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VECTOR FIELDS IN A METRIC MANIFOLD
WITH TORSION AND BOUNDARY

By Yosuiko Kuso

The integral formulas and their applications in compact orientable Riemannian,
Kahlerian or almost Hermitian manifolds have been studied by several authors
(see [8]). Hsuing and Shahin [5] and Ishihara [6] have studied the integral formulas
and their applications in certain compact orientable affinely connected manifolds.

The vector fields in compact orientable Riemannian or almost Hermitian mani-
folds with boundary have been studied, using integral formulas, by Ako [13], Hilt
[2], Hsuing ([2], [3], [4]), Takahashi ([2], [12]), Yano ([10], [11], [12]) and others.

Hayden [1] introduced the metric connection with torsion in a Riemannian
manifold. Yano and Bochner [9] have studied vector fields in a compact orientable
Riemannian manifold with torsion by use of integral formulas.

The purpose of the present paper is to study systematically some special vector
fields in a Riemannian manifold with torsion and with boundary.

§1. Metric manifolds with torsion.

We consider an #-dimensional differentiable manifold M on which there is
given a positive definite metric

dst=g;dx’dx"»
and a metric connection I',”, that is, a connection such that
1.1) Vigin=0,

where F, denotes the covariant differentiation with respect to I”,%.
Denoting by {,*} Christoffel symbols formed with ¢;;, we can put

1.2) Ir'p= { jhi } + Ty

where T is a tensor feild of type (1, 2).

Received June 19, 1971.
1) The indices 4, i, 4, &, I, --- run over the range 1, 2, .-, n. The so-called Einstein’s
summation convention is used with respect to this system of indices.
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Equations (1.1) and (1. 2) show that
1.3 Vigin=— Tjin— Tjni=0,
where
Tyin=Tsi'gen.

The connection I",*; needs not be symmetric and we denote by
1
1.4) Syt = T(F Fi—T)

the torsion tensor.
From (1. 2), (1. 3) and (1. 4), we find the metric connection I';/* has the form

(1. 5) F]h"i,:- ( ]hz } +Sﬂ”+S"jz+S"u,

where S*;;=¢™"q;,Sn,’, g™ being contravariant components of the metric tensor.
The curvature tensor of the metric connection I',*, is given by

Ryt =01l i—0;0 "+ Tt — I i,
and we have
Rijin=—Rjxin=— R
(1.6) Rijin+ Rjien+ Rixjn=0,
Rkjih = Rihlcj’
where
Rijin=Ruji'qen.

The Ricci formulas for a contravariant vector field, for a covariant vector
field, for a scalar and for a general tensor field, for example, of type (1, 2) are
given, respectively by

VeV 0" — Vo™ = Ry ji"vt — 25y, Viv*,

VeV jw; —ViPw; = — Ry ji"wn— 2k, Vews,

Vilif = ViV f = =254 f,

Ve Ty — Vil Ty = R Tjit — Rug,t Toi® — Rued Ty — 250t Ve Ty

We consider a hypersurface B in the metric manifold M* and represent it by
parametric equations

zt=zM(u"),



VECTOR FIELDS IN METRIC MANIFOLD 385

where here and in the sequel the indices @, b, ¢, -~ run over the range 1,2, --,
n—1. We put

Ba,h:aa,xh,

where 9, denotes partial differentiation with respect to #% The B,* represent
n—1 linearly independent contravariant vectors tangent to the hypersurface. The
induced metric g, of the hypersurface is given by

1.8) gev =0 7B By'.
The connection I'.%, induced on the hypersurface is given by
1.9) I'%=B%(0:.By"+ B By'I",*,),
where
B*=Bd'g**gsn.

Thus the torsion tensor of I'.% is given by
def 1 X
Sep®= - (L%~ I'y%)=S;" B! By B%,
Since the induced connection is metric and has the torsion S;% we have
a
Fcabz{ ¢ b }+Scb“+5“cb+s%c,

where {.%} are Christoffel symbols formed with the induced metric g..

§2. Stokes’ theorem.

