ON CERTAIN SUBMANIFOLDS OF CODIMENSION 2 OF A LOCALLY FUBINIAN MANIFOLD

By U-Hang $\mathrm{KI}^{1}{ }^{1)}$

§ 0. Introduction.

Blair, Ludden and Yano [2] introduced a structure which is natually defined in a submanifold of codimension 2 of an almost complex manifold.

Yano and Okumura introduced what they call an (f, g, u, v, λ)-structure and gave a characterization of even-dimensional sphere [5]. They also studied submanifold of codimension 2 of an even-dimensional Euclidean space which admits a normal (f, g, u, v, λ)-structure [6]. The main theorem of [6] is the following

Theorem. Let a complete differentiable submanifold M of codimension 2 of an even-dimensional Euclidean space be such that the connection induced in the normal bundle is trivial. If the (f, g, u, v, λ)-structure induced on M is normal, then M is a sphere, a plane, or a product of a sphere and a plane.

In the present paper, we study submanifolds of codimension 2 of a locally Fubinian manifold which admits an (f, g, u, v, λ)-structure.

In § 1, we consider a submanifold of codimension 2 of a Kählerian manifold and find differential equations which the induced (f, g, u, v, λ)-structure satisfies.

In $\S 2$, we prove a series of lemmas which are valid for a certain (f, g, u, v, λ) structure.

In § 3 we study submanifolds with normal (f, g, u, v, λ)-structure in a locally Fubinian manifold.

In the last $\S 4$, we study a submanifold of codimehsion 2 such that the linear transformations $h_{j}{ }^{i}$ and $k_{j}{ }^{i}$ which are defined by the second fundamental tensors commute with $f_{j}{ }^{2}$ in a locally Fubinian manifold.

§ 1. Submanifolds of codimension 2 of a Kählerian manifold ([5]).

Let \tilde{M} be a ($2 n+2$)-dimensional Kählerian manifold covered by a system of coordinate neighborhoods $\left\{\tilde{U} ; y^{k}\right\}$, where here and in the sequel the indices κ, λ, μ, ν, \cdots run over the range $\{1,2, \cdots, 2 n+2\}$, and let ($F_{\mu}{ }^{\text {c }}, G_{\mu 2}$) be the Kählerian structure of \tilde{M}, that is,

[^0]\[

$$
\begin{equation*}
F_{\mu}{ }^{{ }^{s} F_{\lambda}{ }^{\mu}=-\delta_{\lambda}^{\varepsilon}, ~} \tag{1.1}
\end{equation*}
$$

\]

and $G_{\mu \lambda}$ a Riemannian metric such that

$$
\begin{equation*}
G_{\beta \alpha} F_{\mu}{ }^{\beta} F_{\lambda}{ }^{\alpha}=G_{\mu \lambda}, \tag{1.2}
\end{equation*}
$$

where \tilde{V} denotes the operator of covariant differentiation with respect to the Christoffel symbols $\left\{\widetilde{\left.\tilde{\epsilon}_{\mu}\right\}}\right\}$ formed with $G_{\mu \lambda}$.

Let M be a $2 n$-dimensional differentiable manifold which is covered by a system of coordinate neighborhoods $\left\{U ; x^{h}\right\}$, where hear and in the sequel the indices h, i, j, \ldots run over the range $\{1,2, \cdots, 2 n\}$, and, which is differentiably immersed in M as a submanifold of codimension 2 by the equations

$$
\begin{equation*}
y^{\varepsilon}=y^{k}\left(x^{h}\right) . \tag{1.4}
\end{equation*}
$$

We put

$$
B_{i}=\partial_{i} y^{k}, \quad\left(\partial_{i}=\partial / \partial x^{i}\right)
$$

then $B_{i}{ }^{\text {e }}$ is, for fixed i, a local vector field of \tilde{M} tangent to M and the vectors $B_{i}{ }^{\text {e }}$ are linearly independent in each coordinate neighborhood. $B_{i}{ }^{{ }^{k}}$ is, for fixed κ, a local 1-form of M.

We choose two mutually orthogonal unit vectors C^{x} and D^{x} of \tilde{M} normal to M in such a way that $2 n+2$ vectors $B_{i}{ }^{\kappa}, C^{\varepsilon}, D^{\varepsilon}$ give the positive orientation of \tilde{M}.

The transforms $F_{\lambda}{ }^{\kappa} B_{i}{ }^{\lambda}$ of $B_{i}{ }^{\lambda}$ by $F_{\lambda}{ }^{\kappa}$ can be expressed as linear combinations of $B_{i}{ }^{\text {c }}, C^{x}$ and D^{x}, that is,

$$
\begin{equation*}
F_{\lambda}^{{ }^{k} B_{i}{ }^{2}=f_{i}{ }^{h} B_{h}{ }^{\kappa}+u_{i} C^{x}+v_{i} D^{k}, ~} \tag{1.5}
\end{equation*}
$$

