ITOH, T.

MINIMAL SURFACES IN A RIEMANNIAN MANIFOLD OF CONSTANT CURVATURE

By Takehiro Itoh

For surfaces in a 4 -dimensional Riemannian manifold of constant curvature, the author [3] proved the following

Theorem. Let M be a 2-dimensional connected compact Riemannian manıfold which is minimally immersed in a unit sphere of dimension 4 . If the normal scalar curvature K_{N} is non-zero constant, then M may be regarded as a Veronese surface.

In this paper, he generalizes the above theorem and proves the following
Theorem. Let M be a 2-dimensional connected compact Riemannian manifold which is minimally immersed in a $(2+\nu)$-dimensional unit sphere $S^{2+\nu}$. If the normal scalar curvature K_{N} is non-zero constant and the square of the second curvature k_{2} is less then $K_{N} / 4$, then M is a generalized Veronese surface.

By a generalized Veronese surface we mean a surface defined by O$t s u k i ~[6]$.

§ 1. Preliminaries.

Let \bar{M} be a $(2+\nu)$-dimensional Riemannian manifold of constant curvature $\bar{c}_{\bar{M}}$ and M be a 2 -dimensional Riemannian manifold immersed isometrically in \bar{M} by the immersion $x: M \rightarrow \bar{M} . \quad F(\bar{M})$ and $F(M)$ denote the orthonormal frame bundles over \bar{M} and M respectively. Let B be the set of all elements $b=\left(p, e_{1}, e_{2}, e_{3}, \cdots, e_{2+\nu}\right)$ such that $\left(p, e_{1}, e_{2}\right) \in F(M)$ and ($\left.p, e_{1}, e_{2}, e_{3}, \cdots, e_{2+\nu}\right) \in F(\bar{M})$ identifying $p \in M$ with $x(p)$ and e_{i} with $d x\left(e_{i}\right), i=1,2$. Then B is naturally considered as a smooth submanifold of $F(\bar{M})$. Let $\bar{\omega}_{A}, \bar{\omega}_{A B}=-\bar{\omega}_{B A}, A, B=1,2,3, \cdots, 2+\nu$, be the basic and connection forms of \bar{M} on $F(\bar{M})$ which satisfy the structure equations:

$$
\begin{align*}
& d \bar{\omega}_{A}=\sum_{B} \bar{\omega}_{A B} \wedge \bar{\omega}_{B}, \\
& d \bar{\omega}_{A B}=\sum_{C} \bar{\omega}_{A C} \wedge \bar{\omega}_{C B}-\bar{c} \bar{\omega}_{A} \wedge \bar{\omega}_{B} . \tag{1.1}
\end{align*}
$$

Received May 18, 1972.

In this paper, we use the following convention on the range of indices:

$$
1 \leqq A, B, C, \cdots \leqq 2+\nu, \quad 1 \leqq i, j, \cdots \leqq 2, \quad 3 \leqq \alpha, \beta, \gamma, \cdots \leqq 2+\nu .
$$

Deleting the bars of $\bar{\omega}_{A}, \bar{\omega}_{A B}$ on B, as is well known, we have

$$
\begin{equation*}
\omega_{\alpha}=0, \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
\omega_{i \alpha}=\sum_{\jmath} A_{\alpha i j} \omega_{\jmath}, \quad A_{\alpha \imath \jmath}=A_{\alpha j i}, \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
d \omega_{i}=\omega_{i_{j}} \wedge \omega_{j}, \quad i \neq j \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
R_{2 j k l}=\bar{c}\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)+\sum_{\alpha}\left(A_{\alpha i k} A_{\alpha j l}-A_{\alpha i l} A_{\alpha j k}\right), \tag{1.6}
\end{equation*}
$$

$$
\begin{equation*}
d \omega_{i_{\jmath}}=\sum_{k} \omega_{i k} \wedge \omega_{k i}-\Omega_{i \jmath}, \quad \Omega_{\imath \jmath}=\frac{1}{2} \sum_{k, l} R_{\imath j k l} \omega_{k} \wedge \omega_{l} \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
d \omega_{\alpha \beta}=\sum_{r} \omega_{\alpha \gamma} \wedge \omega_{r \beta}-\Omega_{\alpha \beta}, \quad \Omega_{\alpha \beta}=\frac{1}{2} \sum_{\imath, j} R_{\alpha \beta i j} \omega_{i} \wedge \omega_{j}, \tag{1.7}
\end{equation*}
$$

$$
\begin{equation*}
R_{\alpha \beta i j}=\sum_{k}\left(A_{\alpha i k} A_{\beta j k}-A_{\alpha j k} A_{\beta i k}\right) . \tag{1.8}
\end{equation*}
$$

M is said to be minimal if its mean curvature vector (1/2) $\sum_{\alpha, \imath} A_{\alpha i i} e_{\alpha}$ vanishes identically, i.e., if trace $A_{\alpha}=0$ for all $\alpha, A_{\alpha}=\left(A_{\alpha i j}\right)$. We say the dimension of the linear space of all second fundamental forms corresponding to normal vectors at $p \in M$ with vanishing trace the minimal index at p and denote it by m-index ${ }_{p} M$. We have easily

$$
\begin{equation*}
m \text {-index }{ }_{p} M \leqq 2 \quad \text { at each point } \quad p \in M \text {. } \tag{1.9}
\end{equation*}
$$

We denote the square of the norm of the system of all 2 nd fundamental forms by

$$
\begin{equation*}
S=\frac{1}{2} \sum_{\alpha \imath, \jmath} A_{\alpha \imath \jmath} A_{\alpha \imath \jmath}=\sum_{a}\left\|A_{\alpha}\right\|^{2} \tag{1.10}
\end{equation*}
$$

where for symmetric matrices A, B we define the inner product of A and B by

$$
\langle A, B\rangle=\frac{1}{2} \operatorname{trace} A B .
$$

We define the normal scalar curvature K_{N} of M in \bar{M} as follows:

$$
\begin{equation*}
K_{N}=\sum_{\imath<j, \alpha<\beta} R_{\alpha \beta i j} R_{\alpha \beta i j}=\sum_{\imath<j, \alpha<\beta}\left(\sum_{k}\left(A_{\alpha i k} A_{\beta j k}-A_{\alpha j k} A_{\beta i k}\right)\right)^{2} . \tag{1.11}
\end{equation*}
$$

