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ON CERTAIN SUBMANIFOLDS OF CODIMENSION 2
OF A LOCALLY FUBINIAN MANIFOLD

By U-Hanc Ki»

§0. Introduction.

Blair, Ludden and Yano [2] introduced a structure which is natually defined
in a submanifold of codimension 2 of an almost complex manifold.

Yano and Okumura introduced what they call an (f, g, %, v, 2)-structure and
gave a characterization of even-dimensional sphere [5]. They also studied sub-
manifold of codimension 2 of an even-dimensional Euclidean space which admits a
normal (f, g, u, v, A)-structure [6]. The main theorem of [6] is the following

THEOREM. Let a complete differventiable submanifold M of codimension 2 of an
even-dimensional Euclidean space be such that the comnection induced in the normal
bundle is trivial. If the (f, g, #, v, A)-structure induced on M is normal, then M is
a sphere, a plane, or a product of a sphere and a plane.

In the present paper, we study submanifolds of codimension 2 of a locally
Fubinian manifold which admits an (f, g, #, v, 2)-structure.

In §1, we consider a submanifold of codimension 2 of a Kihlerian manifold
and find differential equations which the induced (f, g, %, v, 2)-structure satisfies.

In §2, we prove a series of lemmas which are valid for a certain (f, g, #, v, 4)-
structure.

In §3 we study submanifolds with normal (f, g, %, v, )-structure in a locally
Fubinian manifold.

In the last §4, we study a submanifold of codimehsion 2 such that the linear
transformations %% and k;# which are defined by the second fundamental tensors
commute with f in a locally Fubinian manifold.

§1. Submanifolds of codimension 2 of a Kahlerian manifold ([5]).

Let i be a (2n+2)-dimensional Kihlerian manifold covered by a system of
coordinate neighborhoods {Ij' ; ¥*}, where here and in the sequel the indices &, 2, g,
v, -+ run over the range {1, 2, ---, 22+2}, and let (¥,", G.;) be the Kéhlerian struc-
ture of M, that is,
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18 U-HANG KI
1.1 F/SFf=—a,
and G,; a Riemannian metric such that

1.2 Ge FLF =G,
(1.3) V.F*=0,

where F denotes the operator of covariant differentiation with respect to the
Christoffel symbols {5} formed with G,

Let M be a 2n-dimensional differentiable manifold which is covered by a
system of coordinate neighborhoods {U; z*}, where hear and in the sequel the
indices 4, i, 7, --- run over the range {1, 2, ---, 2n}, and, which is differentiably im-
mersed in M as a submanifold of codimension 2 by the equations

1.9 ¥ =y (a").

We put

Bf=0y",  (0;=0/0ox?)

then Bi* is, for fixed i, a local vector field of M tangent to M and the vectors B;*
are linearly independent in each coordinate neighborhood. B;* is, for fixed «, a
local 1-form of M.

We choose two mutually orthogonal unit vectors C* and D of M normal to
M i~n such a way that 2z+2 vectors B;", C*, D* give the positive orientation
of M.

The transforms F,"B;* of B;* by F," can be expressed as linear combinations
of B, C* and D~ that is,
(1.5) Fy Bl =f"Bn" +u,C"+v.D",

where f;* is a tensor field of type (1,1) and #;, »; are 1-forms of M. Similarly,
the transform F;"C? of C* by F," and the transform F,"D?* of D* by F;" can be
written as

FC*=—u!B;+ D",
(1. 6)

F*D*=—v*B;*—iC",
where

w=ugt,  vi=vg",
g;; being the Riemannian metric on M induced from that of ﬂ, and 2 is a func-
tion on M. We can easily verify that 2 is a function globally defined on M.

Applying F.* again to (1.5) and taking account of (1.5) itself and (1. 6),

we find

.7 Fifd=—dtuad+oo,

(1. 8) unfih=lv1;, Unfih' = —lui.
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Applying F,” again to (1.6) and taking account of (1.5) and (1.6) itself,
we get

1.9 fitut=—a"  wut=1-2%,  wp'=0,

(1.10) fitvt=Au, viut=0, vivt=1-2%
On the other hand, we have, from (1. 2)

(1. 11) gen S i =g 50— ujui—v0;.

If we put fit=,."0x, then we can easily verify that f; is skew-symmetric.

We call an (f, g, %, v, A)-structure of M the set of f, g, », v, and 2 satisfying
(1. 7-(1. 11).

We denote by {#;} and P, the Christoffel symbols formed with ¢; and the
operator of covariant differentiation with respect to {,%;}, respectively.