where $f_{i}{ }^{h}$ is a tensor field of type $(1,1)$ and u_{i}, v_{i} are 1 -forms of M. Similarly, the transform $F_{\lambda}{ }^{k} C^{\lambda}$ of C^{k} by $F_{\lambda}{ }^{k}$ and the transform $F_{\lambda}{ }^{k} D^{\lambda}$ of D^{λ} by $F_{\lambda}{ }^{k}$ can be written as

$$
\begin{align*}
F_{\lambda}{ }^{\kappa} C^{\lambda} & =-u^{i} B_{i}{ }^{\kappa}+\lambda D^{\varepsilon}, \\
F_{\lambda}{ }^{\kappa} D^{\lambda} & =-v^{i} B_{i}{ }^{\kappa}-\lambda C^{\kappa}, \tag{1.6}
\end{align*}
$$

where

$$
u^{i}=u_{t} g^{t i}, \quad v^{i}=v_{t} g^{t i},
$$

$g_{j i}$ being the Riemannian metric on M induced from that of \tilde{M}, and λ is a function on M. We can easily verify that λ is a function globally defined on M.

Applying $F_{k}{ }^{\mu}$ again to (1.5) and taking account of (1.5) itself and (1.6), we find

$$
\begin{equation*}
f_{j}^{h} f_{i}^{j}=-\delta_{i}^{h}+u_{i} u^{h}+v_{i} v^{h} \tag{1.7}
\end{equation*}
$$

$$
\begin{equation*}
u_{h} f_{i}^{h}=\lambda v_{i}, \quad v_{h} f_{i}^{h}=-\lambda u_{i} . \tag{1.8}
\end{equation*}
$$

Applying $F_{\varepsilon}{ }^{\mu}$ again to (1.6) and taking account of (1.5) and (1.6) itself, we get

$$
\begin{array}{llc}
f_{i}{ }^{h} u^{i}=-\lambda v^{h}, & u_{i} u^{i}=1-\lambda^{2}, & u_{i} v^{i}=0 \\
f_{i}{ }^{h} v^{i}=\lambda u^{h}, & v_{i} u^{i}=0, & v_{i} v^{i}=1-\lambda^{2} \tag{1.10}
\end{array}
$$

On the other hand, we have, from (1.2)

$$
\begin{equation*}
g_{k h} f_{j}^{k} f_{i}^{h}=g_{j i}-u_{j} u_{i}-v_{j} v_{i} \tag{1.11}
\end{equation*}
$$

If we put $f_{i t}=f_{2}^{r} g_{r t}$, then we can easily verify that $f_{i t}$ is skew-symmetric.
We call an (f, g, u, v, λ)-structure of M the set of f, g, u, v, and λ satisfying (1. 7)-(1. 11).

We denote by $\left\{{ }_{j}{ }_{i}{ }_{i}\right\}$ and ∇_{\imath} the Christoffel symbols formed with $g_{j i}$ and the operator of covariant differentiation with respect to $\left\{{ }_{0}{ }_{i}{ }_{i}\right\}$, respectively.

Then the equations of Gauss of M are

$$
\nabla_{j} B_{i}{ }^{\kappa}=\partial_{j} B_{i}{ }^{\kappa}+\left\{\begin{array}{c}
\tilde{\kappa} \tag{1.12}\\
\mu \lambda
\end{array}\right\} B_{j}{ }^{\mu} B_{i}{ }^{2}-B_{h}{ }^{\kappa}\left\{\begin{array}{c}
h \\
j \\
i
\end{array}\right\}=h_{j i} C^{\kappa}+k_{j i} D^{\kappa}
$$

where $h_{j i}$ and $k_{j i}$ are the second fundamental tensors of M with respect to the normals C^{κ} and D^{κ} respectively.

The equations of Weingarten are

$$
\begin{align*}
& \nabla_{j} C^{\kappa}=\partial_{j} C^{\kappa}+\left\{\begin{array}{c}
\tilde{\kappa} \\
\mu \lambda
\end{array}\right\} B_{j}{ }^{\mu} C^{\lambda}=-h_{j}{ }^{i} B_{i}{ }^{\kappa}+l_{j} D^{\kappa} \\
& \nabla_{j} D=\partial_{j} D^{\kappa}+\left\{\begin{array}{c}
\tilde{\kappa} \\
\mu \lambda
\end{array}\right\} B_{j}{ }^{\mu} D^{\lambda}=-k_{j}{ }^{i} B_{i}{ }^{\kappa}-l_{j} C^{\kappa} \tag{1.13}
\end{align*}
$$

where $h_{j}{ }^{i}=h_{j t} t^{t i}, k_{j}{ }^{2}=k_{j t} g^{t i}$ and l_{j} is the so-called third fundamental tensor.
Differentiating (1.5) covariantly along M and taking account of (1.12) and (1. 13), we get

$$
\begin{aligned}
& \left(\tilde{\nabla}_{\mu} F_{\lambda}{ }^{\kappa}\right) B_{j}{ }^{\mu} B_{i}{ }^{\lambda}-\left(h_{j i} u^{h}+k_{j i} v^{h}\right) B_{h}{ }^{\kappa}-\lambda k_{j i} C^{\kappa}+\lambda h_{j i} D^{\kappa} \\
= & \left(\nabla_{j} f_{i}{ }^{h}-h_{j}{ }^{h} u_{i}-k_{j}{ }^{h} v_{i}\right) B_{h}{ }^{\kappa}+\left(\nabla_{j} u_{i}-h_{j t} f_{i}-l_{j} v_{i}\right) C^{\kappa}+\left(\nabla_{j} v_{i}-k_{j t} f_{i}{ }^{t}+l_{j} u_{i}\right) D^{\kappa} .
\end{aligned}
$$