Now, we assume that M is minimal in \bar{M} and K_{N} is non-zero non M. Then we have

$$
\begin{equation*}
m \text {-index }{ }_{p} M=2 \quad \text { at each point } \quad p \text { on } M . \tag{1.12}
\end{equation*}
$$

Hence, as stated in [5], we can decompose the normal space N_{p} at $p \in M$ as follows:

$$
\begin{align*}
& N_{p}=N_{p}^{\prime}+O_{p}, \quad N_{p}^{\prime} \perp O_{p}, \quad O_{p}=\phi_{b}^{-1}(0), \tag{1.13}\\
& \operatorname{dim} N_{p}^{\prime}=2,
\end{align*}
$$

where ϕ_{b} is a linear mapping from N_{p} into the set of all symmetric matrices of order 2 defined by $\phi_{b}\left(\sum_{\alpha} v_{\alpha} e_{\alpha}\right)=\sum_{\alpha} v_{\alpha} A_{\alpha}$. This decomposition does not depend on the choice of a frame b over p and is smooth. Let B_{0} be the set of all $b \in B$ such that $e_{3}, e_{4} \in N_{p}^{\prime}$. Then B_{0} is a smooth submanifold of B. On B_{0}, we have

$$
\begin{equation*}
\omega_{i \beta}=0, \text { i.e., } A_{\beta}=0 \text { for } \beta>4 \text {. } \tag{1.14}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
K_{N}=R_{3412}^{2}=\left(\sum_{k}\left(A_{31 k} A_{42 k}-A_{32 k} A_{41 k}\right)\right)^{2} . \tag{1.15}
\end{equation*}
$$

As a special case of [6], we can verify the following
Lemma 1. On B_{0}, for a fixed $\beta>4$, we have $\omega_{3 \beta} \equiv \omega_{4 \beta} \equiv 0\left(\bmod \omega_{1}, \omega_{2}\right)$ and $\omega_{3 \beta}=\omega_{4 \beta}=0$ or else $\omega_{3 \beta} \wedge \omega_{4 \beta} \neq 0$.

Now, by virture of Lemma 1, we can define two linear mappings φ_{11} and φ_{12} from M_{p} into O_{p} corresponding to the normal vector e_{3} and e_{4} as follows: for any $X \in M_{p}$,

$$
\begin{equation*}
\varphi_{11}(X)=\sum_{\beta>4}\left\|A_{3}\right\| \cdot \omega_{3 \beta}(X) e_{\beta}, \quad \varphi_{12}(X)=\sum_{\beta>4}\left\|A_{4}\right\| \cdot \omega_{4 \beta}(X) e_{\beta} . \tag{1.16}
\end{equation*}
$$

As stated in [5], these two linear mappings have the same image of the tangent unit sphere $S_{p}^{1}=\left\{X \in M_{p}:\|X\|=1\right\}$ and $\varphi_{11}(X)$ and $\varphi_{12}(X)$ are conjugate to each other with respect to the image when it is an ellipse. We define the second curvature $k_{2}(p)$ of M at p by

$$
\begin{equation*}
k_{2}(p)=\max _{X \in S_{p}^{1}}\left\|\varphi_{11}(X)\right\|=\max _{X \in S_{p}^{1}}\left\|\varphi_{12}(X)\right\| . \tag{1.17}
\end{equation*}
$$

It is clear that $k_{2}(p)$ is continuous on M.

§ 2. Minimal surfaces with non-zero constant K_{N}.

In this section we assume that M is connected, compact and minimal in \bar{M}, K_{N} is non-zero constant and $4 k_{2}^{2}<K_{N}$ at each point of M.

Lemma 2. We have identically

$$
\begin{equation*}
S^{2}=K_{N} \quad \text { on } \quad M \tag{2.1}
\end{equation*}
$$

Proof. From (1.10), (1.14) and (1.15), we have
(2.2) $\quad S^{2}-K_{N}=\left\{\left(A_{311}-A_{412}\right)^{2}+\left(A_{312}+A_{411}\right)^{2}\right\}\left\{\left(A_{311}+A_{412}\right)^{2}+\left(A_{312}-A_{411}\right)^{2}\right\} \geqq 0$.

Hence, if it is not identically $S^{2}=K_{N}$, the function $S^{2}-K_{N}$ takes its positive maximum at some point $p_{0} \in M$, because M is compact. Let U be a neighborhood of p_{0} in which we can choose $b \in B_{0}$ such that

$$
A_{3}=\left(\begin{array}{rr}
\lambda & 0 \tag{2.3}\\
0 & -\lambda
\end{array}\right), \quad A_{4}=\left(\begin{array}{ll}
0 & \mu \\
\mu & 0
\end{array}\right), \quad \lambda^{2}>\mu^{2}>0
$$

where λ and μ are differentiable functions on U. Then we have

$$
K_{N}=4 \lambda^{2} \mu^{2}, \quad S=\lambda^{2}+\mu^{2} .
$$

From (1.1) and (2.3) we have

$$
\begin{align*}
& d \lambda \wedge \omega_{1}+\left(2 \lambda \omega_{12}-\mu \omega_{34}\right) \wedge \omega_{2}=0, \\
& d \lambda \wedge \omega_{2}-\left(2 \lambda \omega_{12}-\mu \omega_{34}\right) \wedge \omega_{1}=0 ; \tag{2.4}\\
& d \mu \wedge \omega_{1}+\left(2 \mu \omega_{12}-\lambda \omega_{34}\right) \wedge \omega_{2}=0, \\
& d \mu \wedge \omega_{2}-\left(2 \mu \omega_{12}-\lambda \omega_{34}\right) \wedge \omega_{1}=0 . \tag{2.5}
\end{align*}
$$