We assume that the »-dimensional metric manifold M is compact and is the
closure of an open submanifold of an z-dimensional orientable metric manifold V"
of class C». The Riemannian metric of M is given by ds*=gudx’dz® and is
represented, in a neighborhood of each point lying on its boundary B by z"=0
with respect to certain coodinates (z*). It follows that B is an (z—1)-dimensional
compact orientable submanifold (cf. [6]). We call the manifold M a compact
orientable manifold with regular boundary B.

We shall represent B by parametric equations

xn = xh(ua,)
and put

Bbh = abx" (az) = a/aub),
2.1)
Jo=03B By,
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and denote by N”* the unit normal to B such that N* and B:*, B.*, -+, B,—i" form
the positive sense of M. Then we have

07N Byt =0, giuNINt=1,
2.2)
V g|N™, Bp|=+/"g
where |N*, By*| denotes the determinant formed by N* and B, -+, B,-1" and
9=|gsl, "g=1ge|

are those formed by g;; and g respectively.

We denote by F, the covariant differentiation in the metric manifold M with
respect {,}, and by V. the covariant differentiation along the boundary B with
respect to {%}. We recall the equations of Gauss and those of Weingarten;

a

— 5 B
cb —'chN:

BBy =acBbh+Bchbf{ ].hi } _ Bah{

2.3)
ﬁcN”=acN”+Bch‘{ j"i ] — —HIB,
where H, are components of the second fundamental tensor of the boundary B

and ﬁcb =I?[caga'b.
We put

B, =Bytg*%gin,
then we have
2.4 BowByt=6§,  B%WN'=0, N;N*+B%B*=d%
We now state Stokes’ theorem in the following form:

Stoxkes’ THEOREM. We consider a compact orientable Riemannian manifold
M with vegular boundary B. Then, for an arbitrary vector field v*, we have an
integral formula

S Iz-vida = S i)iNid’O',
M B
where
do=~/qdz* Adz* A+ ANdx™

is the volume element of M and

do=""gdw NAu N\ Ndu"1
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the surface element of B.

§3. A generalization of Stokes’ theorem.

We shall consider a compact orientable metric manifold M with torsion S;;*
and regular boundary B and assume that the torsion tensor S;* satisfies the condition

(3' 1) S j;t=0.
For any vector field »*, we have by means of (1.5)
T =Vt +(Sis +S* s+ S0,

where V, denotes the covariant differentiation respect to I",”, whose torsion tensor
satisfies (3. 1).
By virtue of (1. 4), we get

Vit =Vt —2S,t00.
By assuming (3. 1), we have
(3.2) Vat="Pat.

Therefore, we get the generalization of Stokes’ theorem under the assumption
3.1);

GENERALIZED STOKES' THEOREM. We consider a compact orientable metric
manifold M with regular boundary B and torsion satisfying (3.1). Then, for an
arbitrary vector field v*, we have an integrval formula

S Vividazs v Nid'a.
s B

In the sequel, to apply the generalized Stokes’ theorem, we assume that M is
a compact orientable metric manifold with regular boundary B and the torsion
tensor S satisfies (3. 1).

§4. Pseudo-Killing vector fields.

We shall call a vector field »* a pseudo-Killing vector field, if it satisfies the
condition

4.1) Vivi+Viw,=0.
A pseudo-Killing vector field satisfies
4.2) P =0.
Differentiating (4. 1) covariantly and taking account of (1.7) and (4. 2), we get
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(4. 3) gf‘VjViv"+K"wi—25,’”7}1)’:0.
Now, by a straightforward computation we can prove

(g7 W 70" + K* 't — 25 P9 Yon + %(Vjvﬁ Vi )(Vivt+ Piv?)— (Pot)?

4. 4)
=PIV i+ Vst —o(Fa?),

which is valid for an arbitrary vector field »*, where F/=g/},. We assume that
torsion S;* of M satisfies (3.1) and integrate both members of (4. 4) on the whole
manifold M and apply the generalized Stokes’ theorem to the right hand member.

Si(g”VjViv" + K" =25,V Yo+ % (Pios+ P, Pivi+ Vivd)— (mvi)z]da
4. 5)
= SB [(P0i4 P, o — 0 (I N‘da.

Suppose now that »* is a pseudo-Killing vector field. Then it satisfies
gi i+ K0t —2SVw’=0 and Pp'=0 in M
and
i+ Vw;)Nivr=0 on B.

