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VECTOR FIELDS IN A METRIC MANIFOLD

WITH TORSION AND BOUNDARY

BY YOSHIKO KUBO

The integral formulas and their applications in compact orientable Riemannian,
Kahlerian or almost Hermitian manifolds have been studied by several authors
(see [8]). Hsuing and Shahin [5] and Ishihara [6] have studied the integral formulas
and their applications in certain compact orientable affinely connected manifolds.

The vector fields in compact orientable Riemannian or almost Hermitian mani-
folds with boundary have been studied, using integral formulas, by Ako [13], Hilt
[2], Hsuing ([2], [3], [4]), Takahashi ([2], [12]), Yano ([10], [11], [12]) and others.

Hayden [1] introduced the metric connection with torsion in a Riemannian
manifold. Yano and Bochner [9] have studied vector fields in a compact orientable
Riemannian manifold with torsion by use of integral formulas.

The purpose of the present paper is to study systematically some special vector
fields in a Riemannian manifold with torsion and with boundary.

§ 1. Metric manifolds with torsion.

We consider an ^-dimensional differentiate manifold M on which there is
given a positive definite metric

and a metric connection Γ3\, that is, a connection such that

(1. 1) Ftfi/i=0,

where Ψ3 denotes the covariant differentiation with respect to Γ/t.
Denoting by {/«} Christoffel symbols formed with gjiy we can put

(1.2) ΓΛ

where T is a tensor feild of type (1, 2).

Received June 19, 1971.
1) The indices h, i, j, k, /, ••• run over the range 1, 2, •», n. The so-called Einstein's

summation convention is used with respect to this system of indices.
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Equations (1. 1) and (1. 2) show that

(1.3) FtfΛ=-Γy<Λ-Γ,w=0,

where

Tjih=Tjigth

The connection Γ3\ needs not be symmetric and we denote by

(1.4) V = (ΓΛ

the torsion tensor.
From (1. 2), (1. 3) and (1. 4), we find the metric connection Γ/* has the form

(1. 5) ΓΛ

where Shji—gmhguSmjt, gmh being contra variant components of the metric tensor.
The curvature tensor of the metric connection Γ3\ is given by

and we have

Rkjίh = —

(l 6)

where

The Ricci formulas for a contravariant vector field, for a covariant vector
field, for a scalar and for a general tensor field, for example, of type (1, 2) are
given, respectively by

=RιuhTji

t-RιkJ

tTtf

We consider a hypersurface B in the metric manifold Mn and represent it by
parametric equations
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where here and in the sequel the indices a,b,c, ••• run over the range 1,2, •••,
n—l. We put

where da denotes partial differentiation with respect to ua. The Ba

h represent
n— 1 linearly independent contravariant vectors tangent to the hypersurface. The
induced metric gc& of the hypersurface is given by

(1-8) flto=flr/<BeW.

The connection ΓΛ induced on the hypersurface is given by

(1. 9) ΓΛ^

where

Thus the torsion tensor of ΓΛ is given by

def ^

2

Since the induced connection is metric and has the torsion Scδ

α, we have

where {Λ} are Christoffel symbols formed with the induced metric gcb.

§2. Stokes' theorem.

We assume that the ^-dimensional metric manifold M is compact and is the
closure of an open submanifold of an ^-dimensional orientable metric manifold Vn

of class C°°. The Riemannian metric of M is given by ds2=gjidxj'dxί and is
represented, in a neighborhood of each point lying on its boundary B by a?n^0
with respect to certain coodinates (xh). It follows that B is an (^—1) -dimensional
compact orientable submanifold (cf. [6]). We call the manifold M a compact
orientable manifold with regular boundary B.

We shall represent B by parametric equations

and put

(2.1)
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and denote by Nh the unit normal to B such that Nh and #Λ BJ1, •••, Bn-ιh form
the positive sense of M. Then we have

(2.2)

where |JVΛ, Bb

h\ denotes the determinant formed by Nh and #Λ •••, #n-ιΛ and

are those formed by g^ and gcδ respectively.
We denote by V3 the covariant differentiation in the metric manifold M with

respect {/*}, and by Fc the covariant differentiation along the boundary B with
respect to {Λ}. We recall the equations of Gauss and those of Weingarten;

l; *
(2.3)

~ c c 1 j i

where H^ are components of the second fundamental tensor of the boundary B
and Hc*=Hcag

ab.
We put

then we have

(2.4) Ba

hBb

h=dί, Ba

hN
h=0, NiN

h+Ba

iBah=δh

i.

We now state Stokes' theorem in the following form:

STOKES' THEOREM. We consider a compact orientable Riemannian manifold
M with regular boundary B. Then, for an arbitrary vector field vh, we have an
integral formula

where

dσ=

is the volume element of M and

d'σ= \/Ύgdul/\duz/\ /\dun-1
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the surface element of B.

§3. A generalization of Stokes' theorem.

We shall consider a compact orientable metric manifold M with torsion Sjih

and regular boundary B and assume that the torsion tensor Sjih satisfies the condition

(3. 1) Syί'=0.