Since $K_{N}=4 \lambda^{2} \mu^{2}$ is constant, from (2.4) and (2.5) we have

$$
4 \lambda \mu \omega_{12}=\left(\lambda^{2}+\mu^{2}\right) \omega_{34},
$$

and hence

$$
\begin{equation*}
K_{N} \omega_{12}=\lambda \mu S \omega_{34} . \tag{2.6}
\end{equation*}
$$

Differentiating both sides of (2.6), we get

$$
\begin{align*}
K_{N} d \omega_{12} & =\lambda \mu d S \wedge \omega_{34}+\lambda \mu S d \omega_{34} \tag{2.7}\\
& =\lambda \mu d S \wedge \omega_{34}-2 \lambda^{2} \mu^{2} S \omega_{1} \wedge \omega_{2}-\lambda \mu S \sum_{\beta>4} \omega_{3 \beta} \wedge \omega_{4 \beta} .
\end{align*}
$$

On the other hand, since $\omega_{i \beta}=0(\beta>4), \imath=1,2$, we have

$$
d \omega_{i \beta}=\omega_{i 3} \wedge \omega_{3 \beta}+\omega_{i 4} \wedge \omega_{4 \beta}=0,
$$

which reduce to

$$
\begin{aligned}
& \lambda \omega_{3 \beta} \wedge \omega_{1}+\mu \omega_{4 \beta} \wedge \omega_{2}=0, \\
& \lambda \omega_{3 \beta} \wedge \omega_{2}-\mu \omega_{4 \beta} \wedge \omega_{1}=0 .
\end{aligned}
$$

By Cartan's Lemma, we may put

$$
\begin{aligned}
& \lambda \omega_{3 \beta}=f_{\beta} \omega_{1}+g_{\beta} \omega_{2}, \\
& \mu \omega_{4 \beta}=g_{\beta} \omega_{1}-f_{\beta} \omega_{2},
\end{aligned}
$$

and define two normal vectors $F_{1}=\sum_{4<\alpha} f_{\alpha} e_{\alpha}$ and $G_{1}=\sum_{4<\alpha} g_{\alpha} e_{\alpha}$. Then we have

$$
\begin{equation*}
\lambda \mu \sum_{\beta>4} \omega_{3 \beta} \wedge \omega_{4 \beta}=-\left(\left\|F_{1}\right\|^{2}+\left\|G_{1}\right\|^{2}\right) \omega_{1} \wedge \omega_{2} \tag{2.8}
\end{equation*}
$$

By means of Cartan's Lemma, from (2.4) and (2.5) we have

$$
\begin{aligned}
& 2 \lambda \omega_{12}-\mu \omega_{34}=\lambda_{2} \omega_{1}-\lambda_{1} \omega_{2} \\
& 2 \mu \omega_{12}-\lambda \omega_{34}=\mu_{2} \omega_{1}-\mu_{1} \omega_{2}
\end{aligned}
$$

putting $d \lambda=\lambda_{1} \omega_{1}+\lambda_{2} \omega_{2}$ and $d \mu=\mu_{1} \omega_{1}+\mu_{2} \omega_{2}$. Thus we get

$$
\left(\lambda^{2}-\mu^{2}\right) \omega_{34}=\left(\lambda_{2} \mu-\lambda \mu_{2}\right) \omega_{1}-\left(\lambda_{1} \mu-\lambda \mu_{1}\right) \omega_{2}
$$

Since $\lambda \mu=$ constant and hence $\lambda \mu_{i}+\lambda_{i} \mu=0$, we have

$$
\omega_{34}=\frac{2 \mu}{\lambda^{2}-\mu^{2}}\left(\lambda_{2} \omega_{1}-\lambda_{1} \omega_{2}\right)
$$

and

$$
\lambda \mu d S=2 \mu\left(\lambda^{2}-\mu^{2}\right) d \lambda=2 \mu\left(\lambda^{2}-\mu^{2}\right)\left(\lambda_{1} \omega_{1}+\lambda_{2} \omega_{2}\right)
$$

Hence we have

$$
\begin{equation*}
\lambda \mu d S \wedge \omega_{34}=-4 \mu^{2}| | \nabla \lambda \|^{2} \omega_{1} \wedge \omega_{2} \tag{2.9}
\end{equation*}
$$

where $\nabla \lambda$ is the gradient vector of λ. From (2.7), (2.8) and (2.9), we have

$$
\begin{equation*}
K K_{N}=4 \mu^{2}\|\nabla \lambda\|^{2}+\frac{K_{N} S}{2}-S\left(\left\|F_{1}\right\|^{2}+\left\|G_{1}\right\|^{2}\right) \tag{2.10}
\end{equation*}
$$

where K is the Gaussian curvature of M. Since $K_{N}>4 k_{2}^{2} \geqq 0,2 k_{2}^{2} \geqq\left\|F_{1}\right\|^{2}+\left\|G_{1}\right\|^{2}$, and $S>0$, we have

$$
K K_{N} \geqq 4 \mu^{2}\|\nabla \lambda\|^{2}+\frac{1}{2} K_{N} S-2 S k_{2}^{2}>0
$$

so that we get

$$
\begin{equation*}
K>0 \quad \text { on } \quad U \tag{2.11}
\end{equation*}
$$

