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MINIMALITY IN FAMILIES OF SOLUTIONS
OF Δu=Pu ON RIEMANN SURFACES

BY KWANG-NAN CHOW

I. Introduction.

Consider a Riemann surface R and the space HD(R) of all harmonic func-
tions with finite Dirichlet integral. The monotone closure of HD{R) is denoted by

HD(R). C. Constantinescu and A. Cornea in 1958 started the study of minimal

functions in HD(R). In 1960, Nakai ([2], also cf. [7]) introduced a representing
measure on the Roy den boundary Γ associated to R and a kernel on RxΓ which

serve to represent HD(R). One significant result is that HD-miήimal functions
correspond to atoms on Γ.

It was Ozawa [5] who first considered the solutions of Δu=Pu on R where P
is a nonnegative density. Glasner and Katz [1] have recently shown that solutions
of Δu=Pu on R can also be studied in terms of their behavior on Γ. Using their
machinery, one can obtain analogues of Nakai's results for the space PE(R) of

solutions with finite energy integral and its monotone closure PE(R). In particular,

a representing measure on Γ and a kernel on RxΓ can be constructed for solu-

tions so that PE-minimal functions can be characterized analogously.

In view of this, a natural question is: what is the relation between the HD-

and PE-minimality ? Or equivalently, if a point on Γ is atomic with respect to

one measure, will it be atomic with respect to another? In this paper it is shown

that the answer is virtually yes. This answer is encouraging because it suggests

that there is a topological property of Γ which can be associated with HD- or PE-

minimality. Finding such a property would have important implications in the

study of quasi-conformal or quasi-isometric invariants.
As a remark, all the results in this paper can be carried over to Riemannian

manifolds.

II. Preliminaries.

II 1. We consider an open Riemann surface R and the equation Δu=Pu on
R, where P is a nonnegative density. For simplicity, solutions of Δu—Pu will be
called solutions. Let M(R) be the Royden algebra associated with R which is the
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set of all bounded Tonelli functions on R with finite Dirichlet integral. The
Royden compactification R* is the unique compact Hausdorff space such that R is
open and dense in R*, functions in M(R) have continuous extensions to R* and
M(R) separates points of R*. Γ=R*\R is the Royden boundary. If we let MΔ(R)
be the Z?Z)-closure (i.e. the closure with respect to the topology generated by the
compact bounded convergence and the Dirichlet semi-norm) of the set M0(R) of all
functions in M(R) with compact support, then Δ = {qeΓ: f(q)=0 for all f€MΔ(R)} is
the harmonic boundary of R. Because it is uniformly dense in the set of all con-
tinuous functions on R*, M(R) has the important Urysohn property: for any two
disjoint compact sets Klf K2 in R* and any two distinct real numbers rlf r2 with
ri<r2, there is a function fzM(R) such that r^f^r* and f\K%—r%1 i=l,2. For
the details of this section see [1], [2] or [7J.

II 2. A modification of Nakai's result ([7], p. 168) is the minimum prin-
ciple: if u is any super solution on R bounded from below such that for all
lim infzqR)Z-+qu(z)^c for some nonpositive number c, then

II 3. A subset of Δ introduced in [1] is crucial for solutions, i.e. Δp={qeΔ:
q has a neighborhood U in R* with JϋnB Pdxdy<oo}. Δp is open in Δ. Functions
in E(R) vanish on Δ\ΔP, where E(R) is the subalgebra of M{R) of all bounded
Tonelli functions f on R with finite energy integral

E(f)=ER(f) = [ df/\*dfΛ PPdxdy.
JR JR

E(R)\ΔP is uniformly dense in the set of all continuous functions on Δp vanishing
at infinity in view of the Stone-Weierstrass theorem. E{R) is incomplete, i.e.
complete with respect to the topology generated by the compact bounded conver-
gence and the energy semi-norm.

II 4. The P£-projection is denoted by πp. For any feE(R), it gives the
unique PE-ίunction (i.e. solution with finite energy integral) πpf with πpf\Δ=f\Δ.
For the existence of such solution see Theorem 3 of [1]. Note that if P=0, π° is
the ilD-projection which gives the unique 12D-functions (i.e. harmonic functions
with finite Dirichlet integral).

III. Representing measure and its features.

III 1. Following the pattern that Nakai has established in [2] (or [7], p.
171) for harmonic functions and being aware of the results of Glasner-Katz
([1], Theorem 3), we can construct a positive bounded regular Borel representing
measure mp on Γ centered at z^R having support equal to the closure of
Δp characterized by u(zo)=ίΓudmp for every PE-ί unction u. Moreover, using
Harnack's inequality we can also construct a nonnegative kernel Kp(z, q) on RxΓ
with the property u(z)=Sr Kp(z, q)u(q)dmp(q) for all zsR and all PE-ί unction u.
It can be shown that Kp(z0,q)=l for all qeΔp and Kp(z,q) is a solution on R
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almost everywhere with respect to mp.