Conversely, if a vector field »* satisfies these conditions, then we have from
(4. 5)

—;-S i+ P )(Pivi 4 Viv?)de =0,
M
from which

Vwi+Viw;=0 in M

and consequently o* is a pseudo-Killing vector field. Thus we have

ProOPOSITION 4. 1. A necessary and sufficient condition for a vector field v* in
M with boundary B to be a pseudo-Killing vector field is that

g7V Vvt + Kt — 25 P07 =0, Fpt=0 in M,
4. 6)

(Vﬂ)i.'{— Vjvi)vai =0 on B.

As a special case, if the vector field »* vanishes on the boundary B, then the
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second condition in (4. 6) is automatically satisfied. Thus we have

CoROLLARY 4.1. A necessary and sufficient condition for a vector field v* in
M with boundary B vanishing identically on B to be a psewdo-Killing vector field
is that

97V + Kt — 28,7 P! =0 rpt=0 in M.
Now we put, on the boundary B
4.7) V" =0"B"+aN"
then we have
4.8) Bytvi=v, Niv;=a.

We consider the equations of Gauss and those of Weingarten with respect to
'}, and I'% (cf. (1.7), (2.3)) [13].

VeBy"=0.Bs"+ By’ Be'I" i — Bo" "%y =Hp N,
4.9)
PN =3,N* 4 B NiT oty = — HABb

where H, are components of the second fundamental tensor of the boundary B
with respect to I',”; and H,*=H.g""

Differentiating the first equation of (4. 8) covariantly along the boundary B and
taking account of (4.8) and (4. 9), we find

aHepy+ B BytV ;= Vs,
from which, transvecting with ¢® and taking account of (2. 4),
(4. 10) aH 2+ Vit — (V) NI Nt =P

Differentiating next the second equation of (4.8) covariantly along the boun-
dary and taking account of (4.8) and (4.9), we obtain

_H;:bvb +Bchi(Vjv1;) =V,
from which, transvecting with 2°,
(4. 11) — Hpv'v® + (P00’ Nt — a(V )N Ni =1V,

by virtue of (4. 7).
Eliminating (Fjv,)N’N¢ from (4.10) and (4. 11), we obtain

(4.12) (P02)07 N = Hyyoot + a2 Ho 2+ a(Fip") — 20(Fat®) + V),

from which
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(4.13)  (Pwi+ V) Nivt=F ;) N'v* + Hopv®0? + o Ho 2+ a(Viv®) — 2a(Pov®) + Vaolav®).
Thus we have

COROLLARY 4.2. A necessary and sufficient condition for a vector field v* in
M with boundary B to be a pseudo-Killing vector field is that

g7Vt + Kt —2S 4 V07 =0, Pwr=0 in M,
4. 14)
(V) N7v*+ Hepv0® + a® Ho® — 2a(Vov®) + Vo(av®)=0 on B.

Now if the vector »* is tangential to B, then we have a=0 and consequently
we have

CoROLLARY 4.3. A necessary and sufficient condition for a vector field v* in
M tangential to the boundary B to be a pseudo-Killing vector field is that

g7 VPt + K*wt —2S Vi =0, Pwt=0 in M,
4. 15)
(V) N7vt+ Hpo'® =0 on B.

If the vector field »* is normal to the boundary B, then we have v*=0 and
v"=aH" and consequently

(Vjvi + Vivj)va‘ =2[a2Ha“+a(Vivi)],
by virtue of (4.10). Thus we have

COROLLARY 4.4. A mecessary and sufficient condition for a vector field v* in
M normal to the boundary B to be a psudo-Killing vector field is that

gVt + Khpt —2S P07 =0, F*=0 in M,
aH2=0 on B.

(4. 16)

§5. Pseudo-harmonic vectors.

