g), (P*p)(g)=p(Pg)=p(g), and f(g)=m(g®u)=p(g). Since
M separates K, we have P*T*u=P*p=f, which implies that TP=P for all
TeX and v(Pf)=m(fQv) for all feC(X) and veC(X)*. Thus Pf is a 2-
invariant function. If Pf is not contained in o {7f:T<2}, there exists a
vyeC(X)* such that sup {R:u(Tf): T2} <Rev(Pf), but Rev(Pf)=Re m(fQRv)=
m(Re (FQv))<sup {Rev(Tf): Te}. This is a contradiction.

(4) implies (1): The proof is similar to [4].

THEOREM 2. If (I) holds, then p—I, 1s a byection of the set of all extremal
2anvariant states onto the family of all maximal X-invariant 1deals.

Proof. Let I be a maximal X-invariant ideal. As well known, there exists
an x,X such that any function in / vanishes at x,. For each feC(X) we
define p(f)=#(x,), then g is a Z-invariant state which vanishes on I. The
Schwarz inequality p(|f|)<+/u(]f]%) implies that ICI, and therefore I=1I,. Let
Ky ={peK;:I=1,}, then K, is a nonempty weak*-compact convex subset of
C(X)*. By the Krein-Milman theorem there exists an extreme point g, of Ky 1.
It is easy to see that g, is also an extreme point of Kj.

Let ¢ be an extremal X-invariant state. If I, is not maximal, then there
exists a maximal 2-invariant ideal I containing /,. We can choose a 2-invariant
function g from I—1J, such that 0=g=<1and 0<p(g)<1l. Let /,el(f)——-p(fg)/y(g)
and ,uz(f):y(f(l——g))/y(l—g). Then g, and p, are X-invariant states, and g=
ap,+(1—a)p, where a=p(g). Since p is extremal, p#;=p, and therefore p,(g)
=p,(g), which implies p(g*)=(u(g))>. It follows easily from the Schwarz in-
equality that p(|g—p(g)1|)=0. This shows that g—pu(g)l<l and therefore
lel. This is a contradiction.

Let g, and p, be distinct extremal X-invariant states. Then there exists a
J-invariant function g such that 0=<g=1 and p.(g)¥pu(g). If I, =I,, then
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0<(8)<l. Let p(f)=p(/2)/1(g) and p(f)=p(7(1—2))/p(1—g). Then p,
and p, are 2-invariant states, and g, =ay,+(1—a)p, where a=p,(g). Since g
is extremal, p;=p, As in the above paragraph, it follows that g—u(g)lel,,
and therefore g—p,(g)l€l,,, which implies that p,(g)=p,(g). This is a con-
tradiction. Thus we conclude that I, and [,, are distinct.
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