From (2.4) and (2.5), we have

$$
\begin{aligned}
& d\left(\lambda^{2}-\mu^{2}\right) \wedge \omega_{1}+4\left(\lambda^{2}-\mu^{2}\right) d \omega_{1}=0 \\
& d\left(\lambda^{2}-\mu^{2}\right) \wedge \omega_{2}+4\left(\lambda^{2}-\mu^{2}\right) d \omega_{2}=0
\end{aligned}
$$

which imply that there exists a neighborhood V of p_{0} where we have isothermal coordinates (u, v) such that

$$
d s^{2}=E\left\{d u^{2}+d v^{2}\right\}, \quad \omega_{1}=\sqrt{ } E d u, \quad \omega_{2}=\sqrt{ } E d v, \quad \sqrt{ } \lambda^{2}-\mu^{2} E=1,
$$

where $E=E(u, v)$ is a positive function on V. With respect to these isothermal coordinates, K is given by $K=-(1 / 2 E) \Delta \log E$. Since $\sqrt{\lambda^{2}-\mu^{2}} E=1$ and $\left(\lambda^{2}-\mu^{2}\right)^{2}$ $=S^{2}-K_{N}$, we obtain

$$
\begin{equation*}
K=\frac{\sqrt{\lambda^{2}-\mu^{2}}}{8} \Delta \log \left(S^{2}-K_{N}\right), \tag{2.12}
\end{equation*}
$$

which, together with (2.11), implies

$$
\Delta \log \left(S^{2}-K_{N}\right)>0 \quad \text { on } \quad V .
$$

Thus $\log \left(S^{2}-K_{N}\right)$ is a subharmonic function on V and takes its maximum at p_{0} by our assumption, so that $\log \left(S^{2}-K_{N}\right)$ must be constant. Then, (2.12) implies $K=0$, which contradicts $K>0$. Q.E.D.

By Lemma 2, for a frame $b \in B_{0}$ we have $\left\|A_{3}\right\|=\left\|A_{4}\right\|$ and $\left\langle A_{3}, A_{4}\right\rangle=0$. Therefore, on a neighborhood $U(p)$ of p of M we can choose a frame field $b \in B_{0}$ such that

$$
A_{3}=\left(\begin{array}{rr}
k_{1} & 0 \tag{2.13}\\
0 & -k_{1}
\end{array}\right), \quad A_{4}=\left(\begin{array}{rr}
0 & k_{1} \\
k_{1} & 0
\end{array}\right),
$$

where k_{1} is non-zero constant on M. It follows from (2.13) that

$$
\begin{equation*}
\omega_{34}=2 \omega_{12} \tag{2.14}
\end{equation*}
$$

and we may put

$$
\begin{aligned}
& k_{1} \omega_{3 \beta}=f_{\beta} \omega_{1}+g_{\beta} \omega_{2}, \\
& k_{1} \omega_{A \beta}=g_{\beta} \omega_{1}-f_{\beta} \omega_{2}, \quad 4<\beta,
\end{aligned}
$$

as in the proof of Lemma 2. Then, (2.14) implies

$$
\left\|F_{1}\right\|^{2}+\left\|G_{1}\right\|^{2}=2 k_{1}^{2}\left(k_{1}^{2}-K\right),
$$

where $F_{1}=\sum_{4<\beta} f_{\beta} e_{\beta}$ and $G_{1}=\sum_{4<\beta} g_{\beta} e_{\beta}$.
Since $\left\|F_{1}\right\|^{2}+\left\|G_{1}\right\|^{2} \leqq 2 k_{2}^{2}<K_{N} / 2=2 k_{1}^{4}$ and $K=\bar{c}-S=\bar{c}-2 k_{1}^{2}$, we see

$$
\begin{equation*}
K=\text { positive constant on } M \text {. } \tag{2.15}
\end{equation*}
$$

Then, we have the following
Lemma 3. The mage of S_{p}^{1} under φ_{11} (or φ_{12}) is a circle with constant radius $k_{2}=k_{1} \sqrt{k_{1}^{2}-K}$, where the circle is a point if $k_{2}=0$ on M.

Proof. Putting

$$
l_{2}=\operatorname{Min}_{X \in S_{p}^{1}}\left\|\varphi_{11}(X)\right\|=\underset{X \in S_{p}^{1}}{\operatorname{Min}}\left\|\varphi_{12}(X)\right\|,
$$

we can see

$$
\left(k_{2}^{2}-l_{2}^{2}\right)^{2}=\left(\left\|F_{1}\right\|^{2}-\left\|G_{1}\right\|^{2}\right)^{2}+4\left\langle F_{1}, G_{1}\right\rangle^{2} \geqq 0,
$$

so $\left(k_{2}^{2}-l_{2}^{2}\right)^{2}$ is a differentiable function on M, because $\left\{p, F_{1}, G_{1}\right\}$ obey an analogous rule to the rotation of the 2 -frame $\left\{p, e_{3}, e_{4}\right\}$. Hence, if $k_{2}=l_{2}$ does not hold identically on M, then $\left(k_{2}^{2}-l_{2}^{2}\right)^{2}$ takes its positive maximum at some point p_{1} on M. Let U_{1} be a neighborhood of p_{1} on which $k_{2}>l_{2}$ and we can choose isothermal coordinate (u, v) and a frame $b \in B_{0}$ satisfying (2.13) and

$$
\begin{equation*}
d s^{2}=E\left\{d u^{2}+d v^{2}\right\}, \quad \omega_{1}=\sqrt{E} d u, \quad \omega_{2}=\sqrt{E} d v, \tag{2.16}
\end{equation*}
$$

where $E=E(u, v)$ is a positive function on U_{1}. Since $\left\|F_{1}\right\|^{2}+\left\|G_{1}\right\|^{2}>0$ on U_{1}, we may assume $F_{1} \neq 0$ on a small neighborhood V_{1} of p_{1} in U_{1}. Then we can choose a frame field $b \in B_{0}$ satisfying (2.13), (2.16) and

$$
F_{1}=f e_{5}, \quad G_{1}=\sum_{4<\alpha} g_{\alpha} e_{\alpha},
$$

where f is a non-zero differentiable function and g_{α} are differentiable functions on V_{1}. Then we have

$$
\begin{array}{ll}
k_{1} \omega_{35}=f \omega_{1}+g_{5} \omega_{2}, & k_{1} \omega_{3 \beta}=g_{\beta} \omega_{2}, \\
k_{1} \omega_{45}=g_{5} \omega_{1}-f \omega_{2}, & k_{1} \omega_{4 \beta}=g_{\beta} \omega_{1},
\end{array} \quad 5<\beta . ~ l
$$