We shall call a vector field »* a pseudo-harmonic vector field, if it satisfies
the conditions

6.1 Vivi—Vw,=0,  Fupr*=0.
For a pseudo-harmonic vector field, we have

(5. 2) g7Vt — Kt — 25 Pw? =0,
by virtue of (1.5) and (5. 1).
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By a straightforward computation, we can prove

(00 " — Kt — 28 i on, + %(Vjvi—m,-)(mi— )

G.3) :
+ (Vv 2 =VIi[(Vos—Vwot+0,(Vivh)],

which is valid for an arbitrary vector field v*. So, we assume that the torsion of
M satisfies (3.1), and integrate the both members of (5.3) on the whole M and
apply generalized Stokes’ theorem to the right hand member, then we get

(5. 4) SM[(g”VjVivh—K”w"—ZSJMVivf)vh+ —;— (70— Vivj)(Vjvi—Vivi)-l—(Vivi)g]da

=S (75— Vo o+ 0T IN .
B

Suppose that »* is a pseudo-harmonic vector field. Then it satisfies
gVt — Krpt — 25,77 =0 in M
and
[(Poi—Pwwi+o,Fp)IN’=0 on B

Conversely if a vector field satisfies these conditions, then we have from (5. 4)
SM[% (7 0i— Vi, )P0 — Tipd) + (P |dor=0

from which
Vivi—Vw,=0, Viv*=0 in M.
Thus we have

PropoSITION 5.1. A necessary and sufficient condition for a vector field v™ in
M with boundary B to be a pseudo-harmonic vector field is that

5) { gﬂVjVﬂ)h’—Kh’q;vi'—ZSjMV«,;U]=O n M
.
[(Pos— Vvt +o,(PoH)IN?=0  on B.

CorROLLARY 5.1. A mecessary and sufficient condition for a vector field v* in
M with boundary B vanishing on B to be a pseudo-harmonic vector field is that

G T — Kt — 28w =0 in M.

COROLLARY 5. 2. A necessary and sufficient condition for a vector field v* in
M with boundary B to be a pseudo-harmonic vector field is that



392 YOSHIKO KUBO
¢IV iV — K*p*— 25707 =0 in M,
(5. 6)
(Fj03) N¥v® — Hpv“v® — a2 H, %+ 2a(Pqv®) — Vol av®) =0 on B.

CoROLLARY 5.3. A necessary and sufficient condition for a vector field v in
M tangential to the boundary B to be a pseudo-harmonic vector field in that

G — Kt =254V =0 in M.
(6.7
) N'vt— Hyo'v® =0 on B.

COROLLARY 5. 4. A mecessary and sufficient condition for a vector field v* in
M normal to the boundary B to be a pseudo-harmonic vector field is that

gﬁ'Vijh—Khivi—Zthinj=0 n M
(5. 8)
a(Pw®)=0 on B.

§6. Concluding remarks.

It is well known that in a compact orientable Riemannian manifold, the inner
product of a Killing vector field and a harmonic vector field is constant. We
remark that for a pseudo-Killing vector field and a pseudo-harmonic vector field,
we get a similar result, that is,

ProrosiTION 6.1. In a compact orientable metric manifold M whose torsion
tensor Sun is skew-symmetric with vespect to all indices, the inner product of a
pseudo-Killing vector field v* and a pseudo-harmonic vector field wy is constant.

Proof. Computing the Laplacian of inner product v*w, with respect to metric
connection V7 whose torsion is Sj, we get

6.1) Awnv™) =ViViopv™ +wi Vi7"

because F; is skew-symmetric and Fyw; is symmetric. Using the Ricci formulas
(1.7), (6.1) is rewritten as

(6. 2) A(whv") = (Kﬁ - I{”)Zﬂwi - ZSjih(VnWj U, — Vh,i)j W)
Since we have
Kj=K;+ VTt — Ty T

from the definition of the Ricci tensor of the metric connection I',%, (6. 2) reduces
to
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(6. 3) A(wnv™) =204(S ;"0 w?) — 2(S71nS™ s+ S i S i) 0 k.
As M is compact and S;;, is skew-symmetric with respect to all indices, we get
A(wnv™)=0.

Since, for a function f, Af=2ff, we have the proof of proposition 6. 1.

Now, we remark that similar considerations can be applied to pseudo-conformal
Killing vector fields.

We call a vector field »* pseudo-conformal Killing vector, if it satisfies the
condition

(6.4) Vivi+Viv;=249;,
for a certain scalar function ¢. This function ¢ is found to be (1/z)(F;»*) and con-
sequently (6. 4) can be written as

2
(6. 5) VivitVivs— —-g5(F’)=0.