Since \tilde{M} is a Kählerian manifold, we have

$$
\begin{align*}
\nabla_{j} f_{i}^{h} & =-h_{j i} u^{h}+h_{j}^{h} u_{i}-k_{j i} v^{h}+k_{j}{ }^{h} v_{i}, \tag{1.14}\\
\nabla_{j} u_{i} & =-h_{j t} f_{i}^{t}-\lambda k_{j i}+l_{j} v_{i} . \\
\nabla_{j} v_{i} & =-k_{j t} f_{i}^{t}+\lambda h_{j i}-l_{j} u_{i} .
\end{align*}
$$

Similarly, differentiating (1.6) covariantly along M, we find

$$
\begin{equation*}
\nabla_{j} \lambda=k_{j i} u^{i}-h_{j i} v^{i^{i}} \tag{1.17}
\end{equation*}
$$

§ 2. Some lemmas on (f, g, u, v, λ)-structure.

We now compute

$$
\begin{equation*}
S_{j i}{ }^{h}=N_{j i}{ }^{h}+\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right) u^{h}+\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right) v^{h}, \tag{2.1}
\end{equation*}
$$

where $N_{j i}{ }^{h}$ is the Nijenhuis tensor formed with $f_{i}{ }^{h}$.
Substituting (1.14), (1.15) and (1.16) into (2.1), we get

$$
\begin{align*}
S_{j i}{ }^{h}= & \left(f_{j}^{t} h_{t}{ }^{h}-h_{j}^{t} f_{t}^{h}\right) u_{i}-\left(f_{i}^{t} h_{t}^{h}-h_{i}^{t} f_{t}^{h}\right) u_{j} \tag{2.2}\\
& +\left(f_{j}^{t} k_{t}^{h}-k_{j}^{t} f_{t}^{h}\right) v_{i}-\left(f_{i}^{t} k_{t}^{h}-k_{i}^{t} f_{t}^{h}\right) v_{j}+\left(l_{j} v_{i}-l_{i} v_{j}\right) u^{h}-\left(l_{j} u_{i}-l_{i} u_{j}\right) v^{h} .
\end{align*}
$$

When the tensor $S_{j i}{ }^{h}$ vanishes identically, the (f, g, u, v, λ)-structure is said to be normal.

If the connection induced in the normal bundle of M is flat, then we can choose C^{κ}, D^{κ} in such a way that we have $l_{j}=0$, and we say that the connection induced in the normal bundle is trivial.

In this case, (2.2) can be written as

$$
\begin{align*}
& \left(f_{j}^{t} h_{t}^{h}-h_{j}^{t} f_{t}^{h}\right) u_{i}-\left(f_{i}^{t} h_{t}^{h}-h_{i}^{t} f_{t}^{h}\right) u_{j} \\
+ & \left(f_{j}^{t} k_{t}{ }^{h}-k_{j}{ }^{t} f_{t}^{h}\right) v_{i}-\left(f_{i}{ }^{t} k_{t}^{h}-k_{i}^{t} f_{t}^{h}\right) v_{j}=0 . \tag{2.3}
\end{align*}
$$

We see that left hand side of (2.3) is independent of the choice of mutually orthogonal unit normal vectors C^{x} and D^{x}.

Let M be a submanifold of codimension 2 of a Kählerian manifold such that connection induced in the normal bundle is trival. Assuming that the function $\lambda\left(1-\lambda^{2}\right)$ does not vanish almost everywhere on M, we prove the following two lemmas.

Lemma 2.1. For the normal (f, g, u, v, λ)-structure of M such that the connection induced in the normal bundle is trivial, we have

$$
\begin{array}{ll}
h_{j i} u^{i}=\alpha u_{j}+\beta v_{j}, & h_{j i} v^{i}=\beta u_{j}+\gamma v_{j}, \\
k_{j i} u^{i}=\bar{\alpha} u_{j}+\bar{\beta} v_{j}, & k_{j i} v^{i}=\bar{\beta} u_{j}+\bar{\gamma} v_{j}, \tag{2.4}
\end{array}
$$

$\alpha, \beta, \gamma, \bar{\alpha}, \bar{\beta}$ and $\bar{\gamma}$ being scalars of M.
Proof. See [6].
Lemma 2. 2. In Lemma 2.1, we have

$$
\begin{equation*}
2 \beta=\bar{\alpha}-\bar{\gamma}, \quad 2 \bar{\beta}=\gamma-\alpha . \tag{2.5}
\end{equation*}
$$