Using these equations and $\omega_{34}=2 \omega_{12}$, from the structure equations we obtain

$$
\begin{aligned}
& d f \wedge \omega_{1}+d g_{5} \wedge \omega_{2}+3 f d \omega_{1}+3 g_{5} d \omega_{2}=\omega_{2} \wedge\left(\sum_{5<\beta} g_{\beta} \omega_{\beta 5}\right), \\
& d g_{5} \wedge \omega_{1}-d f \wedge \omega_{2}+3 g_{5} d \omega_{1}-3 f d \omega_{2}=\omega_{1} \wedge\left(\sum_{5<\beta} g_{\beta} \omega_{\beta 5}\right), \\
& d g_{\beta} \wedge \omega_{2}+3 g_{\beta} d \omega_{2}=-f \omega_{1} \wedge \omega_{\beta 5}-g_{5} \omega_{2} \wedge \omega_{\beta 5}+\omega_{2} \wedge\left(\sum_{r} g_{r} \omega_{r \beta}\right), \\
& d g_{\beta} \wedge \omega_{1}+3 g_{\beta} d \omega_{1}=-g_{5} \omega_{1} \wedge \omega_{\beta 5}+f \omega_{2} \wedge \omega_{\beta 5}+\omega_{1} \wedge\left(\sum_{r} g_{r} \omega_{r \beta}\right),
\end{aligned}
$$

which imply that the complex valued function $E^{3}\left(\left\|G_{1}\right\|^{2}-\left\|F_{1}\right\|^{2}\right)+2 \imath E^{3}\left\langle F_{1}, G_{1}\right\rangle$ is holomorphic in $z=u+i v$, so that

$$
\begin{align*}
-6 \Delta \log E & =\Delta \log \left\{\left(\left\|F_{1}\right\|^{2}-\left\|G_{1}\right\|^{2}\right)^{2}+4\left\langle F_{1}, G_{1}\right\rangle^{2}\right\} \tag{2.17}\\
& =\Delta \log \left(k_{2}^{2}-l_{2}^{2}\right)^{2} \quad \text { on } \quad V_{1} .
\end{align*}
$$

Since K is given by $K=-(1 / 2 E)\lrcorner \log E$ and is positive from (2.15), (2.17) implies that $\log \left(k_{2}^{2}-l_{2}^{2}\right)^{2}$ is a suibharmonic function on V_{1}. Since $\left(k_{2}^{2}-l_{2}^{2}\right)^{2}$ takes its positive
maximum at p_{1} in $V_{1}, \log \left(k_{2}^{2}-l_{2}^{2}\right)^{2}$ must be constant so that (2.7) implies $K=0$, which contradicts $K>0$. Thus, $k_{2}=l_{2}$ holds at every point on M. Furthermore, we have $\left\|F_{1}\right\|=\left\|G_{1}\right\|$ and $\left\langle F_{1}, G_{1}\right\rangle=0$ for any frame $b \in B_{0}$ satisfying (2.13). Since $2 k_{2}^{2}=\left\|F_{1}\right\|^{2}+\left\|G_{1}\right\|^{2}=2 k_{1}^{2}\left(k_{1}^{2}-K\right)$ is constant on $M, k_{2}=l_{2}=k_{1} \sqrt{k_{1}^{2}-K}$ is constant on M. Q.E.D.

By Lemma 3, if $k_{2}=0$ on M, then the geodesic codimension of M in \bar{M} is 2 , so that M is a Veronese surface (see [3]). If $k_{2} \neq 0$ on M, then by Lemma 2 and 3 , on a neighborhood $U(p)$ of a p of M we can choose a frame field $b \in B_{0}$ satisfying (2.13) and

$$
\begin{align*}
& k_{1} \omega_{35}=k_{2} \omega_{1}=k_{1} \omega_{46} \\
& k_{1} \omega_{36}=k_{2} \omega_{2}=-k_{1} \omega_{45}, \quad \omega_{3 \beta}=\omega_{4 \beta}=0, \quad 6<\beta, \tag{2.18}
\end{align*}
$$

where k_{2} is non-zero constant on M. Then, from (2.14) and (2.18) we obtain

$$
\begin{equation*}
\omega_{56}=3 \omega_{12} \tag{2.19}
\end{equation*}
$$

and we may put

$$
\begin{aligned}
& k_{2} \omega_{5 \beta}=f_{\beta} \omega_{1}+g_{\beta} \omega_{2} \\
& k_{2} \omega_{6 \beta}=g_{\beta} \omega_{1}-f_{\beta} \omega_{2}, \quad 6<\beta,
\end{aligned}
$$

where f_{β} and g_{β} are differentiable functions on $U(p)$. We consider two linear mappings φ_{21} and φ_{22} from M_{p} into N_{p} as follows

$$
\begin{aligned}
\varphi_{21}(X) & =\sum_{\beta} k_{2} \omega_{5 \beta}(X) e_{\beta}=\omega_{1}(X) F_{2}+\omega_{2}(X) G_{2}, \\
\varphi_{22}(X) & =\sum_{\beta} k_{2} \omega_{6 \beta}(X) e_{\beta}=\omega_{1}(X) G_{2}-\omega_{2}(X) F_{2},
\end{aligned}
$$

where X is a tangent vector to M and $F_{2}=\sum_{6<\beta} f_{\beta} e_{\beta}$ and $G_{2}=\sum_{6<\beta} g_{\beta} e_{\beta}$ are normal vector fields on $U(p)$. Using (2.19) and the structure equations, we obtain

$$
\left\|F_{2}\right\|^{2}+\left\|G_{2}\right\|^{2}=k_{2}^{2}\left(\frac{2 k_{2}^{2}}{k_{1}^{2}}-3 K\right)=\mathrm{constant} \text { on } M .
$$

In the same manner as the proof of Lemma 3, we can prove the following
Lemma 4. If $k_{2}=$ constant $\neq 0$ on M, the image of S_{p}^{1} under $\varphi_{21}\left(\right.$ or $\left.\varphi_{22}\right)$ is a circle with constant radius $k_{2} \sqrt{k_{2}^{2} / k_{1}^{2}-3 K / 2}$, where the circle is a point if $2 k_{2}^{2}=3 k_{1}^{2} K$ on M.