Then the equations of Gauss of M are
h

1.12) V,Bi‘=ajBi‘+{:X}BJ”B,-’—B;L‘{ ;

j i}—:hﬁc +k;D",

where %; and kj; are the second fundamental tensors of M with respect to the
normals C* and D" respectively.
The equations of Weingarten are

ViC*=0,C" + {:Z}B/'C‘: —hi' B +1;D",
(1. 13)

~

V,D=0,D" + { :'JB/‘D‘ = —kiBF—I,C,

where hft=h;g", ki=Fku9* and [, is the so-called third fundamental tensor.
Differentiating (1.5) covariantly along M and taking account of (1.12) and
(1. 13), we get

(7 JF59) B, B —(hys+ ™) By — Al i C* 4 Ay D*
=V, fi"— h"ui—k"0:) B + (Vi — Ry [ — L0) C" + (Vi — ke /£ + L) D

Since M is a Kihlerian manifold, we have

(1 14) ijih=—hﬁuh+hj"ui—kjw"+kj"vi,
(1 15) Vju,;=—hﬂf,,':—2kji+ljvi.
(1. 16) Vivi=—kuflt+ Ahji—L .

Similarly, differentiating (1. 6) covariantly along M, we find
(1. 17) lezkﬁui—hﬂvi.
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§2. Some lemmas on (f, g, u, v, A)-structure.
We now compute
2.1 Syt =N+ Vus—Ving)u? + (Vyv; — Vi)™,

where N;* is the Nijenhuis tensor formed with f;”.
Substituting (1. 14), (1. 15) and (1. 16) into (2. 1), we get

Sii=(f "= hit fiYus— (fit b — b fi")u;

2. 2)
+(f k" — kit f)vi — (futke — Bt f )i+ (Ljos — Lw )uh — (Lo — Liw ) o™

When the tensor S;* vanishes identicallly, the (f, g, %, v, A)-structure is said
to be normal.

If the connection induced in the normal bundle of A is flat, then we can
choose C*, D" in such a way that we have /,=0, and we say that the connection
induced in the normal bundle is trivial.

In this case, (2. 2) can be written as

(fith—hit f)yui— (fithd — it fP)u;
+(fihr— ki M0~ (LR — ki fi),=0.

(2.3)

We see that left hand side of (2.3) is independent of the choice of mutually
orthogonal unit normal vectors C* and D".

Let M be a submanifold of codimension 2 of a Kihlerian manifold such that
connection induced in the normal bundle is trival. Assuming that the function
A(1—22%) does not vanish almost everywhere on M, we prove the following two
lemmas.

LEMMA 2.1. For the normal (f, g, u, v, 2)-structure of M such that the con-
nection induced in the normal bundle is trivial, we have

2. 4) hjiwt=au;+pv;,  hyvt=puj+yvj,
’ kjf,ui=5iuj+51)j, kjivi=.éul+7-'vf’
a, B, 1, @ B and 7 being scalars of M.
Proof. See [6].

LEMMA 2.2. In Lemma 2.1, we have
(2.5) 28=a-y, 28=yr—a.

Proof. In (2.3), we contract with respect to # and 7, then we have
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Sihitus)+f #(Ritve) — it (fitus) — ki (fiivi) =0.
Substituting (1. 8) and (2. 4) into this equation, we find
—A2B+7—@u;+ 2B +a—7w;=0

from which, we obtain (2. 5).
Next, we consider a submanifold M?* of codimension 2 of a Kihlerian mani-
fold satisfying the following conditions:

(2.6) fih=h'fi,
and
2. 7) Vi jtkth = k/f i

We see that (2. 6) and (2. 7) are independent of the choice of mutnally orthogonal
unit normal vectors C* and D and consequently that (2. 6) and (2.7) are globally
defined over M?®".

LemMmA 2.3. For (f, g, u, v, 2)-structure of M?** with (2.6) and (2.7), we have
(2. 8) }Lﬁui=auj, hﬂvi=avj,
2.9 kput=au,  kpvt=av;,

where a and & are scalars of M** and A does not vanmish almost everywhere
on M?*,

Proof. From (2. 6), we see that 4 fy is skew-symmetric in j and . Thus
hit fonlut=2Ah;uivi=0
by virtue of (1. 9) and consequently
(2. 10) hjulvt=0.
Transvecting (2. 6) with f3* and taking account of (1.7), we get

R (=0t +ulus+v'v) =his [, 5,
or
—hsof§ it = — R+ (B + (Bjv")vs.

Since kqf,fi¢ is symmetric in j and i, we have
2. 11) (Bjentt)vus— (hasts®) s+ (B je0t)v; — (B jevt)0;=0.
Transvecting (2. 11) with #* and using (2. 10), we get

bt (L —22) — (hsst’u)ue, =0,
and consequently
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h j,;ui =ai;,
where we have put
(2. 12) hgw’ut=1—2)a.