Proof. In (2.3), we contract with respect to h and i, then we have

$$
f_{j}{ }^{t}\left(h_{t}{ }^{i} u_{i}\right)+f_{j}{ }^{t}\left(k_{t}{ }^{i} v_{i}\right)-h_{j}{ }^{t}\left(f_{t}{ }^{i} u_{i}\right)-k_{j}{ }^{t}\left(f_{t}{ }^{i} v_{i}\right)=0 .
$$

Substituting (1.8) and (2.4) into this equation, we find

$$
-\lambda(2 \beta+\bar{\gamma}-\bar{\alpha}) u_{j}+\lambda(2 \bar{\beta}+\alpha-\gamma) v_{j}=0
$$

from which, we obtain (2.5).
Next, we consider a submanifold $M^{2 n}$ of codimension 2 of a Kählerian manifold satisfying the following conditions:

$$
\begin{equation*}
f_{j}{ }^{t} h_{t}{ }^{h}=h_{j}{ }^{t} f_{t}{ }^{h}, \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{j}{ }^{t} k_{t}{ }^{h}=k_{j}{ }^{t} f_{t}^{h} . \tag{2.7}
\end{equation*}
$$

We see that (2.6) and (2.7) are independent of the choice of mutnally orthogonal unit normal vectors C^{x} and D^{c} and consequently that (2.6) and (2.7) are globally defined over $M^{2 n}$.

Lemma 2.3. For (f, g, u, v, λ)-structure of $M^{2 n}$ with (2.6) and (2.7), we have

$$
\begin{array}{ll}
h_{j i} u^{i}=\alpha u_{j}, & h_{j i} v^{i}=\alpha v_{j}, \tag{2.8}\\
k_{j i} u^{i}=\bar{\alpha} u_{j}, & k_{j i} v^{i}=\bar{\alpha} v_{j},
\end{array}
$$

where α and $\bar{\alpha}$ are scalars of $M^{2 n}$ and λ does not vanish almost everywhere on $M^{2 n}$.

Proof. From (2.6), we see that $h_{j}{ }^{t} f_{t i}$ is skew-symmetric in j and i. Thus

$$
h_{j}{ }^{t} f_{t i} u^{j} u^{i}=\lambda h_{j i} u^{j} v^{i}=0
$$

by virtue of (1.9) and consequently

$$
\begin{equation*}
h_{j i} u^{j} v^{i}=0 . \tag{2.10}
\end{equation*}
$$

Transvecting (2.6) with $f_{h}{ }^{i}$ and taking account of (1.7), we get

$$
h_{j}{ }^{t}\left(-\delta_{t}{ }^{i}+u^{i} u_{t}+v^{i} v_{t}\right)=h_{t s} f_{j}^{t} f^{s i},
$$

or

$$
-h_{s t} f_{j}^{s} f_{i}^{t}=-h_{j i}+\left(h_{j t} u^{t}\right) u_{i}+\left(h_{j t} v^{t}\right) v_{i}
$$

Since $h_{s t} f_{j} f_{i}{ }^{t}$ is symmetric in j and i, we have

$$
\begin{equation*}
\left(h_{j t} u^{t}\right) u_{i}-\left(h_{i t} u^{t}\right) u_{j}+\left(h_{j t} v^{t}\right) v_{i}-\left(h_{j t} v^{t}\right) v_{j}=0 . \tag{2.11}
\end{equation*}
$$

Transvecting (2.11) with u^{2} and using (2.10), we get

$$
h_{j t} u^{t}\left(1-\lambda^{2}\right)-\left(h_{s t} u^{s} u^{t}\right) u_{j}=0,
$$

and consequently

$$
h_{j i} u^{i}=\alpha u_{j},
$$

where we have put

$$
\begin{equation*}
h_{s t} u^{s} u^{t}=\left(1-\lambda^{2}\right) \alpha . \tag{2.12}
\end{equation*}
$$

On the other hand, transvecting (2.6) with u^{h} and taking account of (1.9) and (2.12), we have

$$
\lambda h_{j}{ }^{t} v_{t}=\alpha u_{t} f_{j}^{t}=\lambda \alpha v_{j}
$$

frow which

$$
h_{j i} v^{i}=\alpha v_{j} .
$$

Similarly we can prove (2.9). This completes the proof of Lemma 2. 3.
Lemma 2.4. Under the same assumptions as those in Lemma 2.3, we have

$$
\begin{equation*}
\bar{\alpha} h_{j i}=\alpha k_{j i}, \tag{2.13}
\end{equation*}
$$

where $\lambda\left(1-\lambda^{2}\right)$ does not vanish almost everywhere on $M^{2 n}$.
Proof. From (2.8) and (2.9), (1.17) can be written as

$$
\begin{equation*}
\nabla_{i} \lambda=\bar{\alpha} u_{j}-\alpha v_{j} . \tag{2.14}
\end{equation*}
$$

Differentiating (2.14) covariantly, we have

$$
\nabla_{k} \nabla_{j} \lambda=\left(\nabla_{k} \bar{\alpha}\right) u_{j}-\left(\nabla_{k} \alpha\right) v_{j}+\bar{\alpha} \nabla_{k} u_{j}-\alpha \nabla_{k} v_{j}
$$