If $2 k_{2}^{2}=3 k_{1}^{2} K$ on M, then the geodesic codimension of M is 4 , because $\omega_{i \beta}=0$ $(4<\beta), \omega_{3 r_{1}}=\omega_{4 r_{1}}=0\left(6<\gamma_{1}\right)$ and $\omega_{5 r_{2}}=\omega_{6 r_{2}}=0\left(8<\gamma_{2}\right)$. Henceforth, we may consider the case $2 k_{2}^{2} \neq 3 k_{1}^{2} K$ on M. Then, by Lemmas 2,3 and 4 , on a neighborhood of a point p on M we can choose a frame field $b \in B_{0}$ satisfying (2.13), (2.18) and the following conditions:

$$
\begin{aligned}
& k_{2} \omega_{57}=k_{3} \omega_{1}=k_{2} \omega_{68}, \\
& k_{2} \omega_{58}=k_{3} \omega_{2}=-k_{2} \omega_{67}, \quad \omega_{5 r}=\omega_{6 \gamma}=0, \quad 8<\gamma,
\end{aligned}
$$

where k_{3} is a non-zero constant on M. From the above equations we get

$$
\begin{equation*}
\omega_{78}=4 \omega_{12} . \tag{2.20}
\end{equation*}
$$

We use the following convention about indices:

$$
I_{0}=\{1,2\}, \quad I_{t}=\{2 t+1,2 t+2\}, \quad t=1,2, \cdots, m,
$$

and if we write $\alpha_{1}, \alpha_{2} \in I_{t}$, then $\alpha_{1}<\alpha_{2}$.
Now we shall prove the following
Theorem 1. Let M be a 2 -dimensional connected compact Riemannan manifold which is isometrically and minimally immersed in a Riemannian mannfold \bar{M} of constant curvature \bar{c}. If the normal scalar curvature K_{N} is non-zero constant on M and the square of the second curvature k_{2} is less than $K_{N} / 4$, then the geodesic codimension of M in \bar{M} is even $2 m$ (m is a positive integer), and we can choose a frame $b \in B_{0}$ such that

$$
\begin{align*}
& k_{t-1} \omega_{\alpha_{1} \beta_{1}}=k_{t} \omega_{1}=k_{t-1} \omega_{\alpha_{2} \beta_{2}}, \quad \omega_{\alpha_{1} \gamma}=0, \\
& k_{t-1} \omega_{\alpha_{1} \beta_{2}}=k_{t} \omega_{2}=-k_{t-1} \omega_{\alpha_{2} \beta_{1}}, \quad \omega_{\alpha_{2 \gamma}}=0, \\
& \alpha_{1}, \alpha_{2} \in I_{t-1}, \quad \beta_{1}, \beta_{2} \in I_{t}, \quad 2 t+2<\gamma, \tag{2.21}\\
& t=1,2, \cdots, m,
\end{align*}
$$

where $k_{0}=1$ and $k_{t}(2 \leqq t \leqq m)$ are non-zero constant on M. Furthermore, we obtain

$$
\begin{equation*}
\omega_{\alpha_{1} \alpha_{2}}=(t+1) \omega_{12}, \quad \alpha_{1}, \alpha_{2} \in I_{t} \quad(t=1,2, \cdots, m), \tag{2.22}
\end{equation*}
$$

$$
\begin{equation*}
(t+1) K=\frac{2 k_{t}^{2}}{k_{t-1}^{2}}-\frac{2 k_{t+1}^{2}}{k_{t}^{2}} \quad(t=1, \cdots, m-1) \tag{2.23}
\end{equation*}
$$

$$
\begin{equation*}
(m+1) K=\frac{2 k_{m}^{2}}{k_{m-1}^{2}} . \tag{2.24}
\end{equation*}
$$

Proof. By induction with respect to t, we shall prove the theorem. For $t=1$, 2 and 3, we proved our assertions by Lemmas 2,3 and 4 respectively. Hence, we suppose that our (2.21), (2.22) and (2.23) hold for all $t \leqq t_{0}$. In this case, we shall prove that our assertion holds for $t_{0}+1$. Then, since $\omega_{\alpha_{17}}=\omega_{\alpha_{2 r}}=0, \alpha_{1}, \alpha_{2} \in I_{t_{0}-1}$, $2 t_{0}+2<\gamma$, we have

$$
\begin{aligned}
& k_{t_{0} \omega_{\beta_{1 r}} \wedge \omega_{1}+k_{t_{0}} \omega_{\beta_{2 \gamma}} \wedge \omega_{2}=0,} \\
& k_{t_{0}} \omega_{\beta_{1} r} \wedge \omega_{2}-k_{t_{0}} \omega_{\beta_{2} \gamma} \wedge \omega_{1}=0, \quad \beta_{1}, \beta_{2} \in I_{t_{0}},
\end{aligned}
$$

which, together with Cartan's lemma, imply that we may put

$$
\begin{aligned}
& k_{t_{0}} \omega_{\beta_{1 \gamma}}=f_{\gamma} \omega_{1}+g_{r} \omega_{2}, \\
& k_{t_{0}} \omega_{\beta_{2 \gamma}}=g_{r} \omega_{1}-f_{r} \omega_{2}, \quad 2 t_{0}+2<\gamma,
\end{aligned}
$$

and define two normal vector fields $F_{t_{0}}=\sum_{\gamma} f_{\gamma} e_{\gamma}$ and $G_{t_{0}}=\sum_{\gamma} g_{\gamma} e_{\gamma}$. We consider two linear mappings $\varphi_{t_{0}{ }^{1}}$ and $\varphi_{t_{0} 2}$ from M_{p} into N_{p} as follows:

$$
\begin{aligned}
& \varphi_{t_{0} 1}(X)=\sum_{r} k_{t_{0}} \omega_{\beta_{1 r}}(X) e_{r}=\omega_{1}(X) F_{t_{0}}+\omega_{2}(X) G_{t_{0}}, \\
& \varphi_{t_{0} 2}(X)=\sum_{r} k_{t_{0}} \omega_{\beta_{2 r}}(X) e_{r}=\omega_{1}(X) G_{t_{0}}-\omega_{2}(X) F_{t_{0}},
\end{aligned}
$$