Ill 2. Nakai's characterizations of /ZD-functions and iTO-minimal functions

are also valid, mutatis mutandis, for PE-functions and PE-minimal functions.

DEFINITION. A nonnegative solution is called a PE-function if it is the
innmum of a downward directed family of PE-functions. The collection of all

P£-functions on R is denoted by PE{R).

LEMMA. If Xc is the characteristic function of a compact subset C of Δp,

then u(z)=ίr Kp(zy q)Xc(q)dmp(q) is a PE-function.

The proof of the following theorem can be carried out as in Nakai's [2] (or
[7]) except that bounded upper semicontinuous functions on Δp do not necessarily

correspond to PE-functions. PE{R) has no order unit in general, so the work of
Nakai does not carry over formally. However, it is possible to get by with the
help of the lemma.

THEOREM. // uεPE(R), then

u{z) = \ Kp(z, q)Qim sup*€jR, x^qu(x))dmp(q).

DEFINITION. A nonzero PE-function u is called a PE-minimal function if for

any PE-function v such that u^v, we have cu=v for some constant c.

THEOREM. There exists a PE-minimal function on R if and only if there
exists a point in Δp with positive mp-measure.

More precisely•, if u is PE-minimal', then there is a point q^άp such that

mp(q0)>0 and u(z)=aKp(zf qo) for some positive constant a. Conversely, if mp(q0)>0

for some q^Δp, then Kp(z, q0) is a PE-minimal function.

IV. An intrinsic property of minimal functions.

IV 1.

THEOREM. For any connected set S c J p , mp(S)>0 if and only if rn°(S)>0.

Proof. Since the representing measures are regular, we may assume without
loss of generality that S is compact.

Suppose that mp(S)>0. By the regularity of the representing measures, there
exists a sequence {Un} of open sets in P * such that Scί7n +icC/n, lim mp(UnΠΓ)
=mp(S) and lim mo(UnnΓ)=m°(S). We may assume that JUnnBPdxdy<oo for all
n because S is compact. By the Urysohn property, for every n there is an
fnsM(R) such that O ^ Λ ^ l , Λ | t / » + 1 = l and fn\R*\Un=0. Clearly fnsE{R) and
fn^fn+i for all n. By the choice of {{/»}, limfn\Γ=Xs almost everywhere with
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respect to both mp and m°y where Xs is the characteristic function of S. Note
that π°fnGHBD(R), πpfnεPBE(R) and π°fn\Δ=πpfn\Δ=fn\Δ. π°fn, being a nonnega-
tive harmonic function, is a supersolution. And so is π°fn—πpfn Observe that
for all qsΔ, lim mfzζR,z-.q(πofn-πpfn)(z)=Mq)-Mq)=O and thus π°fn^πpfn by the
minimum principle. Note that {π°fn} and {πpfn} are both decreasing sequences and

z7 q)fn(q)dmp(q).

As n tends to oo, we have by the monotone convergence theorem that

z, q)Xs(q)dmp(q).

Setting z=z0 gives m°(S)^mp(S)>0 where z0 is the center of mp and m°. Thus
the necessity is proved.

To prove the sufficiency, we need the subsequent lemmas.

IV 2.

LEMMA. Let SczΔ be connected and compact. If ra°(S)>0, then for all open
set U in R* containing S, there is an open set V in R* such that Sa Va U and
Vf) R is a region in R with piecewise smooth boundary.

This is a modification of Proposition 9 in [4].

IV 3. Consider any region G in R. Let dG be its boundary. The closures
of G and dG in R* are denoted by G and dG respectively. Let bG=(G\dG)ΠΓ.
Clearly G\G=dG\JbG. G, being itself a Riemann surface, has its own Royden
compactification G* and Royden boundary ΓG=G*\G.

LEMMA. There is a unique continuous mapping j from G* onto G fixing G
elementwise. Moreover, ΓG=j-1(dG)\Jj~1(bG) and j is a homeomorphism between
GϋrKbG) and GϋbG.

This lemma is due to Nakai ([4]; Propositions 7, 8).

IV 4. Now choose the center z0 of the representing measure mp to be in G.
If we denote the representing measure on ΓG centered at z0 by mξ, then the
following is true.

LEMMA. Let G be a region in R with piecewise smooth boundary such that
ίG Pdxdy<oo. Let E be any Borel subset of bG, then mp(E)>0 if and only if

Nakai ([4], Proposition 8) has established this for P=0, but his proof can be
generalized.