If we subtract this from the equation obtained by interchanging the indices j and k in this and making use of (1.15) and (1.16), we find

$$
\begin{align*}
& \left(\nabla_{k} \bar{\alpha}+\alpha l_{k}\right) u_{j}-\left(\nabla_{j} \bar{\alpha}+\alpha l_{j}\right) u_{k}-2 \bar{\alpha} h_{k t} f_{j}^{t} \tag{2.15}\\
= & \left(\nabla_{k} \alpha-\bar{\alpha} l_{k}\right) v_{j}-\left(\nabla_{j} \alpha-\bar{\alpha} l_{j}\right) v_{k}-2 \alpha k_{k t} f_{j}^{t} .
\end{align*}
$$

Transvecting (2.15) with u^{j} and v^{j} respectively, we have

$$
\begin{aligned}
& \nabla_{k} \bar{\alpha}+\alpha l_{k}=A u_{k}+B v_{k}, \\
& \nabla_{k} \alpha-\bar{\alpha} l_{k}=C u_{k}+D v_{k} .
\end{aligned}
$$

Substituting these into (2.15), we get

$$
(B+C)\left(v_{k} u_{j}-v_{j} u_{k}\right)-2 \bar{\alpha} h_{k t} f_{j}^{t}=-2 \alpha k_{k t} f_{j}^{t} .
$$

Applying u^{ν} to these and making use of (2.8) and (2.9), we find $B+C=0$. It follows that

$$
\begin{equation*}
\bar{\alpha} h_{k t} f_{j}^{t}=\alpha k_{k t} f_{j}^{t} . \tag{2.16}
\end{equation*}
$$

Transvecting (2.16) with $f_{i}{ }^{3}$ and taking account of (1.7) and (1.8), we have (2.13).
§ 3. Submanifold of codimension 2 with normal (f, g, u, v, λ)-structure in a locally Fubinian manifold.

A Kählerian manifold $\tilde{M}^{2 n+2}$ is called a locally Fubinian manifold if the holomorphic sectional curvature at every point is indepent of the holomorphic section at the point. Its curvature tensor is given by

$$
\begin{equation*}
\tilde{R}_{\nu \mu \lambda \kappa}=k\left(G_{\nu \kappa} G_{\mu \lambda}-G_{\mu \kappa} G_{\nu \lambda}+F_{\nu \kappa} F_{\mu \lambda}-F_{\mu \kappa} F_{\nu \lambda}-2 F_{\nu \mu} F_{\lambda \kappa}\right), \tag{3.1}
\end{equation*}
$$

k being a constant.
In this section we consider a submanifold $M^{2 n}$ in a locally Fubinian manifold. Substituting (3.1) into the Gauss, Codazzi, Ricci-equations

$$
\begin{aligned}
& \tilde{R}_{\nu \mu k k} B_{k}{ }^{\nu} B_{j}{ }^{\mu} B_{i}{ }^{2} B_{h}{ }^{k}=R_{k j i h}-h_{k h} h_{j i}+h_{j h} h_{k i}-k_{k h} k_{j i}+k_{j h} k_{k i}, \\
&\left\{\begin{aligned}
\tilde{R}_{\nu \mu \lambda k} B_{k}{ }^{\nu} B_{j}{ }^{\mu} B_{i}{ }^{2} C^{x} & =\nabla_{k} h_{j i}-\nabla_{j} h_{k i}-l_{k} k_{j i}+l_{j} k_{k i}, \\
\tilde{R}_{\nu \mu \lambda k} B_{k}{ }^{\nu} B_{j}^{\mu} B_{i}{ }^{2} D^{x} & =\nabla_{k} k_{j i}-\nabla_{j} k_{k i}+l_{k} h_{j i}-l_{j} h_{k i}, \\
\tilde{R}_{\nu \mu k k} B_{k}{ }^{\nu} B_{j}{ }^{\mu} C^{2} D^{x} & =\nabla_{k} l_{j}-\nabla_{j} l_{k}+h_{k i} k_{j}{ }^{t}-h_{j t} k_{k},
\end{aligned}\right.
\end{aligned}
$$

we have respectively

$$
\begin{align*}
& k\left(g_{k h} g_{j i}-g_{j h} g_{k i}+f_{k h} f_{j i}-f_{j h} f_{k i}-2 f_{k j} f_{i h}\right) \\
= & R_{k j i h}-h_{k h} h_{j i}+h_{j h} h_{k i}-k_{k h} k_{j i}+k_{j h} k_{k i}, \tag{3.2}
\end{align*}
$$

and

$$
\begin{aligned}
& \nabla_{k} h_{j i}-\nabla_{j} h_{k i}-l_{k} k_{j i}+l_{j} k_{k i}=k\left(u_{k} f_{j i}-u_{j} f_{k i}-2 u_{i} f_{k j}\right), \\
& \nabla_{k} h_{j i}-\nabla_{j} k_{k i}+l_{k} h_{j i}-l_{j} h_{k i}=k\left(v_{k} f_{j i}-v_{j} f_{k i}-2 v_{i} f_{k j}\right)
\end{aligned}
$$

and

$$
\begin{equation*}
\nabla_{k} l_{i}-\nabla_{j} l_{k}+h_{k t} k_{j}^{t}-h_{j t} k_{k}^{t}=k\left(v_{k} u_{j}-v_{j} u_{k}-2 \lambda f_{k j}\right) . \tag{3.4}
\end{equation*}
$$

We now prove the following
Theorem 3.1. Let a submanifold $M^{2 n}$ of codimension 2 of a locally Fubinian manifold $\tilde{M}^{2 n+2}$ be such that the connection induced in the normal bundle of $M^{2 n}$ is trivial. If the (f, g, u, v, λ)-structure is normal and λ is a constant different from 0 and 1 , then there is no such $a M^{2 n}$ unless $\tilde{M}^{2 n+2}$ is locally Fuclidean.