where X is a tangent vector to M. Putting

$$
k_{t_{0}+1}=\operatorname{Max}_{X \in S_{p}^{1}}\left\|\varphi_{t_{0} 1}(X)\right\|=\operatorname{Max}_{X \in S_{p}^{1}}\left\|\varphi_{t_{0} 2}(X)\right\| \quad \text { and } \quad l_{t_{0}+1}=\operatorname{Min}_{X \in S_{p}^{1}}^{\operatorname{Min}}\left\|\varphi_{t_{0} 1}(X)\right\|=\underset{X \in S_{p}^{1}}{\operatorname{Min}}\left\|\varphi_{t_{0} 2}(X)\right\|,
$$

we can see

$$
\left.\left(k_{t_{0}+1}^{2}-l_{t_{0}+1}\right)^{2}\right)^{2}=\left(\left\|F_{t_{0}}\right\|^{2}-\left\|G_{t_{0}}\right\|^{2}\right)^{2}+4\left\langle F_{t_{0}}, G_{t_{0}}\right\rangle^{2},
$$

so $\left(k_{t_{0}+1}^{2}-l_{t_{0}+\frac{1}{2}}\right)^{2}$ is a differentiable function on M, because $\left\{p, F_{t_{0}}, G_{t_{0}}\right\}$ obey an analogous rule to the rotation of the 2 -frame $\left\{p, e_{\beta_{1}}, e_{\beta_{2}}\right\}$. Hence, similarly to the proof of Lemma 3, we can see that $k_{t_{0}+1}=l_{t_{0}+1}$ holds everywhere on M. On the other hand, since $\omega_{\beta_{1} \beta_{2}}=\left(t_{0}+1\right) \omega_{12}$, we get

$$
2 k_{t_{0}+1}^{2}=\left\|F_{t_{0}}\right\|^{2}+\left\|G_{t_{0}}\right\|^{2}=k_{t_{0}}^{2}\left(\frac{2 k_{t_{0}}^{2}}{k_{t_{0}-1}^{2}}-\left(t_{0}+1\right) K\right)=\text { constant on } M \text {. }
$$

If $2 k_{t_{0}}^{2}=(t+1) k_{t_{0}-1}^{2} K$ on M, we can see that the geodesic codimension of M is $2 t_{0}$ and (2.24) holds. Therefore, we consider the case $2 k_{t_{0}}^{t^{2}} \neq\left(t_{0}+1\right) k_{i_{0}-1}^{2} K$ on M. Then, by the above argument, we can choose a frame field $b \in B_{0}$ satisfying (2.21) for all $t \leqq t_{0}$ and

$$
\begin{aligned}
& k_{t_{0}} \omega_{\hat{\rho}_{1 \gamma_{1}}}=k_{t_{0}+1} \omega_{1}=k_{t_{0}} \omega_{\beta_{2} r_{2}}, \quad \omega_{\beta_{17}}=0, \\
& k_{t_{0}} \omega_{\beta_{172}}=k_{t_{0}+1} \omega_{2}=-k_{t_{0}} \omega_{\beta_{2 r_{1}}}, \quad \omega_{\beta_{2 r}}=0, \\
& \gamma_{1}, \gamma_{2} \in I_{t_{0}+1}, \quad 2 t_{0}+4<\gamma,
\end{aligned}
$$

where $k_{t_{0}+1}$ is non-zero constant on M, which imply that (2.21), (2.22) and (2.23) hold for $t_{0}+1$. Thus, it is clear that the geodesic codimension of M in \bar{M} is even $2 m$. Then, since we have $\omega_{2 m+1}{ }_{2 m+2}=(m+1) \omega_{12}$ and $\omega_{2 m+1}=\omega_{2 m}=0(2 m+2<\gamma)$, we obtain (2.24). Q.E.D.

§ 3. The proof of the main theorem.

By an analogous computation to the one in $\S 4$ in [7], from Theorem 1 we obtain the following

Theorem 2. Let M be a 2-dimensional connected compact Riemannian manifold which is isometrically and minimally immersed in a Riemannian manifold \bar{M} of constant curvature \bar{c}. If the normal scalar curvature K_{N} is non-zero constant on M and if the square of the second curvature k_{2} is less than $K_{N} / 4$, then the geodesic codimension is even $2 m$ and the Gaussian curvature K is positive constant, and supposing $K=1$, there exist m constants $b_{t}=(m-t+1)(m+t+2) / 41 \leqq t \leqq m$, and m complex normal vector fields ξ_{1}, \cdots, ξ_{m} such that

$$
\begin{align*}
& \xi_{t} \cdot \xi_{s}=\xi_{t} \cdot \bar{\xi}_{s}=0, \quad t \neq s, \\
& \xi_{t} \cdot \xi_{t}=0, \quad \xi_{t} \cdot \bar{\xi}_{t}=2, \quad t=2,3, \cdots, m \tag{I}
\end{align*}
$$

and
(II)

$$
\begin{aligned}
d x= & \frac{1}{h}\left(\bar{\xi}_{0} d z+\xi_{0} d \bar{z}\right), \quad \xi_{0}=e_{1}+\imath e_{2}, \\
\bar{D} \xi_{0}= & \frac{1}{h} \xi_{0}(\bar{z} d z-z d \bar{z})+\frac{2 \sqrt{b_{1}}}{h} \xi_{1} d \bar{z}, \quad h=1+z \bar{z}, \\
\bar{D} \xi_{1}= & -\frac{2 \sqrt{b_{1}}}{h} \xi_{0} d z+\frac{2}{h} \xi_{1}(\bar{z} d z-z d \bar{z})+\frac{2 \sqrt{b_{2}}}{h} \xi_{2} d \bar{z}, \\
& \cdots \cdots \cdots \cdots, \\
\bar{D} \xi_{t}= & -\frac{2 \sqrt{b_{t}}}{h} \xi_{t-1} d z+\frac{t+1}{h} \xi_{l}(\bar{z} d z-z d \bar{z})+\frac{2 \sqrt{b_{t+1}}}{h} \xi_{t+1} d \bar{z}, \\
& \cdots \cdots \cdots \cdots \cdots, \\
\bar{D} \xi_{m}= & -\frac{2 \sqrt{b_{m}}}{h} \xi_{m-1} d z+\frac{m+1}{h} \xi_{m}(\bar{z} d z-z d \bar{z}),
\end{aligned}
$$

where z is an isothermal complex coordinate of M and \bar{D} denotes the covarant differentiation of \bar{M}.