For any vector field vh, we have by means of (1. 5)

where V3 denotes the covariant differentiation respect to Γ3\ whose torsion tensor
satisfies (3. 1).

By virtue of (1. 4), we get

By assuming (3. 1), we have

(3.2) F^=ίV.

Therefore, we get the generalization of Stokes' theorem under the assumption
(3. 1);

GENERALIZED STOKES* THEOREM. We consider a compact orientable metric
manifold M with regular boundary B and torsion satisfying (3. 1). Then, for an
arbitrary vector field vh, we have an integral formula

In the sequel, to apply the generalized Stokes' theorem, we assume that M is
a compact orientable metric manifold with regular boundary B and the torsion
tensor S satisfies (3.1).

§4. Pseudo-Killing vector fields.

We shall call a vector field vh a pseudo-Killing vector field, if it satisfies the
condition

(4.1) Pj

A pseudo-Killing vector field satisfies

(4.2) F<fl'=0.

Differentiating (4. 1) covariantly and taking account of (1. 7) and (4. 2), we get
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(4. 3) ^T/r<»*+A'V-2S/*r^=0.

Now, by a straightforward computation we can prove

^(4.4)

which is valid for an arbitrary vector field vh, where ΓJ'=gJ'Ψτ. We assume that
torsion Sjih of M satisfies (3.1) and integrate both members of (4. 4) on the whole
manifold M and apply the generalized Stokes' theorem to the right hand member.

Γ Γ 1
\ (gj%Vj?iVh+KκiV%—2S0

h^iVj}vh + -z- (Ϋfli+Fίty)(FV+F V)—(F<0
j3fL ^

(4.5)

Suppose now that vh is a pseudo-Killing vector field. Then it satisfies

gWjW+KW-ZSfΨtvJ^ and F«t>*=0 in M

and

(PjVi+ΫiVj)Njvl=0 on B.

Conversely, if a vector field vh satisfies these conditions, then we have from
(4.5)

from which

PjVi+PiVj=Q in M

and consequently vh is a pseudo-Killing vector field. Thus we have

PROPOSITION 4. 1. A necessary and sufficient condition for a vector field vh in
M with boundary B to be a pseudo- Killing vector field is that

( gJiPjFίv
h+Kh

iv
ί-2Sj

hiPivJ=Q, F<t;*=0 in M,
(4. 6)

0 on B.

As a special case, if the vector field vh vanishes on the boundary B, then the
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second condition in (4. 6) is automatically satisfied. Thus we have

COROLLARY 4. 1. A necessary and sufficient condition for a vector field vh in
M with boundary B vanishing identically on B to be a pseudo- Killing vector field
is that

Q F^=0 in M.

Now we put, on the boundary B

(4. 7) vh=vaBah+aNh

then we have

(4. 8) BifVi^Vt, Nivi=a.

We consider the equations of Gauss and those of Weingarten with respect to
ΓΛ and ΓΛ (cf. (1. 7), (2. 3)) [13].

f'i - Ba

hΓc\ = HcbN
h,

(4.9)

j\= -Hc

aBa

h

where HCb are components of the second fundamental tensor of the boundary B
with respect to Γ3\ and Hc

a=Hcbg
b(l.

Differentiating the first equation of (4. 8) covariantly along the boundary B and
taking account of (4. 8) and (4. 9), we find

from which, transvecting with gcύ and taking account of (2. 4),

(4. 10) a

Differentiating next the second equation of (4. 8) covariantly along the boun-
dary and taking account of (4. 8) and (4. 9), we obtain

from which, transvecting with vc,

(4. 11)

by virtue of (4. 7).
Eliminating (Pjvi)NjNί from (4. 10) and (4. 11), we obtain

(4. 12)

from which
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(4. 13) (Fyfli + PtVj)NW = (PjvύN'v* + fίcbv
cvb + a2Ha

Thus we have

COROLLARY 4. 2. A necessary and sufficient condition for a vector field vh in
M with boundary B to be a pseudo- Killing vector field is that

gJ'ΨJ Pίv
h+K\vί-2SjhΨivJ=0, Ptv*=0 in M,

(4. 14)

)=() on B.

Now if the vector vh is tangential to B, then we have «=0 and consequently
we have

COROLLARY 4. 3. A necessary and sufficient condition for a vector field vh in
M tangential to the boundary B to be a pseudo- Killing vector field is that

Q, ^=0 in M,

(4.15)

on B.

If the vector field vh is normal to the boundary B, then we have va=Q and
vh=aHh and consequently

by virtue of (4. 10). Thus we have

COROLLARY 4. 4. A necessary and sufficient condition for a vector field vh in
M normal to the boundary B to be a psudo-Killing vector field is that

gJiPJPiVh+Kh

iv
i-2S*MPiv>=0, ^^=0 in M,

(4. 16)
aHaa=0 on B.

§5. Pseudo-harmonic vectors.

We shall call a vector field vh a pseudo-harmonic vector field, if it satisfies
the conditions

(5.1) Γ^i-Γ4^=0, F4f>»=0.