On the other hand, transvecting (2.6) with #* and taking account of (1.9)
and (2. 12), we have

Ahtve=auf )t =Aav,,
frow which
hmﬂ': av,.

Similarly we can prove (2.9). This completes the proof of Lemma 2. 3.

LemMMA 2. 4. Under the same assumptions as those in Lemma 2.3, we have
(2.13) ahji=aky;,
where A1 —2%) does not vanish almost everywhere on M?®".

Proof. From (2.8) and (2.9), (1. 17) can be written as
(2.14) Vid=au;—av,.

Differentiating (2. 14) covariantly, we have

ViVia= V@) u;— (Via)v;+ Vi j— aVxv,.

If we subtract this from the equation obtained by interchanging the indices j and
k in this and making use of (1.15) and (1. 16), we find

2.15) k@ + alw)yu;— (Vi@ + alj)ur— 2 b f
=a—abw;— (Via—al;)ve— 20k f "
Transvecting (2. 15) with #’ and 27 respectively, we have
Vi@ +aly=Aui+ Bog,
Viva— @ly=Cuy+ Doy
Substituting these into (2.15), we get
(B+C)(viths—ur) = 2@hur f b = — 20k f .

Applying #’ to these and making use of (2.8) and (2.9), we find B+C=0. It
follows that
(2.16) Chif it =ak S,

Transvecting (2.16) with fi and taking account of (1.7) and (1.8), we
have (2. 13).
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§3. Submanifold of codimension 2 with normal (f, g, u, v, 2)-structure in a
locally Fubinian manifold.

A Kihlerian manifold M?*+* is called a locally Fubinian manifold if the holo-
morphic sectional curvature at every point is indepent of the holomorphic section
at the point. Its curvature tensor is given by

(3- 1) ﬁvpl:=k(Gv:Gy1"'G,a:GvZ'I_Fvstl—'Fervl_ZFv#Fls)y

k being a constant.
In this section we consider a submanifold M?*® in a locally Fubinian manifold.
Substituting (3. 1) into the Gauss, Codazzi, Ricci-equations

R, ,1.B¢ B)* B#By* = Rijin— hinhji+ hinhii— Bink ji-+ Binkia,
R, ,1.Bi’ B, BC* = Vihji—Vihwi—likji+ Uik
Jl R.,1.Bi’ By* BAD* =Vikji—Vikui-+lihsi— i,
R, 1B By C'DF =Vily— Vil + huike st — bkt
we have respectively
k(gingji—gingri+SanS si—FinSwi—2 k; fin)

3. 2)
= Rijin—Rinhji+Rinkii — Binkji+ Binkis,
and
1% khji -7 jhki _lkkji + ljkm = k(ukf Ji— ujf wi— 2 f lcj),
Vukeji—Vikwi+ lohgi— it = R(0n S i~ 03 56— 205 f15)
and
(3. 4) Vklf, - lek +}I,mkjt —kakkt = k(vkuj —VjijUg— 2kaj).

We now prove the following

THEORNEM 3.1. Let a submanifold M?*" of codimension 2 of a locally Fubinian
manifold M?**+* be such that the comnection induced in the normal bundle of M*®
is trivial. If the (f, g, u, v, )-structure is normal gnd A is a constant different
from 0 and 1, then there is no such a M>* unless M*** is locally Fuclidean.

Proof. Since 2 is a constant on M?", we have, from (1.17)
3.5) kvt —kiut=0.
Making use of (2.5) and (3. 5), we can write (2. 4) as
kit =ou;+ o, hjivt=puj—av,,

3. 6)
kuut=pu;—av;,  kjvi=—au;—pv;,
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from which,
3.7 Ryt k00 =0.
Differentiating (3. 7) covariantly, we obtain
(Pehji)wr+ byt + Pk )0t + kjiVivr =0.

If we subtract this from the equation obtained by interchanging the indices j
and % in this and take account of (1.15), (1.16) and (3. 3), we have

k(urf i~y oo — 201 fog) s+ Pjo( — Poiee S — Rer)
— il —hjef  — 2k 1)+ B0 f 1~ 0, fies— 201 f)0*
+ ke ji( — Be f 4 M) — ki — o S+ 20%) =0,
or, using (1. 9), (1. 10) and (3. 4),
(Bt + Rjikre) [ = — 2k fr,.
Transvecting this equation with #/ and using (1.9), (1. 10) and (3. 6), we get

A — v+ Bu) b’ + A(Boe— awn)kit = — 24kvs,
and consequently
3.8) a4 =~k
On the other hand, transvecting (3. 4) with #* and (1. 9) and (3. 6), we find
2a*+ B =k(1—-32%).

From this and (3. 8), it follows that 2=0. This means that Meie s locally
Euclidean.