In Theorem 2 we may consider $\bar{M}^{2+2 m}=\bar{M}=S^{2-2 m}(R)$, where $S^{2+2 m}(R)$ denotes the $(2+2 m)$-sphere of radius R :

$$
\frac{1}{R^{2}}=\bar{c}=\frac{(m+1)(m+2)}{2} .
$$

We regard as $S^{2+2 m}(R) \subset E^{3+2 m}$ and put

$$
\begin{equation*}
\frac{x}{R}=e_{3+2 m} . \tag{3.1}
\end{equation*}
$$

By (3.1) we have

$$
\begin{equation*}
d x=R e_{3-2 m}=\frac{1}{h}\left(\bar{\xi}_{0} d z+\xi_{0} d \bar{z}\right) . \tag{3.2}
\end{equation*}
$$

From (II) in Theorem 2 and the above relation, we have easily

$$
\begin{aligned}
& d \xi_{0}=\frac{1}{h} \xi_{0}(\bar{z} d z-z d \bar{z})+\frac{2 \sqrt{b_{1}}}{h} \xi_{1} d z-\frac{2}{R h} e_{3+2 m} d z \\
& d \xi_{1}=\frac{2 \sqrt{b_{1}}}{h} \xi_{0} d z+\frac{2}{h} \xi_{1}(\bar{z} d z-z d \bar{z})+\frac{2 \sqrt{b_{2}}}{h} \xi_{2} d \bar{z}
\end{aligned}
$$

(3.3)

$$
\begin{aligned}
d \xi_{t}= & -\frac{2 \sqrt{b_{t}}}{h} \xi_{t-1} d z+\frac{t+1}{h} \xi_{t}(\bar{z} d z-z d \bar{z})+\frac{2 \sqrt{b_{t+1}}}{h} \xi_{t+1} d \bar{z} \\
& \ldots \cdots \cdots \cdots \cdots \\
d \xi_{m}= & -\frac{2 \sqrt{b_{m}}}{h} \xi_{m-1} d z+\frac{m+1}{h} \xi_{m}(\bar{z} d z-z d \bar{z})
\end{aligned}
$$

where d denotes the ordinary differential operator in $E^{3+2 m}$. Since equations (3.3) are the same ones as (II) in Theorem 2 in Otsuki [7] when we put formally $P=-(1 / R) e_{3+2 m}$ in the case $\bar{M}^{n+2 m}=E^{n+2 m}, M$ is congruent to the surface given by

$$
\begin{align*}
x= & \frac{\sqrt{m!}}{(m+2) \sqrt{(2 m+2)(2 m+1) \cdots(m+3)(1+z \bar{z})^{m+1}}} \tag{3.4}\\
& \times\left[\sum_{\jmath=0}^{m}(-1)^{\jmath+1}\left\{\sum_{s=0}^{\jmath}(-1)^{s}\binom{2 m+2-j}{m+1-s}\binom{\jmath}{s}(z \bar{z})^{s}\right\}\left(\bar{z}^{m+1-\jmath} A_{j}+z^{m+1-\jmath} \bar{A}_{\jmath}\right)\right. \\
& \left.+(-1)^{m} \sum_{s=0}^{m+1}(-1)^{s}\binom{m+1}{s}^{2}(z \bar{z})^{s} A_{m+1}\right]
\end{align*}
$$

where $A_{0}, A_{1}, \cdots, A_{m+1}$ are constant complex vectors in C^{m+2} such that

$$
\begin{align*}
& A_{t} \cdot A_{t}=0, \quad t=0,1, \cdots, m, \quad A_{m+1}=\bar{A}_{m+1} \\
& A_{t} \cdot A_{s}=A_{t} \cdot \bar{A}_{s}=0, \quad t \neq s, \quad t, s=0,1, \cdots, m+1 \tag{3.5}\\
& A_{0} \cdot \bar{A}_{0}=2, \quad A_{t} \cdot \bar{A}_{t}=2\binom{2 m+2}{t}, \quad t=1,2, \cdots, m+1
\end{align*}
$$

Thus we have proved that M may be regarded as a generalized Veronese surface of index m defined by O$t s u k i ~[7] . ~$

References

[1] Chern, S. S., M. Do Carmo, and S. Kobayashi, Minımal submanıfolds of a sphere with second fundamental form of constant length. Functional analysis and related fields, Proc. Conf. in Honor of Marshall Stone, Springer, Berlin (1970).
[2] Iтон, T., Minımal surfaces with M-index 2, T_{1}-1ndex 2 and T_{2}-index 2. Kōdaı Math. Sem. Rep. 24 (1972), 1-16.
[3] Minımal surfaces in 4-dimensional Riemannian manıfolds of constant curvature. Kōdaı Math. Sem. Rep. 24 (1972), 451-458.
[4] Little, J. A., On singularities of submanifolds of higher dimensional Euclidean spaces. Ann. Mat. Pura Appl. 83 (1969), 261-336.
[5] Ōtsuki, T., A Theory of Riemannıan submanıfolds. Kōdaı Math. Sem. Rep. 20 (1968), 282-295.
[6] \qquad , Minımal submanıfolds with M-index 2. J. Diff. Geometry 6 (1971), 193-211
[7] Minımal submanıfolds with M-index 2 and generalized Veronese surfaces. J. Math. Soc. Japan 24 (1972), 89-122.

Department of the Foundations of Mathematical Sciences, Tokyo University of Education.