For pseudo-conformal Killing vector fields we get the following results:

ProposITION 6. 2. A mecessary and sufficient condition for a vector field v* in
M with boundary B to be a pseudo-conformal Killing vector field is that

n—

g V" + K" —2S," V07 + 2 r7pt)=0 n M,
n

(6. 6)
[Vjvi-i-Vivj——ng-gﬁ(V,v‘)]va’=0 on B.
If the vector »* vanishes on the boundary B, then the second condition of

(6. 6) is automatically satisfied. Thus we have

CoROLLARY 6.1. A mecessary and sufficient condition for a vector field v* in
M with boundary B wvanishing identically on B to be a pseudo-conformal Killing
vector field that

n

g+ Kh vt —2S 7 + ;2 rrPpt)=0  in M.
Now from (4. 13), we have the following Corollaries.

COROLLARY 6. 2. A necessary and sufficient condition for a vector field v* in
M with boundary B to be a pseudo-conformal Killing vector field is that

gﬁV,Zv’”+Khivi—ZS,’”Viv’+n—;2— PrPah)=0 in M,
(6.7)
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n—2

(V0:) N0t + Hepv0® + a®H,* + a(Pp®) —2a(Pov®)+ Vo(av®)=0  on B.

COROLLARY 6.3. A necessary and sufficient condition for a vector field v* in
M tangential to B to be a pseudo-conformal Killing vector field is that

”n

=2 prpay=0  in M,

¢T T+ Kt 25,M7 07+ 2

(6. 8)
(Pwi) N7vt+ Hpv® =0 on B.

COROLLARY 6.4. A necessary and sufficient condition for a vector field v* in
M normal to B to be a pseudo-conformal Killing vector is that

G+ K — 284709 4+ 2

;2 rrPpt)=0 in M,

6.9
n—1

a?H,%+ a(Fpt)=0 on B.

BIBLIOGRAPHY

[1] Havpen, H. A, Subspaces of space with torsion. Proc. London Math. Soc. 34
(1932), 27-50.

[2] HiT, A. L., anp C. C. HswunG, Vector fields and infinitesimal transformations
on almost Hermitian manifolds with boundary. Can. J. Math. 17 (1965), 213-
238.

[3] Hswng, C. C, Vector fields and infinitesimal transformations on Riemannian
manifolds with boundary. Bull. Soc. Math. France 92 (1964), 411-434.

[4] ————, Curvature and homology of Riemannijan manifolds with boundary.
Math. Z. 82 (1963), 67-81. .

[5] Hswng, C. C, anp J. K. SuaniN, Affine differential geometry of closed hyper-
surfaces, Proc. London Math. Soc., (3) 17 (1967), 715-735.

[6] Isuinara, The integral formulas and their applications in some affinely con-
nected manifold. Kodai Math. Sem. Rep. 13 (1961), 93-108.

[7] Takaunashi, T., On harmonic and Killing vector field in Riemannian manifold
with boundary. J. Math. Soc. Japan 14 (1962), 37-65.

[8] Yawo, K., Harmonic and Killing vector fields in compact orientable Riemannian
spaces with boundary. Ann. of Math. 69 (1959), 588-597.

[9] Yano, K., Differential geometry on complex and almost complex spaces. Per-
gamon Press (1965).

[10] Yano, K., anpD M. Ako, Vector fields in Riemannian and Hermitian manifolds
with boundary. Kodai Math. Sem. Rep. 12 (1960), 120-157.

[11] Yano, K., AND S. BocHNER, Curvature and Betti numbers. Ann. of Math. Studies

32 (1953).



VECTOR FIELDS IN METRIC MANIFOLD 395

[12] Yawo, K., aAND Y. MuTo, Tensor analysis. Hirokawa, Tokyo (1968). (in Japanese)

[13] Yano, K., AND T. TakaHASHI, Some remarks on harmonic and Killing tensor
fields in Riemannian manifold with boundary. Calcutta Math. Soc., The Golden
Jubilee Commemoration Volume (1958-1959), 439-446.

Home Econowics,
JaraAN WoOMEN’s UNIVERSITY.