Proof. Since λ is a constant on $M^{2 n}$, we have, from (1.17)

$$
\begin{equation*}
h_{j i} v^{i}-k_{j i} u^{i}=0 \tag{3.5}
\end{equation*}
$$

Making use of (2.5) and (3.5), we can write (2.4) as

$$
\begin{array}{ll}
h_{j i} u^{2}=\alpha u_{j}+\beta v_{j}, & h_{j i} v^{i}=\beta u_{j}-\alpha v_{j}, \\
k_{j i} u^{i}=\beta u_{j}-\alpha v_{j}, & k_{j i} v^{i}=-\alpha u_{j}-\beta v_{j}, \tag{3.6}
\end{array}
$$

from which,

$$
\begin{equation*}
h_{j i} u^{i}+k_{j i} v^{2}=0 . \tag{3.7}
\end{equation*}
$$

Differentiating (3.7) covariantly, we obtain

$$
\left(\nabla_{k} h_{j i}\right) u^{2}+h_{j i} \nabla_{k} u^{i}+\left(\nabla_{k} k_{j i}\right) v^{i}+k_{j i} \nabla_{k} v^{2}=0 .
$$

If we subtract this from the equation obtained by interchanging the indices j and k in this and take account of (1.15), (1.16) and (3.3), we have

$$
\begin{aligned}
& k\left(u_{k} f_{j i}-u_{j} f_{k i}-2 u_{i} f_{k j}\right) u^{i}+h_{j i}\left(-h_{k t} f^{i t}-\lambda k_{k}{ }^{i}\right) \\
&-h_{k i}\left(-h_{j t} f^{i t}-\lambda k_{j}{ }^{i}\right)+k\left(v_{k} f_{j i}-v_{\jmath} f_{k i}-2 v_{i} f_{k j}\right) v^{i} \\
&++k_{j i}\left(-k_{k t} f^{i t}+\lambda h_{k}{ }^{i}\right)-k_{k i}\left(-k_{j t} f^{i t}+\lambda h_{j}{ }^{i}\right)=0,
\end{aligned}
$$

or, using (1.9), (1.10) and (3.4),

$$
\left(h_{j i} h_{k t}+k_{j i} k_{k t}\right) f^{i t}=-2 k f_{k \jmath} .
$$

Transvecting this equation with u^{j} and using (1.9), (1.10) and (3.6), we get

$$
\lambda\left(-\alpha v_{t}+\beta u_{t}\right) h_{k}{ }^{t}+\lambda\left(\beta v_{t}-\alpha u_{t}\right) k_{k}{ }^{t}=-2 \lambda k v_{k},
$$

and consequently

$$
\begin{equation*}
\alpha^{2}+\beta^{2}=-k . \tag{3.8}
\end{equation*}
$$

On the other hand, transvecting (3.4) with u^{k} and (1.9) and (3.6), we find

$$
2\left(\alpha^{2}+\beta^{2}\right)=k\left(1-3 \lambda^{2}\right) .
$$

From this and (3.8), it follows that $k=0$. This means that $\tilde{M}^{2 n+2}$ is locally Euclidean.

§ 4. Submanifold of codimension 2 with certain $(f, g, u, v \lambda)$-structure in a locally Fubinian manifold.

It this section, we consider a submanifold $M^{2 n}$ of codimension 2 of a locally Fubinian manifold satisfying the conditions (2.6) and (2.7). We assume that $\lambda\left(1-\lambda^{2}\right)$ does not vanish almost everywhere on $M^{2 n}$.

Differentiating the second equation of (2.8) covariantly, we have

$$
\left(\nabla_{k} h_{j i}\right) v^{i}+h_{j i} \nabla_{k} v^{i}=\left(\nabla_{k} \alpha\right) v_{j}+\alpha \nabla_{k} v_{j} .
$$