For a pseudo-harmonic vector field, we have

(5. 2) gJiPjPiVh - K\vl - 2SjMPiV = 0,

by virtue of (1. 5) and (5. 1).
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By a straightforward computation, we can prove

(5. 3)

which is valid for an arbitrary vector field vh. So, we assume that the torsion of
M satisfies (3. 1), and integrate the both members of (5. 3) on the whole M and
apply generalized Stokes* theorem to the right hand member, then we get

(5. 4) ( [(gVPjPiV* - K\vl - 2SjhiPiV^vh + -ί- (PjVt - PiVJ)(PW - ΓV
JM\_ *

B

Suppose that vh is a pseudo-harmonic vector field. Then it satisfies

g*iPJPiVh-KhiVi-2SJ

MPiv*=0 in M

and

[(PjVi-PiVjW+vάPivW^O on B

Conversely if a vector field satisfies these conditions, then we have from (5. 4)

from which

PjVi-PiVj=Q, FiVl=Q in M.

Thus we have

PROPOSITION 5. 1. A necessary and sufficient condition for a vector field υh in
M with boundary B to be a pseudo-harmonic vector field is that

n
(5. 5)

on B.

COROLLARY 5. 1. A necessary and sufficient condition for a vector field vh in
M with boundary B vanishing on B to be a pseudo-harmonic vector field is that

g^P3Piυ
h'-Kh

iΌ
i-2Sj

MPiVJ=Q in M.

COROLLARY 5. 2. A necessary and sufficient condition for a vector field vh in
M with boundary B to be a pseudo-harmonic vector field is that
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gJψjf7iv
h-Kh

iv
1'-2SjhΨivJ=Q in M,

(5.6)

V-/^^^ on B.

COROLLARY 5. 3. A necessary and sufficient condition for a vector field vh in
M tangential to the boundary B to be a pseudo-harmonic vector field in that

Q in M.

(5.7)

(rjvi)N'vi-H<ΛtftP=Q on B.

COROLLARY 5. 4. A necessary and sufficient condition for a vector field vh in
M normal to the boundary B to be a pseudo-harmonic vector field is that

0 in M,

(5.8)

α(Fii>*)=0 on B.

§6. Concluding remarks.

It is well known that in a compact orientable Riemannian manifold, the inner
product of a Killing vector field and a harmonic vector field is constant. We
remark that for a pseudo-Killing vector field and a pseudo-harmonic vector field,
we get a similar result, that is,

PROPOSITION 6. 1. In a compact orientable metric manifold M whose torsion
tensor Sjih is skew-symmetric with respect to all indices, the inner product of a
pseudo-Killing vector field vh and a pseudo-harmonic vector field wh is constant.

Proof. Computing the Laplacian of inner product vhwκ with respect to metric
connection V whose torsion is SyίΛ, we get

(β. 1) Δ(whv
h] = PΨiWhv

h + w^Vίo*1

because VjVi is skew -symmetric and VjWi is symmetric. Using, the Ricci formulas
(1. 7), (6. 1) is rewritten as

(6. 2) Δ(whv
h) = (Kjί - K

Since we have

from the definition of the Ricci tensor of the metric connection Γ3\, (6. 2) reduces
to
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(6.3) 4(MWft)=2PΛ(S*^^

As M is compact and Sjih is skew-symmetric with respect to all indices, we get

Since, for a function /, Δf=Δf, we have the proof of proposition 6. 1.
Now, we remark that similar considerations can be applied to pseudo-conformal

Killing vector fields.
We call a vector field vh pseudo-conformal Killing vector, if it satisfies the

condition

(6.4) rjVi+P<Vj=2φgji9

for a certain scalar function φ. This function φ is found to be (l/^)(f^ί) and con-
sequently (6. 4) can be written as

(6. 5) r/Vi+rvj- — g,i(W)=Q.
n

For pseudo-conformal Killing vector fields we get the following results:

PROPOSITION 6. 2. A necessary and sufficient condition for a vector field vh in
M with boundary B to be a pseudo-conformal Killing vector field is that

0 in M,

(6.6)

0yKW|AfV=0 on B.

If the vector vh vanishes on the boundary B, then the second condition of
(6. 6) is automatically satisfied. Thus we have

COROLLARY 6. 1. A necessary and sufficient condition for a vector field vh in
M with boundary B vanishing identically on B to be a pseudo-conformal Killing
vector field that

0 in M.

Now from (4. 13), we have the following Corollaries.

COROLLARY 6. 2. A necessary and sufficient condition for a vector field vh in
M with boundary B to be a pseudo-conformal Killing vector field is that

—- FΛ(F^)=0 in M,

(6.7)
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(Fjfl,)#'fl*+#c^ on B.
n

COROLLARY 6. 3. A necessary and sufficient condition for a vector field vh in
M tangential to B to be a pseudo-conformal Killing vector field is that

0 in Λf,
n

(6.8)

(P/vi)N'vi+Hebt*
eίP=Q on B.

COROLLARY 6. 4. A necessary and sufficient condition for a vector field vh in
M normal to B to be a pseudo-conformal Killing vector is that

υ in M,
- - ' - n ' '

(6.9)

on B.
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