§4. Submanifold of codimension 2 with certain (£, g, u, v 2)-structure in a
locally Fubinian manifold.

It this section, we consider a submanifold M?" of codimension 2 of a locally
Fubinian manifold satisfying the conditions (2.6) and (2.7). We assume that
A(1—2%) does not vanish almost everywhere on A%~

Differentiating the second equation of (2. 8) covariantly, we have
(thﬂ)vi -+ }ljinvi = (Vk(x)l)j + aVkv,.

If we subtract this from the equation obtained by interchanging the indices j and
k in this and take account of (1.16), (2.9) and (3. 3), we get

C_t’(lkl)j - ljl)k) + ( - hjikkr{' hkikjt)fu‘i‘a(ljuk - lkuj)
= (Vka)vj— (Vja)vk - a’kmff + Olkjtfkl+ Ct'( "lkuj + ljuk)’
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or, using (2. 6),
(4 1) (hm'kjg —]Zjikm)f“= (Vka—o?lk)vj — (Vja—-&lj)vk—Zakme‘.

Transvecting (4. 1) with »* and using (2. 8) and (2. 9), we get

4. 2) A= 23)Vpa — aly) ="V — &ly)vy,
from which,
4.3) w (Vi — aly) =0.

Substituting (4. 2) into (4. 1), we find

(4- 4) (hkikjt - hjikkt)f = — za’klctf J‘y
or, using (2. 6) and (2. 7),
(4. 5) (}l jikti + k ji}lci) f kt = Zak jgfkt.

Transvecting (4. 5) with f* and using (2. 8) and (2. 9), we get
4. 6) hjkit + kjhit =2akj;.
From (2. 13) and (4. 6), we find
4.7 Rjsks + R jhit =20ahy;.
Differentiating the first equation of (2. 8) covariantly, we have
(Prhjiyu + hjiViut = (Vroyu;+ a(Veuy),
from which,
(Pehgi—Vika)ut + iVt — biiV ot = (Via)ue; — (Vo) b+ (Ve s — V).
Substituting (1. 15) and (3. 3) into this, we get
RQuiv;— Ao, — 21— 2%) fr5) + ALt ; — Lwi) + 2hgihint it 4 Ahekest — hyokert)
=a)u;— (Via)up+ 20k, [+,

because of (2.6) and (2. 8).
Transvecting (4. 8) with #* and using (2. 8), (2.9) and (4. 3), we get

4. 8)

(4. 9) Vja—c'dj= —3lkl)j-
Substituting (4. 9) into (4. 8), we have
(4 10) Zk{ — Xukvj + luﬂ)]g — (1 - Zz)fkj} + l(lluk/ —hjtkkt) + Zhj,;hk‘fti - 2a}lj5flct =u.

In the first place, if we put My={peM?>|(huk;—hik")(p)=x0}, then (2.13)
shows that at a point peM,, we have a(p)=a(p)=0.
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From this and (4. 9), if there exists a point peM,, then k=0 on M?" because
of £ is a constant.

From the above discussion we know that we have to consider only the case
that 220 and

(4. 11) Fack,t— Rk =0

at every point of M?". In this case, however, we can also prove that the envelop-
ing manifold is locally flat. In fact, (4. 10) reduced to

hjihi’ fir {20 op— 2w — (1—22) frst = abje i,
or, using (2. 6),
4. 12) (Bjihe — ahys) fil = R{Auw;— A 0i+ (1 — 22) fr 5}
Transvecting (4. 12) with f3* and using (1. 7) and (1. 8), we obtain
(hyihi — ahje)(—On® + untt +v,0")
=k{2v on+ 2ujun+ 1 —22)(— g+ untt;+0500)},
or using (2.8) and (2.9),
(4.13) Rjihnt—ahjn=—R{(A2—1)gjn+wj0n+0;0n}.
Similarly, from the first equation of (2.9) and (4. 11), we obtain
4. 14) kjiknt— @kjn=—k{(2—1)gn+ujun+v;00}.
From (2. 13), (4.13) and (4. 14), we can easily find that
(4. 15) al=as.

If @« or @ is zero, then a=a@=0 and consequently £=0. Therefore, we may
consider that « and @ are not zero. Then, from (2. 13) and (4. 6), we find

hjhnt=ahjn.
From this and (4. 13), we have
(4. 16) R{(22—1)gn+ujun+v,0,}=0.
Transvecting (4. 16) with ¢7*, we find
(n—1)(1—2%)k=0.
Therefore £=0 for »>1. Hence, we have the following

THEOREM 4. 1. If a locally Fubinian manifold Men+e (n>1) admits a submani-
fold of codimension 2 such that the linear transformations h;j and kjt which are
defined by the second fundamental tensors commute with fj, then it is locally flat.
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