IV 5. The following lemma is due to Royden ([6], Proposition 11; also see
Nakai [3]).
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LEMMA. If G is a region in R such that fG Pdxdy <oo, then there is an
isomorphism T of HB(G) onto PB(G) with the following properties:

1) {un}ciHB(G) is a decreasing sequence with limit ueHB(G) if and only if
{Tun}c:PB(G) is a decreasing sequence with limit TUGPB(G).

2) Let {Gi} be an exhaustion of G consisting of relatively compact regions
with piecewise smooth boundary. For any uzHBiβ), let TiU be the continuous
function on G such that TiU\G^PB{Gi) and TiU\G\Gi=u\G\Gi. Then {Ttu} con-
verges to Tu uniformly on compact subsets of G.

3) sup σ |Γ« |=sup σ |« | for all UGHB(G).

COROLLARY. UGHBD(G) if and only if TuzPBD{G) for all uzHB(G). In this
case u\ΔG=Tu\ΔGy where ΔG is the harmonic boundary of G.

Proof. Note that the sequence {Ttu} converges to Tu in the compact bounded
convergence topology. If ueHBD(G), then by the hypothesis and the Dirichlet
principle for Δu—Pu ([6], Lemma 8) EG(Tι+ju)^EG(TiU)^EG(u)<<χ>. Moreover,
Green's formula implies that 0 = EG.+J(Tι+ju, T%+ju-TiU) = EG(Tι+ju, Tz+Ju-TiU)
=EG(Tι+ju)-EG(Tι+ju, Ttu). Therefore 0^EG(Tiu-T%+Ju)=EG(Tiu)-2EG(Tίu, Tz+ju)
+EG(Tι+ju)=EG(Tiu)-EG(Tι+ju). Thus {Tφ} is ££-Cauchy. Since E(G) is BE-
complete, we have TuεPBE(G). Furthermore, it is clear that TiU-ueM0(G). Con-
sequently Tu-u£M,(G) for MΔ(G) is the ££>-closure of M0(G). Hence (Tu-u)\ΔG

=0, i.e., u\ΔG=Tu\ΔG.

The proof of the sufficiency is similar. Q.E.D.

IV 6. Now we are ready to complete the proof of Theorem IV 1. Suppose
that m°(S)>0 where S is assumed to be connected and compact. By IV 2 and
because SczΔp, there is an open set V in R* containing S such that G=Vf)R
is a region in R with piecewise smooth boundary and JG Pdxdy<oo. Note that
SabGΓ\Δ and recall the continuous mapping j from G* into G given in IV 3
which is a homeomorphism from G\Jj~\bG) to GubG. It follows from IV 4 that
S'=j-\S) is a compact subset of ΔG with m%(S')>Q>.

Let Kξ(z, q) be the associated kernel of mξ and Xs> the characteristic function
of S'. By Lemma III 2

= ^ K«G(z,q)Xs>{q)dmG{q)

is a bounded harmonic function in HD{G) with snpu^u(zo)=mG(S/)>O. Let
{Un} be a sequence of open sets in G* containing S' such that Un+i<zUnf mG(Sf)
=lim mG(UnΓ[ΓG) and mξ(S') = \im mG(UnΠΓG). By the Urysohn property, for
each n there is an fneM(G) such that 0 ^ / n ^ l , Λ|ί7nfi=l and fn\G*\Un=0.
Clearly, {fn} is a decreasing sequence converging to Xs, on Γ^ almost everywhere
with respect to both mG and mξ. Let



MINIMALITY IN FAMILIES OF SOLUTIONS OF Δu = Pu 141

where π°G is the iTO-projection on G (cf. II 4). Note that unsHBD(G) and un\ΔG

—fn\ΔG. Thus {un} is also a decreasing sequence by the minimum principle. The

monotone convergence theorem implies that

lim un{z) = lim [ KG(z, q)un(q)dmG(q) = [ KG(z, q)Xs>{q)dmG(q) = u(z).
JΓG JΓG

Consider the isomorphism T given in IV 5. Note that TunεPBE(G), Tun\ΔG

=un\ΔG and Γ^^lim Tun Thus

Tu{z) = lim [ Kξ{z, q)un(q)dmξ(q) = ( Kξ(z, q)Xs>(q)dnιξ(q)
JΓG JΓG

by the monotone convergence theorem once more. Since sup2Ί^=sup^>0 by IV

5, we have that 0<Tu{zQ)=m^{Sf)=m^U'\S)).

Now it follows from IV 4 again that mp(S)>0. Q.E.D.
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