If we subtract this from the equation obtained by interchanging the indices j and k in this and take account of (1.16), (2.9) and (3.3), we get

$$
\begin{aligned}
& \bar{\alpha}\left(l_{k} v_{j}-l_{j} v_{k}\right)+\left(-h_{j i} k_{k t}+h_{k i} k_{j t}\right) f^{i t}+\alpha\left(l_{j} u_{k}-l_{k} u_{j}\right) \\
= & \left(\nabla_{k} \alpha\right) v_{j}-\left(\nabla_{j} \alpha\right) v_{k}-\alpha k_{k t} f_{j}^{t}+\alpha k_{j t} f_{k}^{t}+\alpha\left(-l_{k} u_{j}+l_{j} u_{k}\right),
\end{aligned}
$$

or, using (2.6),

$$
\begin{equation*}
\left(h_{k i} k_{j t}-h_{j i} k_{k t}\right) f^{i t}=\left(\nabla_{k} \alpha-\bar{\alpha} l_{k}\right) v_{j}-\left(\nabla_{j} \alpha-\bar{\alpha} l_{j}\right) v_{k}-2 \alpha k_{k t} f_{j}{ }^{t} . \tag{4.1}
\end{equation*}
$$

Transvecting (4.1) with v^{k} and using (2.8) and (2.9), we get

$$
\begin{equation*}
\left(1-\lambda^{2}\right)\left(\nabla_{k} \alpha-\bar{\alpha} l_{k}\right)=v^{t}\left(\nabla_{t} \alpha-\bar{\alpha} l_{t}\right) v_{k}, \tag{4.2}
\end{equation*}
$$

from which,

$$
\begin{equation*}
u^{t}\left(\nabla_{t} \alpha-\bar{\alpha} l_{t}\right)=0 . \tag{4.3}
\end{equation*}
$$

Substituting (4.2) into (4.1), we find

$$
\begin{equation*}
\left(h_{k i} k_{j t}-h_{j i} k_{k t}\right) f^{i t}=-2 \alpha k_{k t} f_{j}^{t}, \tag{4.4}
\end{equation*}
$$

or, using (2.6) and (2.7),

$$
\begin{equation*}
\left(h_{j i} k_{t}{ }^{i}+k_{j i} h_{t}{ }^{i}\right) f_{k}{ }^{t}=2 \alpha k_{j t} f_{k}^{t} . \tag{4.5}
\end{equation*}
$$

Transvecting (4.5) with $f_{h}{ }^{k}$ and using (2.8) and (2.9), we get

$$
\begin{equation*}
h_{j t} k_{i}{ }^{t}+k_{j t} h_{i}{ }^{t}=2 \alpha k_{j i} . \tag{4.6}
\end{equation*}
$$

From (2.13) and (4.6), we find

$$
\begin{equation*}
h_{j t} k_{i}^{t}+k_{j t} h_{i}^{t}=2 \bar{\alpha} h_{j i} . \tag{4.7}
\end{equation*}
$$

Differentiating the first equation of (2.8) covariantly, we have

$$
\left(\nabla_{k} h_{j i}\right) u^{2}+h_{j i} \nabla_{k} u^{i}=\left(\nabla_{k} \alpha\right) u_{j}+\alpha\left(\nabla_{k} u_{j}\right),
$$

from which,

$$
\left(\nabla_{k} h_{j i}-\nabla_{j} h_{k i}\right) u^{i}+h_{j i} \nabla_{k} u^{2}-h_{k i} \nabla_{j} u^{i}=\left(\nabla_{k} \alpha\right) u_{j}-\left(\nabla_{j} \alpha\right) u_{k}+\alpha\left(\nabla_{k} u_{j}-\nabla_{j} u_{k}\right) .
$$

Substituting (1.15) and (3.3) into this, we get

$$
\begin{align*}
& k\left(\lambda u_{k} v_{j}-\lambda u_{j} v_{k}-2\left(1-\lambda^{2}\right) f_{k j}\right)+\bar{\alpha}\left(l_{k} u_{j}-l_{j} u_{k}\right)+2 h_{j i} h_{k}^{t} f_{t}^{i}+\lambda\left(h_{k t} k_{j}^{t}-h_{j t} k_{k}^{t}\right) \\
= & \left(\nabla_{k} \alpha\right) u_{j}-\left(\nabla_{j} \alpha\right) u_{k}+2 \alpha h_{j t} f_{k}^{t}, \tag{4.8}
\end{align*}
$$

because of (2.6) and (2.8).
Transvecting (4.8) with u^{k} and using (2.8), (2.9) and (4.3), we get

$$
\begin{equation*}
\nabla_{j} \alpha-\bar{\alpha} l_{j}=-3 \lambda k v_{j} . \tag{4.9}
\end{equation*}
$$

Substituting (4.9) into (4.8), we have

$$
\begin{equation*}
2 k\left\{-\lambda u_{k} v_{j}+\lambda u_{j} v_{k}-\left(1-\lambda^{2}\right) f_{k j}\right\}+\lambda\left(h_{k t} k_{j}{ }^{t}-h_{j}{ }^{t} k_{k}{ }^{t}\right)+2 h_{j i} h_{k}{ }^{t} f_{t}{ }^{i}-2 \alpha h_{j t} f_{k}{ }^{t}=0 . \tag{4.10}
\end{equation*}
$$

In the first place, if we put $M_{0}=\left\{p \in M^{2 n} \mid\left(h_{k t} k_{j}{ }^{t}-h_{j t} k_{k}{ }^{t}\right)(p) \neq 0\right\}$, then (2.13) shows that at a point $p \in M_{0}$, we have $\alpha(p)=\bar{\alpha}(p)=0$.

From this and (4.9), if there exists a point $p \in M_{0}$, then $k=0$ on $M^{2 n}$ because of k is a constant.

From the above discussion we know that we have to consider only the case that $k \neq 0$ and

$$
\begin{equation*}
h_{k t} k_{J}{ }^{t}-h_{j t} k_{k}{ }^{t}=0 \tag{4.11}
\end{equation*}
$$

at every point of $M^{2 n}$. In this case, however, we can also prove that the enveloping manifold is locally flat. In fact, (4.10) reduced to

$$
h_{j i} h_{k}{ }^{t} f_{t}{ }^{2}+\left\{\lambda u_{j} v_{k}-\lambda u_{k} v_{j}-\left(1-\lambda^{2}\right) f_{k j}\right\}=\alpha h_{j t} f_{k}^{t},
$$

or, using (2.6),

$$
\begin{equation*}
\left(h_{j i} h_{t}{ }^{2}-\alpha h_{j t}\right) f_{k}^{t}=k\left\{\lambda u_{k} v_{j}-\lambda u_{j} v_{k}+\left(1-\lambda^{2}\right) f_{k j}\right\} . \tag{4.12}
\end{equation*}
$$

Transvecting (4.12) with $f_{h}{ }^{k}$ and using (1.7) and (1.8), we obtain

$$
\begin{aligned}
& \left(h_{j i} h_{t}^{i}-\alpha h_{j t}\right)\left(-\delta_{h}{ }^{t}+u_{h} u^{t}+v_{h} v^{t}\right) \\
= & k\left\{\lambda^{2} v_{j} v_{h}+\lambda^{2} u_{j} u_{h}+\left(1-\lambda^{2}\right)\left(-g_{h j}+u_{h} u_{j}+v_{j} v_{h}\right)\right\},
\end{aligned}
$$

or using (2.8) and (2.9),

$$
\begin{equation*}
h_{j i} h_{h}^{i}-\alpha h_{j h}=-k\left\{\left(\lambda^{2}-1\right) g_{j h}+u_{j} u_{h}+v_{j} v_{h}\right\} . \tag{4.13}
\end{equation*}
$$

Similarly, from the first equation of (2.9) and (4.11), we obtain

$$
\begin{equation*}
k_{j i} k_{h}{ }^{i}-\bar{\alpha} k_{j h}=-k\left\{\left(\lambda^{2}-1\right) g_{j h}+u_{j} u_{h}+v_{j} v_{h}\right\} . \tag{4.14}
\end{equation*}
$$

From (2.13), (4.13) and (4.14), we can easily find that

$$
\begin{equation*}
\alpha^{2}=\bar{\alpha}^{2} . \tag{4.15}
\end{equation*}
$$

If α or $\bar{\alpha}$ is zero, then $\alpha=\bar{\alpha}=0$ and consequently $k=0$. Therefore, we may consider that α and $\bar{\alpha}$ are not zero. Then, from (2.13) and (4.6), we find

$$
h_{j t} h_{n}{ }^{t}=\alpha h_{j h} .
$$

From this and (4.13), we have

$$
\begin{equation*}
k\left\{\left(\lambda^{2}-1\right) g_{j h}+u_{j} u_{h}+v_{j} v_{h}\right\}=0 . \tag{4.16}
\end{equation*}
$$

Transvecting (4.16) with $g^{j h}$, we find

$$
(n-1)\left(1-\lambda^{2}\right) k=0 .
$$

Therefore $k=0$ for $n>1$. Hence, we have the following
Theorem 4.1. If a locally Fubinian manifold $\tilde{M}^{2 n+2}(n>1)$ admits a submanifold of codimension 2 such that the linear transformations $h_{j}{ }^{2}$ and $k_{j}{ }^{i}$ which are defined by the second fundamental tensors commute with $f_{j}{ }^{i}$, then it is locally flat.

Bibliography

[1] Ако, M., Submanifolds in Fubinian manifolds. Kōdai Math. Sem. Rep. 19 (1967), 103-128.
[2] Blair, D. E., G. D. Ludden, and K. Yano, Induced structures on submanifolds. Kōdaı Math. Sem. Rep. 22 (1970), 188-198.
[3] Okumura M., Certain hypersurfaces of an odd dimensional sphere. Tôhoku Math. Journ. 19 (1967), 381-395.
[4] Tashiro, Y., and S. Tachibana, On Fubinian and C-Fubınian manifolds. Kōdai Math. Sem. Rep. 15 (1963), 173-183.
[5] Yano, K., and M. Okumura, On (f, g, u, v, λ)-structures. Ködai Math. Sem. Rep. 22 (1970), 401-423.
[6] Yano, K., and M. Okumura, On normal (f, g, u, v, λ)-structures on submanifolds of codimension 2 in an even-dimensıonal Euclidean space. Kōdai Math. Sem. Rep. 23 (1971), 172-197.

Tokyo Institute of Technology, and Kyungrook University.

[^0]: Received December 17, 1970.

 1) The author wishes to thank Professor M. Okumura who kindly pointed out uncertain places and gave him many valuable suggestions.
